By Topic

Robust parametric classical control design

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Keel, L.H. ; Center of Excellence in Inf. Syst., Tennessee State Univ., Nashville, TN, USA ; Bhattacharyya, S.P.

This paper extends well-known graphical design tools such as the Nyquist plot, Bode plot, and Nichols charts to the domain of control systems containing parameter uncertainty. We have specifically considered linear interval control systems, namely those where the uncertain parameters appear linearly in the characteristic polynomial and vary in intervals, because in these cases exact construction of frequency envelopes is possible. Using these developments, we calculate various extremal stability margins for such systems, and these are used with standard classical control design techniques to deal with robustness with respect to parametric uncertainty. In addition, we give an effective technique to iteratively select values of the design parameters within given ranges so that the closed loop system produces improved gain or phase margin

Published in:

Automatic Control, IEEE Transactions on  (Volume:39 ,  Issue: 7 )