By Topic

A learning technique for Volterra series representation

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Roy, R. ; Rensselaer Polytechnic Institute, Troy, NY, USA ; Sherman, J.

This paper presents a method of system identification based upon the techniques of pattern recognition. The method developed is an on-line error-correcting procedure which provides the coefficients of the Volterra series representation of the system. The systems considered are those with finite settling time and piecewise constant inputs. The method is extremely general, identifying both linear and nonlinear systems in the presence of noise, without the requirement of special test signals. The theoretical basis for this method lies in the observation that system identification is a special case of the general theory of pattern recognition. A system is treated as a transformation from the set of past inputs to the real line, the system output. The Volterra expansion treats this transformation as a hypersurface, the shape of which is determined by the Volterra kernels. However, the techniques of pattern recognition produce this type of surface as the discriminant function between pattern classes. Furthermore, these surfaces are iteratively obtained as more data are available. Consequently, the computational difficulties, which are encountered in obtaining the Volterra kernels, are circumvented by this iterative learning procedure.

Published in:

Automatic Control, IEEE Transactions on  (Volume:12 ,  Issue: 6 )