By Topic

Stochastic approximation algorithms for the local optimization of functions with nonunique stationary points

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kushner, H.J. ; Brown University, Providence, RI, USA

The aim of this paper is the provision of a framework for a practical stochastic unconstrained optimization theory. The results are based on certain concepts of stochastic approximation, although not restricted to those procedures, and aim at incorporating the great flexibility of currently available deterministic optimization ideas into the stochastic problem, whenever optimization must be done by Monte Carlo or sampling methods. Hills with nonunique stationary points are treated. A framework has been provided, with which convergence of stochastic versions of conjugate gradient, partan, etc., can be discussed and proved.

Published in:

Automatic Control, IEEE Transactions on  (Volume:17 ,  Issue: 5 )