By Topic

Feedback linearizing control of switched reluctance motors

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. Ilic'-Spong ; University of Illinois, Urbana, IL, USA ; R. Marino ; S. Peresada ; D. Taylor

Motivated by technological advances in power electronics and signal processing, and by the interest in using direct drives for robot manipulators, we investigate the control problem of high-performance drives for switched reluctance motors (SRM's). SRM's are quite simple, low cost, and reliable motors as compared to the widely used dc motors. However, the SRM presents a coupled nonlinear multivariable control structure which calls for complex nonlinear control design in order to achieve high dynamic performances. We first develop a detailed nonlinear model which matches experimental data and establish an electronic commutation strategy. Then, on the basis of recent nonlinear control techniques, we design a state feedback control algorithm which compensates for all the nonlinearities and decouples the effect of stator phase currents in the torque production. The position dependent logic of the electronic commutator assigns control authority to one phase, which controls the motion, while the remaining phase currents are forced to decay to zero. Simulations for a direct drive, single link manipulator with the SRM are reported, which show the control performance of the algorithm we propose in nominal conditions and test its robustness versus the most critical parameter uncertainties of payload mass and stator resistance.

Published in:

IEEE Transactions on Automatic Control  (Volume:32 ,  Issue: 5 )