Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Motion planning for anguilliform locomotion

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
McIsaac, K.A. ; Univ. of Western Ontario, London, Ont., Canada ; Ostrowski, J.P.

We investigate issues of control and motion planning for a biomimetic robotic system. Previous work has shown that a successful approach to solving the motion planning problem is to decouple it into the two subproblems of trajectory generation (feedforward controls) and feedback regulation. In this paper, we investigate basic issues of momentum generation for a class of dynamic mobile robots, focusing on eel-like swimming robots. We develop theoretical justification for a forward gait that has been observed in nature, and for a turning gait, used in our control laws, that has not been extensively studied in the biological literature. We also explore theoretical predictions for novel gaits for turning and sideways swimming. Finally, we present results from experiments in motion planning for a biomimetic robotic system. We show good agreement with theory for both open and closed-loop control of our modular, five-link, underwater swimming robot using image-based position sensing in an aquatic environment.

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:19 ,  Issue: 4 )