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Abstract—Permissionless blockchains such as Bitcoin have
excelled at financial services. Yet, opportunistic traders extract
monetary value from the mesh of decentralized finance (DeFi)
smart contracts through so-called blockchain extractable value
(BEV). The recent emergence of centralized BEV relayer portrays
BEV as a positive additional revenue source. Because BEV was
quantitatively shown to deteriorate the blockchain’s consensus se-
curity, BEV relayers endanger the ledger security by incentivizing
rational miners to fork the chain. For example, a rational miner
with a 10% hashrate will fork Ethereum if a BEV opportunity
exceeds 4× the block reward.

However, related work is currently missing quantitative in-
sights on past BEV extraction to assess the practical risks of
BEV objectively. In this work, we allow to quantify the BEV
danger by deriving the USD extracted from sandwich attacks,
liquidations, and decentralized exchange arbitrage. We estimate
that over 32 months, BEV yielded 540.54M USD in profit, divided
among 11,289 addresses when capturing 49,691 cryptocurrencies
and 60,830 on-chain markets. The highest BEV instance we find
amounts to 4.1M USD, 616.6× the Ethereum block reward.

Moreover, while the practitioner’s community has discussed
the existence of generalized trading bots, we are, to our knowl-
edge, the first to provide a concrete algorithm. Our algorithm can
replace unconfirmed transactions without the need to understand
the victim transactions’ underlying logic, which we estimate
to have yielded a profit of 57,037.32 ETH (35.37M USD)
over 32 months of past blockchain data.

Finally, we formalize and analyze emerging BEV relay systems,
where miners accept BEV transactions from a centralized relay
server instead of the peer-to-peer (P2P) network. We find that
such relay systems aggravate the consensus layer attacks and
therefore further endanger blockchain security.

I. INTRODUCTION

With a locked value of over 90B USD in Decentralized
Finance (DeFi), distributed ledgers have shown their strength
in mediating trustlessly among financial actors exchanging daily
hundreds of millions of USD. DeFi traders rely on immutable
smart contracts encoding the rules by which, for instance,
automated market maker (AMM) exchanges [1] operate. DeFi
on permissionless blockchains operates surprisingly transparent
compared to the traditional finance. All transactions, sender,
receiver and amounts are publicly visible on a global P2P
network, prior to being committed by miners to the ledger.
Miners herein retain the privilege to control single-handedly
the transaction order of their mined blocks, an information
asymmetry which is being exploited for financial gain [2].

Besides miners, blockchain value extracting traders have
specialized in maximizing financial revenue through ongoing
market participation. Similar to the traditional finance, DeFi is
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110,026 privately relayed arbitrages
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6,685 privately relayed replayable transactions
3.63M USD

Fig. 1: Overview of various sources of blockchain extractable
value. We find that sandwich attacks, liquidations and arbitrage
yield 540.54M USD of BEV over 32 months. We further eval-
uate a novel application-agnostic transaction replay algorithm,
which could have extended BEV by 35.18M USD.

being plagued by predatory traders, showcasing a plethora
of creative market manipulation techniques, such as high-
frequency attacks [2], pump and dump schemes [3] and
wash trading [4]. Akin to how Eskandir et al. [5] beautifully
distill the state of open and decentralized ledgers: we observe
a distributed network of transparent dishonesty — once a
user broadcasts a profitable transaction, seemingly automated
trading-bots attempt to appropriate the trading opportunity by
front-running their victim with higher transaction fees [6] to
extract blockchain extractable value (BEV).

The existence of BEV appears to radically transform the
distributed ledger incentive structure. Previous studies [7], [8]
suggest, and show, that miners are incentivized to extract
value by deliberately forking a chain, endangering blockchain
security. To the best of our knowledge, no work has yet
comprehensively measured and studied the real-world severity
of BEV. Quantifying the status quo of BEV, however, is crucial
to understand the risks that blockchain users are exposed to.

In this work we capture a variety of BEV sources, including
sandwich attacks, liquidations, and arbitrage (cf. Fig. 1 and Sec-
tion IV). We moreover present the first generalized transaction
replay algorithm, which allows to clone and front-run a victim
transaction without the need to understand the underlying victim
transaction logic (cf. Section V). The potential extractable value
from transaction replay attacks can significantly extend the total
BEV (cf. Fig. 1), further endangering the blockchain security.

