By Topic

Memristor-The missing circuit element

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

A new two-terminal circuit element-called the memristorcharacterized by a relationship between the charge q(t)\equiv \int_{-\infty }^{t} i(\tau ) d \tau and the flux-linkage \varphi (t)\equiv \int_{- \infty }^{t} v(\tau ) d \tau is introduced as the fourth basic circuit element. An electromagnetic field interpretation of this relationship in terms of a quasi-static expansion of Maxwell's equations is presented. Many circuit-theoretic properties of memistors are derived. It is shown that this element exhibits some peculiar behavior different from that exhibited by resistors, inductors, or capacitors. These properties lead to a number of unique applications which cannot be realized with RLC networks alone. Although a physical memristor device without internal power supply has not yet been discovered, operational laboratory models have been built with the help of active circuits. Experimental results are presented to demonstrate the properties and potential applications of memristors.

Published in:

Circuit Theory, IEEE Transactions on  (Volume:18 ,  Issue: 5 )