By Topic

Simultaneous Localization and Map Building Using the Probabilistic Multi-Hypothesis Tracker

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Davey, S.J. ; Defence Sci. & Technol. Organ., Edinburgh

This paper demonstrates how the data-association technique known as the probabilistic multi-hypothesis tracker (PMHT) can be applied to the feature-based simultaneous localization and map building (SLAM) problem. The main advantage of PMHT over other conventional data-association techniques is that it has low computational complexity, while still providing good performance. Low complexity is a particularly desirable feature for the SLAM problem where the estimators used may already be costly to implement. The paper also proposes an estimation approach based on generalized expectation-maximization iterations of the PMHT SLAM problem, which is able to achieve low computation complexity at the expense of local convergence. The performance of the PMHT SLAM algorithm is compared with other approaches, and its output is demonstrated on a benchmark data set recorded in Victoria Park, Sydney, Australia

Published in:

Robotics, IEEE Transactions on  (Volume:23 ,  Issue: 2 )