By Topic

The graph metric for unstable plants and robustness estimates for feedback stability

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Vidyasagar, M. ; University of Waterloo, Waterloo, Ont., Canada

In this paper, a "graph metric" is defined that provides a measure of the distance between unstable multivariable plants. The graph metric induces a "graph topology" on unstable plants, which is the weakest possible topology in which feedback stability is robust. Using the graph metric, it is possible to derive estimates for the robustness of feedback stability without assuming that the perturbed and unperturbed plants have the same number of RHP poles. If the perturbed and unperturbed systems have the same RHP poles, then it is possible to obtain necessary and sufficient conditions for robustness with respect to a given class of perturbations. As an application of these results, the design of stabilizing controllers for unstable singularly perturbed systems is studied. Finally, the relationship of the graph metric to the "gap metric" introduced by Zames and El-Sakkary is studied in detail. In particular, it is shown that the robustness results of Zames and El-Sakkary do not enable one to conclude the causality, of the perturbed system, whereas the present results do.

Published in:

Automatic Control, IEEE Transactions on  (Volume:29 ,  Issue: 5 )