Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

A Fundamental Limit on the Heat Flux in the Control of Incompressible Channel Flow

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bewley, T.R. ; California Univ., La Jolla ; Ziane, M.

This paper proves that there are no zero-net wall-transpiration control strategies that can sustain net heat flux below the laminar level in an incompressible channel flow with constant-temperature walls. The result represents a fundamental limit on the performance of a controlled nonlinear system as measured by a linear cost function over a broad class of admissible initial conditions and control inputs, not a zero-sum tradeoff in the frequency domain or time domain. Both buoyancy effects (via the Boussinesq approximation) and viscous heating effects are accounted for, and phenomenological justification for the result is also given. The boundedness of solutions of the two-way coupled Navier-Stokes/energy equations (when both buoyancy and viscous heating are accounted for) is also discussed, and a new proof of existence under an appropriate small-data assumption is provided.

Published in:

Automatic Control, IEEE Transactions on  (Volume:52 ,  Issue: 11 )