By Topic

Observer design for unknown input nonlinear descriptor systems via convex optimization

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Koenig, D. ; Lab. d''Automatique de Grenoble, Saint Martin d''Heres, France

This paper treats the design problem of full-order observers for nonlinear descriptor systems with unknown input (UI). Depending on the available knowledge on the UI dynamics, two cases are considered. First, a UI proportional observer (UIPO) is proposed when the spectral domain of the UI is unknown. Second, a PIO is proposed when the spectral domain of the UI is in the low frequency range. Sufficient conditions for the existence and stability of such observers are given and proved. Based on the linear matrix inequality (LMI) approach, an algorithm is presented to compute the observer gain matrix that achieves the asymptotic stability objective. An example is included to illustrate the method.

Published in:

Automatic Control, IEEE Transactions on  (Volume:51 ,  Issue: 6 )