By Topic

Simultaneous pole placement of M discrete-time plants using a M-periodic controller

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Das, S.K. ; Dept. of Electr. Eng., Indian Inst. of Technol., Kharagpur, India ; Kar, P.K.

A generic procedure for designing a M-periodic controller (sought in the controller canonical form) for the simultaneous placement of the closed-loop poles of M (=2,3,4,...) discrete, time-invariant plants is presented. The procedure is a two-stage one: first, a set of M simultaneous, linear, polynomial equations, arising out of the M given plants and the corresponding desired closed-loop pole locations, are solved via a generalized Sylvester matrix approach to obtain a set of (M+1) intermediate polynomials; and next, the controller parameters are obtained solving another set of simultaneous, linear polynomial equations that involve the above intermediate polynomials. Thus, both the computational steps are linear algebraic in nature. A list of the isolated plant configurations for which solutions do not exist is given. An example illustrates the procedure.

Published in:

Automatic Control, IEEE Transactions on  (Volume:48 ,  Issue: 11 )