Loading [a11y]/accessibility-menu.js
Analysis of harmonic detection algorithms and their application to active power filters for harmonics compensation and resonance damping | IEEE Journals & Magazine | IEEE Xplore

Analysis of harmonic detection algorithms and their application to active power filters for harmonics compensation and resonance damping


Abstract:

In this paper, the performance of four harmonic detection methods is evaluated in terms of accuracy, speed of convergence, computational complexity and memory requirement...Show More

Abstract:

In this paper, the performance of four harmonic detection methods is evaluated in terms of accuracy, speed of convergence, computational complexity and memory requirements; operation with measurement noise and variations of the signal amplitude and fundamental frequency is considered. The harmonic detection algorithms are based on the discrete Fourier transform (DFT), the recursive discrete Fourier transform (RDFT), the Kalman filtering (KF) approach, and the instantaneous reactive power (IRP) theory. Results obtained by simulation with MATLAB/Simulink and their real-time validation with the dSPACE simulator are presented to compare the detection methods. The effectiveness of the algorithms is demonstrated in their application to the control of an active filter and a hybrid active power filter dedicated respectively to harmonics compensation and to harmonic resonance damping in industrial power systems.
Published in: Canadian Journal of Electrical and Computer Engineering ( Volume: 28, Issue: 1, January 2003)
Page(s): 41 - 51
Date of Publication: 31 January 2003
Print ISSN: 0840-8688

Contact IEEE to Subscribe

References

References is not available for this document.