More worryingly, we observe the recent emergence of
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centralized BEV relayer (e.g., flashbots). A BEV relayer acts
as a proxy between BEV traders and miners, filtering the trades
that are forwarded to the miners. The goal of a BEV relayer
is to maximize BEV, and hence in expectation, increases the
number of blockchain forks and chain reorganizations [8].

Summarizing, our main contributions are as follows.
• We are the first to comprehensively measure the breadth

of BEV from known trading activities (i.e., sandwich
attacks, liquidations, and arbitrages). Although related
works have studied sandwich attacks in isolation, there is
a lack of quantitative data from real-world exploitation to
objectively assess their severity.

• We are the first to propose and empirically evaluate a
transaction replay algorithm, which could have resulted
in 35.37M USD of BEV. Our algorithm extends the total
captured BEV by 35.18M USD, while intersecting with
only 1.43% of the liquidation and 0.11% of the arbitrage
transactions (cf. Fig. 1).

• We are the first to formalize the BEV relay concept as
an extension of the P2P transaction fee auction model.
Contrary to the suggestions of the practitioner community,
we find that a BEV relayer does not substantially reduce
the P2P network overhead from competitive trading.

II. BACKGROUND

A. Blockchain and Smart Contracts
Permissionless blockchains are span by a network of globally

distributed P2P nodes [9]. If a user wishes to execute a
transaction on the blockchain (which in essence is a distributed
database), the user broadcasts the transaction to its P2P
neighbors. These neighbors then forward that transaction until
the transaction eventually reaches a miner. A miner constructs a
block to append data to the blockchain and decides unilaterally
on the transactions execution order. A transaction that is
included in at least one blockchain block (i.e., the chain
with most “Proof of Work”) is considered confirmed (i.e.,
a one-confirmation) by the network. Blockchains differ in
confirmation latencies, ranging from hours in Bitcoin [9] to
minutes in Ethereum [10], while offering distinct security
trade-offs [11]. Generally, there is an inherent time delay,
between the public broadcast of a transaction and its execution.
Blockchain nodes store unconfirmed transactions within the
so-called mempool. For a more thorough background, we refer
the reader to helpful SoKs [12], [13], [14].

We proceed to outline the required background of Ethereum.
Beyond simple value transfers, Etherum is a smart contract-
enabled blockchain [10], which allows the construction of DeFi
protocols. Smart contracts execute within a virtual machine
called Ethereum Virtual Machine (EVM). In this paper, we
differentiate among user addresses (i.e., owned by a private
key) and smart contract addresses. In Ethereum, blocks can be
indexed by the block number, an incremental integer, while
transactions are often indexed by the transaction hash, the
Keccak-256 hash value of a transaction. ETH is the native
cryptocurrency in Ethereum, which can be used to, for example,
pay transaction fees. The transaction fee is calculated with gas
(measuring the amount computations consumed in a transaction)

times gas price (the amount that the transaction issuer is willing
to pay for each unit of gas). The smallest unit of ETH is
Wei, equivalent to 10−18 ETH. Transaction fees are commonly
denominated in GWei (i.e., 109 Wei). In addition to a chain’s
native cryptocurrency, smart contracts allow to create on-chain
assets, so-called tokens. At the time of writing, ERC20 is the
most widely adopted token standard.

B. Decentralized Finance

DeFi is a subset of finance-focused decentralized protocols
that operate autonomously on blockchain-based smart con-
tracts [15]. After excluding the DeFi systems’ endogenous
assets, the total value locked in DeFi amounts to 90B USD
at the time of writing. Relevant DeFi platforms are for
instance automated market maker exchanges [1], [16], lending
platforms [17], [18], [19], [20] and margin trading systems [21].

AMM Exchanges: Traditional limit order-book-based ex-
changes maintain a list of bids and asks for an asset pair.
AMM exchanges, however, maintain a pool of capital (i.e.,
a liquidity pool) with at least two assets. A smart contract
governs the rules by which traders can purchase and sell assets
from the liquidity pool. The most common AMM mechanism
is the constant product rule in a pair-asset market. This rule
stipulates that the product of an asset x and asset y in a pool
remains a constant k. Uniswap, with over 8B USD total value
locked (TVL), one of the biggest AMM exchanges at the time
of writing, follows a constant product AMM model [1].

