By Topic

A modular approach to the dynamics of complex multirobot systems

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bonaventura, C.S. ; ZETA-TECH Assoc. Inc., Cherry Hill, NJ, USA ; Jablokow, K.W.

This work presents a modular approach for the dynamic modeling and efficient simulation of complex robot systems composed of multiple robots constrained by multiple concurrent contacts. The modular nature of the algorithm enables existing open-chain models for individual robots and other mechanisms to be incorporated without significant reprogramming, while a general contact model allows both holonomic and nonholonomic constraints in the system. An example is provided to illustrate the algorithm's modularity and demonstrate its application. In addition to the development of the dynamic equations, this paper will discuss the implementation of the simulation algorithm in detail, including issues of computational complexity.

Published in:

Robotics, IEEE Transactions on  (Volume:21 ,  Issue: 1 )