By Topic

Optimal sensor distribution for variation diagnosis in multistation assembly processes

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yu Ding ; Ind. Eng. Dept., Texas A&M Univ., College Station, TX, USA ; Pansoo Kim ; D. Ceglarek ; Jionghua Jin

This paper presents a methodology for optimal allocation of sensors in a multistation assembly process for the purpose of diagnosing in a timely manner variation sources that are responsible for product quality defects. A sensor system distributed in such a way can help manufacturers improve product quality while, at the same time, reducing process downtime. Traditional approaches in sensor optimization fall into two categories: multistation sensor allocation for the purpose of product inspection (rather than diagnosis); and allocation of sensors for the purpose of variation diagnosis but at a single measurement station. In our approach, sensing information from different measurement stations is integrated into a state-space model and the effectiveness of a distributed sensor system is quantified by a diagnosability index. This index is further studied in terms of variation transmissibility between stations as well as variation detectability at individual stations. Based on an understanding of the mechanism of variation propagation, we develop a backward-propagation strategy to determine the locations of measurement stations and the minimum number of sensors needed to achieve full diagnosability. An assembly example illustrates the methodology.

Published in:

IEEE Transactions on Robotics and Automation  (Volume:19 ,  Issue: 4 )