Slippage: When performing a trade on an AMM, a trader is
exposed to an expected slippage depending on the available
liquidity in the AMM (i.e., the price gets worse as the trading
volume increases). Furthermore, the expected execution price
may differ from the real execution price (i.e., an unexpected
slippage). That is because the expected price is derived upon
a past blockchain state, which may change between the
transaction creation and its execution — e.g., due to front-
running transactions [2]. Therefore, a trader typically sets a
slippage tolerance (i.e., the maximum acceptable slippage)
when issuing an AMM trading transaction.

Lending Systems: Debt is an essential tool in traditional
finance [22], and the same applies to DeFi. DeFi lending
typically requires over-collateralization [23]. Hence, a borrower
must collateralize, i.e., lock, for instance, 150% of the value
that the borrower wishes to lend out. The collateral acts as a
security fund to the lender if the borrower does not pay back the
debt. If the collateral value decreases and the collateralization
ratio decreases below 150%, the collateral can be freed up for
liquidation. Liquidators can then purchase the collateral at a
discount to repay the debt. At the time of writing, lending
systems on the Ethereum blockchain have accumulated a TVL
of 40B USD [17], [18], [19], [20].

III. PRELIMINARIES

In this section, we outline our security and threat model. We
discuss how the blockchain transaction order relates to BEV
and proceed with a blockchain transaction ordering taxonomy.
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A. System and Threat Model

We consider a permissionless blockchain system on top
of a P2P network. We assume the existence of a trader V
conducting at least one blockchain transaction TV (given
a public/private key-pair) by, e.g., trading assets on AMM
exchanges or interacting with a lending platform. The trader
is free to specify its slippage tolerance, transaction fees, and
choice of platform. We refer to the trader as a victim if other
traders attack the trader (e.g., in a sandwich attack). We further
assume the existence of a set of miners that may or may not
engage in extracting blockchain extractable value. The miners
can choose to order transactions according to internal policies
or may follow the transaction fee distribution.

Our threat model captures a financially rational adversary
A that is well-connected in the network layer to observe
unconfirmed transactions in the memory pool. A holds at
least one private key for a blockchain account from which it
can issue an authenticated transaction TA. We also assume
that A owns a sufficient balance of the native cryptocurrency
(e.g., ETH on Ethereum) to perform actions required by TA,
e.g., paying transaction fees or trading assets. If A is a mining
entity, then A can unilaterally decide which and in which
order transactions figure within its mined blocks. When A is a
non-mining entity, A attempts to extract value by adjusting the
transaction fees or resorting to BEV relayers (cf. Section VI-A).

B. Transaction Ordering and Blockchain Extractable Value

Compared to traditional financial systems (e.g., centralized
exchanges), we identify that the value extraction game on
blockchains presents two fundamental properties.

Atomicity: Multiple actions fit into one transaction and execute
in an all-or-nothing sequence [24], [25]. If a single action of
an atomic transaction fails, all previously executed actions are
reverted without permeating a blockchain state change.

Determinacy: Given a blockchain state, the execution of a
transaction is deterministic. Trader can hence simulate or
“predict” the execution result before a transaction is mined.

These two properties are decisive for the value extraction
game. An adversary attempts to manipulate the transaction
order, such that the adversarial transactions execute on a
blockchain state which maximizes the adversarial revenue.
The order manipulation may prioritize adversarial transactions
or attempt to move a victim transaction to execute on an
unfavorable blockchain state. We provide a detailed transaction
ordering taxonomy in Section III-C.

Previous works have shown how trading bots engage in
competitive transaction fee bidding contests [7], [2]. Besides
exchange trading, front-running was observed on blockchain
games, crypto-collectibles, gambling, ICOs, and name ser-
vices [5]. Miner Extractable Value, first introduced by Daian
et al. [7], captures the blockchain extractable value from
miners. However, non-mining traders can also capture BEV by
adjusting, for example, their transaction fees, and we observe
MEV as a subset of the blockchain extractable value.

Destructive
Front-Running

No Manipulation

Tolerant
Front-Running

Clogging

Back-Running

Block Generated Pending Transactions (Mempool)

Execution order/
Accumulative gas used

Fig. 2: Visualization of four adversarial transaction ordering
strategies. TV is the victim and TA the adversarial transaction.
T1 to T4, are included in that sequence in the next block.

