By Topic

Admittance and Impedance Representations of Friction Based on Implicit Euler Integration

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ryo Kikuuwe ; Dept. of Mech. Eng., Nagoya Inst. of Technol. ; Naoyuki Takesue ; Akihito Sano ; Hiromi Mochiyama
more authors

Modeling of friction force is cumbersome because of its discontinuity at zero velocity. This paper presents a set of discrete-time friction models for the purpose of haptic rendering and virtual environment construction. These models allow friction to be treated as an admittance-type or impedance-type element of a virtual environment. They are derived from implicit Euler integration of Coulomb-like discontinuous friction and linear mass-spring-damper dynamics, and have closed-form expressions. They include rate-dependent friction laws, and their extension to multidimensional cases is easy in most practical cases. The validity of the models is demonstrated through numerical examples and implementation experiments

Published in:

IEEE Transactions on Robotics  (Volume:22 ,  Issue: 6 )