By Topic

A numerical analysis of the Nash strategy for weakly coupled large-scale systems

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hiroaki Mukaidani, ; Graduate Sch. of Eng., Hiroshima Univ.

This note discusses the feedback Nash equilibrium of linear quadratic N-player Nash games for infinite-horizon large-scale interconnected systems. The asymptotic structure along with the uniqueness and positive semidefiniteness of the solutions of the cross-coupled algebraic Riccati equations (CAREs) is newly established via the Newton-Kantorovich theorem. The main contribution of this study is the proposal of a new algorithm for solving the CAREs. In order to improve the convergence rate of the algorithm, Newton's method is combined with a new decoupling algorithm; it is shown that the proposed algorithm attains quadratic convergence. Moreover, it is shown for the first time that solutions to the CAREs can be obtained by solving the independent algebraic Lyapunov equation (ALE) by using the reduced-order calculation

Published in:

Automatic Control, IEEE Transactions on  (Volume:51 ,  Issue: 8 )