C. Transaction Ordering Taxonomy

In light of the decisive pertinence of the transaction order
on blockchain value extraction, we provide in the following a
transaction ordering taxonomy which extends the three front-
running categories discussed in related work [5]. We explicitly
add a fourth category, which captures the act of back-running
a transaction (cf. Fig. 2). We moreover highlight the subtle
but essential impact of an adversarial front-running transaction
on the subsequent victim transaction: either TA provokes the
victim transaction to fail, or the adversary takes care to avoid
that TV reverts after a successful front-running.

Destructive Front-Running: If TA front-runs TV , and causes
the execution of TV to fail (i.e., the EVM reverts the trans-
action state changes), we classify the act of front-running as
destructive. The front-running adversary, therefore, bears no
considerations about its impact on subsequent transactions.

Tolerating Front-Running: Front-running is “tolerating”, if
the adversary ensures that TV executes successfully. Tolerating
front-running is necessary for, e.g., sandwich attacks [2]. An
adversary would not be able to profit from sandwich attacks
with destructive front-running.

Back-Running: Executing TA after TV is called back-running,
a technique which can be applied after, e.g., oracle update
transactions [26], [27] and within sandwich attacks [2]. Back-
running is, in expectation, cheaper than front-running, as the
trader does not engage in a fee bidding contest.

Clogging: An adversary may clog, or jam the blockchain with
transactions, to prevent users and bots from issuing transactions
(i.e., suppression [5]). Deadline-based smart contracts may
create an incentive to clog the blockchain.

TABLE I: Attack surface for non-mining adversaries. Sandwich
attacks and transaction replay occur on the network state.

Use Case Block State Mempool/Network State

Sandwich Attack - X
Liquidation X X(back-running oracles)
Arbitrage X X
Transaction Replay - X
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Fig. 3: Sandwich attacks, from block 6803256 (1st of December, 2018) to 12965000 (5th of August, 2021).

Transaction ordering may occur on different blockchain state
representations. We differentiate in this paper between a block
state and a mempool/network state (cf. Table I). A block state
corresponds to the last confirmed main-chain head, while the
mempool state is a more volatile and local state of a blockchain
P2P node. We notice that sandwich attacks (cf. Section IV-A)
and transaction replay (cf. Section V) can only occur on the
network layer (unless a miner forks the blockchain).

IV. MEASURING THE EXTRACTED BLOCKCHAIN VALUE

In the following, we investigate to what extent traders have
extracted financial value from the Ethereum blockchain over a
time frame of 32 months (from the 1st of December, 2018 to
the 5th of August, 2021). While it is challenging to capture all
possible revenue strategies, we do not claim completeness and
choose to focus on sandwich attacks, liquidations, and arbitrage
trading. For the sandwich and arbitrage, we inspect all the trades
performed on Uniswap V1/V2/V3, Sushiswap, Curve, Swerve,
1inch, and Bancor, spanning over 49,691 cryptocurrencies
and 60,830 on-chain markets. For liquidations, we collect every
liquidation event settled on Aave V1/V2, Compound, and dYdX.
Throughout our measurement, we identify transactions with
zero gas price as privately relayed transactions1.

A. Sandwich Attacks

Sandwich attacks, wherein a trader wraps a victim transaction
within two adversarial transactions, is a classic predatory
trading strategy [2]. To perform a sandwich, the adversary
A, which can be a miner or trader, listens on the P2P network
for pending transactions. The adversary attacks, if the market
price of an asset is expected to rise/fall after the execution of
a “large” pending transaction (TV ). The attack is then carried
out in two-steps: (i) A issues TA1 to tolerating front-run TV ,
by purchasing/selling the same asset before TV changes the
market price; (ii) A then issues TA2 to back-run TV to close
the trading position opened by TA1. A must perform tolerating
front-running to ensure that TV ’s slippage protection does not
trigger a transaction revert.

1Transactions with zero gas price are not propagating on the Ethereum
P2P network due to DoS concerns. Miners, however, might receive these
transactions from, for example, BEV relayers (cf. Section VI-A).

