By Topic

Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cortes, J. ; Dept. of Appl. Math. & Stat., California Univ., Santa Cruz, CA ; Martinez, S. ; Bullo, F.

This paper presents coordination algorithms for networks of mobile autonomous agents. The objective of the proposed algorithms is to achieve rendezvous, that is, agreement over the location of the agents in the network. We provide analysis and design results for multiagent networks in arbitrary dimensions under weak requirements on the switching and failing communication topology. The novel correctness proof relies on proximity graphs and their properties and on a general LaSalle invariance principle for nondeterministic discrete-time dynamical systems

Published in:

Automatic Control, IEEE Transactions on  (Volume:51 ,  Issue: 8 )