By Topic

Filling holes in complex surfaces using volumetric diffusion

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Davis, J. ; Dept. of Comput. Sci., Stanford Univ., CA, USA ; Marschner, S.R. ; Garr, M. ; Levoy, M.

We address the problem of building watertight 3D models from surfaces that contain holes - for example, sets of range scans that observe most but not all of a surface. We specifically address situations in which the holes are too geometrically and topologically complex to fill using triangulation algorithms. Our solution begins by constructing a signed distance function, the zero set of which defines the surface. Initially, this function is defined only in the vicinity of observed surfaces. We then apply a diffusion process to extend this function through the volume until its zero set bridges whatever holes may be present. If additional information is available, such as known-empty regions of space inferred from the lines of sight to a 3D scanner, it can be incorporated into the diffusion process. Our algorithm is simple to implement, is guaranteed to produce manifold non-interpenetrating surfaces, and is efficient to run on large datasets because computation is limited to areas near holes.

Published in:

3D Data Processing Visualization and Transmission, 2002. Proceedings. First International Symposium on

Date of Conference:

19-21 June 2002