1) Heuristics: We apply the following heuristics to identify
potentially successful sandwich attacks from the AMM trades.
• Heuristic 1: The transactions TA1, TV and TA2 must be

included in the same block and in this exact order.
• Heuristic 2: Every front-running transaction TA1 maps

to one and only one back-running transaction TA2. This
heuristic is necessary to avoid double counting revenues.

• Heuristic 3: Both TA1 and TV transact from asset X to Y .
TA2 transacts in the reverse direction from asset Y to X .

• Heuristic 4: Either the same user address sends transactions
TA1 and TA2, or two different user addresses send TA1 and
TA2 to the same smart contract.

• Heuristic 5: The amount of asset sold in TA2 must be within
90% ∼ 110% of the amount bought in TA1. If the sandwich
attack is perfectly executed without interference from other
market participants, the amount sold in TA2 should be
precisely equal to the amount purchased in TA1. According
to our empirical data 603,431 (80.4%) sandwich attacks we
detect are “perfect”. We further relax this constraint to cover
±10% slippage, thus finding 147,098 (19.6%) additional
imperfect profitable sandwich attacks.

2) Empirical Results: In total, we identify 2,419 Ethereum
user addresses and 1,069 smart contracts performing 750,529
sandwich attacks on Uniswap V1/V2/V3, Sushiswap, and
Bancor, with a total profit of 174.34M USD (cf. Fig. 3). Our
heuristics do not find sandwich attacks on Curve, Swerve, and
1inch. Curve/Swerve are specialized in correlated, i.e., pegged-
coins with minimal slippage. Despite the small market cap.
(< 1% of Bitcoin), SHIB is the most sandwich attack-prone
ERC20 token with an adversarial profit of 6.84M USD.

We notice that 240,053 sandwich attacks (31.98%) are
privately relayed to miners (i.e., zero gas price), accumulating
a profit of 81.04M USD. Sandwich attackers therefore actively
leverage BEV relay systems (cf. Section VI-A) to extract
value. We also observe that 17.57% of the attacks use different
accounts to issue the front- and back-running transactions.
Sandwich Transaction Positions: A sandwich attack adver-
sary typically attempts to position its transactions relatively
close to the victim transaction. In practice, we observe multiple
profitable sandwich attacks where the involved transactions
are separated by more than 200 intermediate transactions (cf.
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Fig. 4: Extracted sandwich attacks, from block 6803256 (1st
of December, 2018) to block 12965000 (5th of August, 2021).

Fig. 4b), while no intermediate transaction (i.e., the front-
running, victim, and back-running transactions are positioned
one by one) is detected in 99.59% of the privately relayed
sandwich attacks. We present the sandwich attack gas price
distribution and adversarial strategies in Appendix A-A.

Extractable Profit: Zhou et al. [2] estimate that under the
optimal setting, the adversary can attack 7,793 Uniswap V1
transactions, and realize 98.15 ETH of revenue from block 8M
to 9M. Based on our data, we estimate that only 63.30%
(62.13 ETH) of the available extractable value was extracted.

B. Fixed Spread Liquidations

We observe two widely adopted liquidation mechanisms
in the current DeFi ecosystem [23]. First, the fixed spread
liquidation, used by Aave, Compound, and dYdX, allows a
liquidator to purchase collateral at a fixed discount when
repaying debt. Second, the auction liquidation, allows a
liquidator to start an auction that lasts for a pre-configured
period (e.g., 6 hours [19]). Competing liquidators bid on the
(lowest possible) collateral price. In this section, we focus on
the fixed spread liquidation, which allows to extract value in a
single, atomic transaction. To perform a fixed spread liquidation,
a liquidator A can adopt the following two strategies.
• Block State Liquidation: A detects a liquidation opportu-

nity at block Bi (i.e., after the execution of Bi). A then
issues a liquidation transaction TA, which is expected to be
mined in the next block Bi+1. A attempts to destructively
front-run competing liquidators with TA.

• Network State Liquidation: A observes a transaction TV ,
which will create a liquidation opportunity (e.g., an oracle
price update that renders a collateralized debt liquidatable).
A then back-runs TV with a liquidation transaction TA.
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Fig. 5: The number of liquidations increase in months where
the ETH price collapses, e.g., in March, 2020 and May, 2021.

