By Topic

The exact slow-fast decomposition of the algebraic Ricatti equation of singularly perturbed systems

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Su, W.C. ; Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA ; Gajic, Z. ; Shen, X.M.

The algebraic Riccati equation for singularly perturbed control systems is completely and exactly decomposed into two reduced-order algebraic Riccati equations corresponding to the slow and fast time scales. The pure-slow and pure-fast algebraic Riccati equations are asymmetric ones, but their O(ε) perturbations are symmetric. It is shown that the Newton method is very efficient for solving the obtained asymmetric algebraic Riccati equations. The method presented is very suitable for parallel computations. Due to the complete and exact decomposition of the Riccati equation, this procedure might produce new insight into the two-time-scale optimal filtering and control problems

Published in:

Automatic Control, IEEE Transactions on  (Volume:37 ,  Issue: 9 )