By Topic

Superposition properties and performance bounds of stochastic timed-event graphs

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Xiao-Lan Xie ; SAGEP Project INRIA, Metz, France

This paper addresses the performance evaluation of stochastic timed-event graphs. The transition firing times are random variables with general distribution. We first consider a stochastic timed-event graph in which the firing times are generated by time superposition (or addition) of two sets of random variable sequences. Properties of this system are established. Chiefly, we prove that the average cycle time is subadditive, i.e., it is smaller than the sum of the average cycle times of the two stochastic timed-event graphs in which the firing times are generated by one of the two sets of random variable sequences, respectively. Based on these superposition properties, we derive various upper bounds of the average cycle time of a general stochastic timed-event graph. In particular, we obtain upper bounds which converge to the exact average cycle time as the standard deviations of the firing times decrease. Finally, we derive performance bounds for stochastic timed-event graphs with bounded firing times

Published in:

IEEE Transactions on Automatic Control  (Volume:39 ,  Issue: 7 )