By Topic

Linear and nonlinear algorithms for identification in H with error bounds

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guoxiang Gu ; Dept. of Electr. Eng., Louisiana State Univ., Baton Rouge, LA, USA ; Khargonekar, P.P.

A linear algorithm and a nonlinear algorithm for the problem of system identification in H posed by Helmicki et al. (1990) for discrete-time systems are presented. The authors derive some error bounds for the linear algorithm which indicate that it is not robustly convergent. However, the worst-case identification error is shown to grow as log(n), where n is the model order. A robustly convergent nonlinear algorithm is derived, and bounds on the worst-case identification error (in the H norm) are obtained

Published in:

Automatic Control, IEEE Transactions on  (Volume:37 ,  Issue: 7 )