Empirical Results: We collect all liquidation events on
Aave (Version 1 and 2), Compound, and dYdX from their
inception until block 12965000 (5th of August, 2021). We
observe a total of 31,057 liquidations, yielding a collective
profit of 89.18M USD over 28 months (cf. Fig. 5a and 5b).
Note that we use the prices provided by the price oracles of
the liquidation platforms to convert the profits to USD at the
moment of the liquidation.

Ordering Strategies: To distinguish between a front- or back-
running liquidation, we observe that a front-running liquidation
at block Bi necessarily requires a borrowing position to be
liquidatable at block Bi−1. If the borrowing position is not
liquidatable at block Bi−1, the liquidator is acting after a price
oracle update in block i, which corresponds to a back-running
liquidation. Therefore, for each of the 31,057 liquidations that
we observe on block Bi, we test whether the borrowing position
was liquidatable at block Bi−1. If this test resolves to true, we
classify the liquidation as front-, otherwise as back-running
(cf. Table II). Given 31,057 liquidations, we find that front-

TABLE II: Extracting strategies of liquidators. Liquidators
either back-run the price oracle updates, or front-run competing
liquidation attempts. Most liquidations perform front-running.

Liquidation Platform Front-running Back-running Total

Aave V2 4,085 2,347 6,432
Aave V1 4,331 601 4,932

Compound 6,119 3,168 9,287
dYdX 8,603 1,803 10,406

Total 23,138 7,919 31,057
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Fig. 6: Transaction fee distributions of front- and back-running
liquidations (transactions with zero gas price are excluded).
The back-running liquidations pay a higher average gas price,
due to the internal back-running concept.

running is the dominating strategy accounting for 74.50% of all
liquidations. Among the 31,057 liquidations, we identify 2,742
unique liquidators by address. We find that 1,758 liquidators
follow the front-, 442 back-running and the remaining 542
liquidators adopt a mixed strategy.

Liquidation Gas Prices: We identify 1,956 transactions
(6.3%) with zero gas price out of the 31,057 liquidation
events, implying that liquidators relay liquidation transactions to
miners privately without using the P2P network. These privately
relayed transactions yield a total profit of 10.69M USD. We
visualize the gas price distributions in Fig. 6. Surprisingly,
we notice that the back-running liquidations pay a higher gas
prices on average. We find that this is because the liquidators
tend to wrap the price oracle update action and liquidation into
one (high-priority) transaction, which we term an internal back-
running transaction. The internal back-running transactions
are typically set with a high gas price to prevent them from
being front-run by competing liquidators.

C. Arbitrage

Arbitrage describes the process of simultaneously selling
and buying assets in different markets in order to profit from
the market price differences. Arbitrage helps to promote market
efficiency and is typically considered benign. To perform an
arbitrage, DeFi traders/miners monitor new blockchain state
changes and execute an arbitrage if the expected revenue of
synchronizing the prices on two markets exceeds the expected
transaction costs. An arbitrage trader can choose among the
following strategies to perform arbitrage:
• Block State Arbitrage: The arbitrage trader can choose to

only monitor the confirmed blockchain states. Once a new
block Bi is received, the trader attempts to destructively
front-run all other market participants at Bi+1.

• Network State Arbitrage: A trader can listen on the
network layer to detect a “large” pending trade, which is
likely to “greatly” change the asset price on one exchange.
The trader then attempts to back-run this exchange transaction
with an arbitrage transaction.

1) Heuristics: We use s to denote a swap action which
sells in(s) amount of the input asset IN(s) to purchase out(s)
amount of the output asset OUT (s). We apply the following

TABLE III: Statistics of the profitable arbitrage trades we
detect. Over 90% synchronize the prices across 2 or 3 markets.

# markets
# platforms

1 2 3 ≥ 4 Total

2 8,220 (0.7%) 452,148 (39.3%) N/A N/A 460,368 (40.0%)
3 333,039 (28.9%) 235,878 (20.5%) 16,431 (1.4%) N/A 585,348 (50.8%)
4 42,816 (3.7%) 28,963 (2.5%) 7,497 (0.7%) 16 (0%) 79,292 (6.9%)
5 9,460 (0.8%) 6,996 (0.6%) 588 (0.1%) 70 (0%) 17,114 (1.5%)
≥ 6 2,693 (0.2%) 5,292 (0.5%) 1,308 (0.1%) 33 (0%) 9,326 (0.8%)

Total 396,228 (34.4%) 729,277 (63.3%) 25,824 (2.2%) 119 (0%) 1,151,448 (100%)

heuristics to find extracted arbitrages on Uniswap V1/V2/V3,
Sushiswap, Curve, Swerve, 1inch, and Bancor.
• Heuristic 1: All swap actions of an arbitrage must be

included in a single transaction, implicitly assuming that
the arbitrageur minimizes its risk through atomic arbitrage.

