Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Nominally Robust Model Predictive Control With State Constraints

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Grimm, G. ; Raytheon Co., El Segundo ; Messina, M.J. ; Tuna, S.E. ; Teel, A.R.

In this paper, we present robust stability results for constrained discrete-time nonlinear systems using a finite-horizon model predictive control (MPC) algorithm for which we do not require the terminal cost to have any particular properties. We introduce a definition that attempts to characterize the robustness properties of the MPC optimization problem. We assume the systems under consideration satisfy this definition (for which we give sufficient conditions) and make two further assumptions. These are that the value function is bounded by a Kinfin function of a state measure (related to the distance from the state to some target set) and that this measure is detectable from the stage cost used in the MPC algorithm. We show that these assumptions lead to stability that is robust to sufficiently small disturbances. While in general the results are semiglobal and practical, when the detectability and upper bound assumptions are satisfied with linear Kinfin functions, the stability and robustness are either semiglobal or global (with respect to the feasible set). We discuss algorithms employing terminal inequality constraints and also provide a specific example of an algorithm that employs a terminal equality constraint.

Published in:

Automatic Control, IEEE Transactions on  (Volume:52 ,  Issue: 10 )