By Topic

Segmenting correlation stereo range images using surface elements

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Murray, D. ; Dept. of Comput. Sci., British Columbia Univ., Vancouver, BC, Canada ; Little, J.J.

This work describes methods for segmenting planar surfaces from noisy 3D data obtained from correlation stereo vision. We make use of local planar surface elements called patchlets. Patchlets have 3D position, orientation and size parameters. As well, they have positional confidence measures based on the stereo sensor model. Patchlet orientations (i.e., surface normals) provide important additional dimensionality that reduces the ambiguity of segmentation-by-clustering. Patchlet size allows the use of continuity or coverage constraints when segmenting bounded surfaces from depth images. We use a region-growing approach to identify the number of surfaces that exist in a stereo image and obtain an initial estimate of the surface parameters. We refine segmentation using a maximum likelihood clustering approach that is optimised with Expectation-Maximisation. Confidence measures on the patchlet parameters allow proper weighting of patchlet contributions to the solution. We provide experimental results of the segmentation on complex outdoor scenes.

Published in:

3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. Proceedings. 2nd International Symposium on

Date of Conference:

6-9 Sept. 2004