• Heuristic 2: Arbitrage must have more than one swap action.
• Heuristic 3: The n swap actions s1, . . . , sn of an arbitrage

must form a loop. The input asset of any swap action must
be the output asset of the previous action, i.e., IN(si) =
OUT (si−1). The first swap’s input asset must be the same as
the last swap action’s output asset, i.e., IN(s0) = OUT (sn).

• Heuristic 4: The input amount of any swap action must
be less than or equal to the output amount of the previous
action, i.e., in(si) ≤ out(si−1).

2) Empirical Results: From the 1st of December, 2018 to
the 5th of August, 2021, we identify 6,753 user addresses
and 2,016 smart contracts performing 1,151,448 arbitrage
trades on Uniswap V1/V2/V3, Sushiswap, Curve, Swerve,
1inch, and Bancor, amounting to a total profit of 277.02M USD.
We find that 110,026 arbitrage transactions (9.6%) are privately
relayed to miners, representing 82.75M USD of extracted value.
All detected arbitrage trades are executed using smart contracts.

Arbitrage statistics: To gain more insights on arbitrage, we
classify the transactions according to the number of platforms
and markets involved (cf. Table III). Most traders prefer
simple strategies that only involve 2 or 3 markets (aka. two-
point arbitrage and triangular arbitrage). Less than 3% of the
transactions execute strategies with more than four markets. We,
for example, find that one transaction combines two arbitrage
into one to save gas costs2. Such optimizations may yield a
higher profit while riskier because the more markets involved,
the more competitors must be front-run. ETH, USDC, USDT,
and DAI are involved in 99.91% of the detected arbitrages.

Arbitrage transaction positions: By visualizing the arbitrage
transaction positions in blocks (cf. Fig. 8), we find that a
large number of profitable trades are surprisingly positioned
at the end of the blocks. We would have expected that the
arbitrage transactions are competitive and perform destructive
front-running with higher gas prices. For example, one of the
most profitable arbitrage transactions3 we detect is positioned
at index 141 out of 162 transactions in this block. Our data

2In the transaction 0x0772..be87, the trader executes the following arbitrage:
WETH → BOXT → UNI → USDT → USDN → UNI → WETH. This
strategy consists of two triangular arbitrages: (i) WETH → BOXT → UNI
→ WETH; (ii) UNI → USDT → USDN → UNI

3In the transaction 0x2c79..81a5, the trader first swaps 400 ETH for 1040
COMP on Uniswap v2, then swaps 1040 COMP for 476 ETH on Sushiswap,
realizing a revenue of 76 ETH.
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Fig. 8: Transaction index distribution of all arbitrages we detect.

hence supports the hypothesis that arbitrageurs are performing
back-running on the network layer. To further confirm this
hypothesis, we re-execute all arbitrage transactions at the top
of blocks (i.e., upon the previous block state). If a transaction
is a block state arbitrage, then the execution should remain
profitable. We find that 44.02% of the arbitrage transactions
are no longer profitable, which indicates that these transactions
perform back-running because the arbitrage opportunity appears
in the same block as the arbitrage transaction.

D. Clogging

We observe the practice of blockchain clogging by issuing
simultaneously many transactions to intermediately increase the
costs of writing to the blockchain. We identify various apparent
purposes, such as attacking gambling protocols and mass token
transfers (cf. Appendix A-B for quantitative details).

E. Limitations

We proceed to outline the main limitations of our measure-
ments. Notably, as we focus on sandwich attacks, liquidations,
and arbitrage, we do not capture all possible sources of
BEV. We, however, believe that our methodology can be
applied to other BEV sources. Then, for each BEV source,
given that we apply custom heuristics, those heuristics have
limitations themselves, which may result in false negatives. For
instance, Heuristic 1 from the sandwich attacks assumes, that
all transactions must be mined in the same block. There may
exist successful sandwich attacks across multiple blocks, which

(1) observe a potential
victim transaction 

(4) attempt to front-run 
with 

(2) construct replay
transaction 

(3) execute 
locally to verify the
profitability

Fig. 9: Overview of the transaction replay attack.

we do not capture and which may result in false negatives.
Also, it could be that by chance two transactions are executed
right before and after a supposed victim transaction. Yet, this
is not necessarily an attack. As such, heuristics may also
introduce false positives into our findings. To reduce the
potential inaccuracies of our heuristics, we attempt to tighten
the heuristics to avoid overly reporting revenues. Summarizing,
we do not have access to ground truth, which forces us to
present our results as estimates only.

