By Topic

Reconstructing a 3D Line from a Single Catadioptric Image

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lanman, D. ; Brown Univ., Providence, RI ; Wachs, M. ; Taubin, Gabriel ; Cukierman, F.

This paper demonstrates that, for axial non-central optical systems, the equation of a 3D line can be estimated using only four points extracted from a single image of the line. This result, which is a direct consequence of the lack of vantage point, follows from a classic result in enumerative geometry: there are exactly two lines in 3-space which intersect four given lines in general position. We present a simple algorithm to reconstruct the equation of a 3D line from four image points. This algorithm is based on computing the Singular Value Decomposition (SVD) of the matrix of Plucker coordinates of the four corresponding rays. We evaluate the conditions for which the reconstruction fails, such as when the four rays are nearly coplanar. Preliminary experimental results using a spherical catadioptric camera are presented. We conclude by discussing the limitations imposed by poor calibration and numerical errors on the proposed reconstruction algorithm.

Published in:

3D Data Processing, Visualization, and Transmission, Third International Symposium on

Date of Conference:

14-16 June 2006