By Topic

Optimality of first-order ILC among higher order ILC

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Saab, S.S. ; Dept. of Electr. & Comput. Eng., Lebanese American Univ., Byblos

Higher order iterative learning control (HO-ILC) algorithms use past system control information from more than one past iterative cycle. This class of ILC algorithms have been proposed aiming at improving the learning efficiency and performance. This paper addresses the optimality of HO-ILC in the sense of minimizing the trace of the control error covariance matrix in the presence of a class of uncorrelated random disturbances. It is shown that the optimal weighting matrices corresponding to the control information associated with more than one cycle preceding the current cycle are zero. That is, an optimal HO-ILC does not add to the optimality of standard first-order ILC in the sense of minimizing the trace of the control error covariance matrix. The system under consideration is a linear discrete-time varying systems with different relative degree between the input and each output

Published in:

Automatic Control, IEEE Transactions on  (Volume:51 ,  Issue: 8 )