Cart (Loading....) | Create Account
Close category search window
 

Identification and Adaptive Control of Change-Point ARX Models Via Rao-Blackwellized Particle Filters

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuguo Chen ; Dept. of Stat., Illinois Univ., Champaign, IL ; Tze Leung Lai

By proper choice of proposal distributions for importance sampling and of resampling schemes for sequentially updating the importance weights, we address the problem of on-line identification and adaptive control of autoregressive models with exogenous inputs (ARX models) with Markov parameter jumps. Particle filters that can be implemented online via parallel recursions are developed by making use of explicit formulas of the posterior means of the time-varying parameters. Theoretical analysis and simulation studies show improvements of this approach over conventional methods

Published in:

Automatic Control, IEEE Transactions on  (Volume:52 ,  Issue: 1 )

Date of Publication:

Jan. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.