By Topic

Accurate 3D acquisition of freely moving objects

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Blais, F. ; Inst. for Inf. Technol., Nat. Res. Council of Canada, Ottawa, Ont., Canada ; Picard, M. ; Godin, G.

This work presents a new acquisition method for 3D laser scanners that combines imaging, fast geometrical object tracking, and automatic pose estimation to register range profiles of freely moving objects. The method was developed to solve the constraint of rigidity between free-moving objects and a 3D scanner while preserving the accuracy of the range measurements. Rigidity constraint imposes that a 3D scanner or any external positioning devices must be perfectly stable relative to the object during scanning. This is often impossible for moving structures such as when using scaffolding, industrial conveyers, or robotic arms. The method starts by creating a rough, partial, and distorted estimate of the model of the object from an initial subset of sparse range data. Then, it recursively improves and refines the model by adding new range information. In parallel, real-time tracking of the object is performed to center the scan on the object. A high-resolution and accurate 3D model of a free-floating object, and real-time tracking of its position is obtained.

Published in:

3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. Proceedings. 2nd International Symposium on

Date of Conference:

6-9 Sept. 2004