By Topic

Chebyshev Approximation for Nonrecursive Digital Filters with Linear Phase

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

An efficient procedure for the design of finite-length impulse response filters with linear phase is presented. The algorithm obtains the optimum Chebyshev approximation on separate intervals corresponding to passbands and/or stopbands, and is capable of designing very long filters. This approach allows the exact specification of arbitrary band-edge frequencies as opposed to previous algorithms which could not directly control pass- and stopband locations and could only obtain (N - 1)/2 different band-edge locations for a length N low-pass filter, for fixed \delta _{1} and \delta _{2} . As an aid in practical application of the algorithm, several graphs are included to show relations among the parameters of filter length, transition width, band-edge frequencies, passband ripple, and stopband attenuation.

Published in:

Circuit Theory, IEEE Transactions on  (Volume:19 ,  Issue: 2 )