Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

On the parameters estimation of continuous-time ARMA processes from noisy observations

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dembo, A. ; Technion-Israel Institute of Technology, Haifa, Israel ; Zeitouni, O.

Recently, an iterative algorithm has been presented for estimating the parameters of partially observed continuous-time processes [1]. In this note we concentrate on continuous-time ARMA processes observed in white noise. A maximum a-posteriori (MAP) estimator is defined for the trajectory of the parameters' random process. This approach enables the MAP estimation of randomly slowly varying parameters, and extends the conventional treatment of time-invariant parameters. The iterative algorithm derived for the MAP estimation, increases the posterior probability of the parameters in each iteration, and converges to a stationary point of the posterior probability functional. Each iteration involves a standard linear smoother followed by a finite-dimensional linear system, and thus is easily implemented.

Published in:

Automatic Control, IEEE Transactions on  (Volume:32 ,  Issue: 4 )