By Topic

Fractal system as represented by singularity function

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Charef, A. ; Dept. of Electr. & Comput. Eng., Drexel Univ., Philadelphia, PA, USA ; Sun, H.H. ; Tsao, Y.Y. ; Onaral, B.

A fractional slope on the log log Bode plot has been observed in characterizing a certain type of physical phenomenon and has been called the fractal system or the fractional power pole. In order to represent and study its dynamical behavior, a singularity function method is presented which consists of cascaded branches of a number of pole-zero (negative real) pairs or simple RC section. The distribution spectrum of the system can also be easily calculated, and its accuracy depends on a prescribed error specified in the beginning. The method is then extended to a multiple-fractal system which consists of a number of fractional power poles. The result can be simulated by a combination of singularity functions, each representing a single-fractal system

Published in:

Automatic Control, IEEE Transactions on  (Volume:37 ,  Issue: 9 )