V. GENERALIZED FRONT-RUNNING: TRANSACTION REPLAY

We proceed to present an application-agnostic method for
an adversary A to extract value by copying and replaying
the execution logic of an unconfirmed victim transaction (cf.
Fig. 9). The high-level operations are as follows.

1) A observes a victim transaction on the network layer;
2) A constructs one or more replay transaction(s) to copy the

execution logic of the victim transaction while diverting
the revenue to an adversary-controlled account;

3) A performs concrete validation of the constructed replay
transaction(s) locally to emulate the execution result;

4) if the local execution yields a profit, A attempts to
destructively front-run the victim transaction.

We classify a replay transaction Treplay as profitable, if
the native cryptocurrency (e.g., ETH) balance of A increases
after the execution of Treplay , discounting the transaction fees.
To measure profitability, we assume that A converts all the
received assets (i.e., tokens) within an atomic transaction to
the native cryptocurrency following the replay action.
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1 pragma solidity ˆ0.6.0;
2
3 contract Moneymaker {
4 function TransferRevenueToSender() public {
5 uint profit;
6 // profiting logic omitted for brevity
7 msg.sender.transfer(profit);
8 }
9

10 function SpecifyBeneficiary(address payable
beneficiary) public {

11 uint profit;
12 // profiting logic omitted for brevity
13 beneficiary.transfer(profit);
14 }
15 }

Listing 1: Examples of the transaction replay algorithm patterns.

A. Algorithm

Traders frequently implement profit-generating strategies
(e.g., arbitrage) within smart contracts to perform complex
operations atomically [25]. We however show that the following
programming patterns expose a transaction to be replayable.
• Sender Benefits: The generated revenue is transferred to the

transaction sender (cf. TransferRevenueToSender in
Listing 1) without authentication.

• Controllable Input: The sender address is specified
in the transaction input to receive the revenue (cf.
SpecifyBeneficiary in Listing 1).

Replay Algorithm: Generally, in a transaction T on a smart-
contract-enabled blockchain (cf. Eq. 1), sender represents the
issuer of T , value the amount of native cryptocurrency sent in
T , and input controls the contracts’ execution4. sender is an
authenticated field verified through the signature, and input is
arbitrarily amendable.

T = {sender, value, input} (1)

We outline the replay logic in Algorithm 1. When observing
a previously unknown transaction, the adversary constructs the
replay transaction(s) by duplicating all the fields of the potential
victim transaction but substitutes the original transaction sender
address in the input data field with the adversarial address. An
address in an Ethereum transaction input is encoded as a 20-
byte array5. Substitution is therefore efficient through a string
replacement algorithm. The adversary then executes the replay
transaction(s) locally upon the currently highest block. If the
victim transaction conforms to the applicable patterns (i.e.,
sender benefits and controllable input), the execution of the
replay transaction may yield a positive profit for the adversary,
which can proceed with front-running the victim transaction.

B. Replay Evaluation

We apply Algorithm 1 to all the Ethereum transactions from
block 6803256 (1st of December, 2018) to block 12965000

4We ignore irrelevant fields (e.g., nonce).
5According to the Ethereum contract ABI specification [28], an address in

the transaction data is left padded to 32 bytes. However, the adversary is only
concerned with the effective 20 bytes when performing the substitution.

Algorithm 1: Transaction Replay Algorithm.
Input: The current highest block Bi; the potential victim

transaction TV ; the adversarial account address A.

Function ConstructReplay(TV , A):
T.sender ← A
T.value← TV .value
T.input← substituting TV .sender in TV .input with A
return T

end

Algorithm TransactionReplay(TV , A):
Treplay ←ConstructReplay(TV , A)
Concretely Execute Treplay upon block Bi

if Treplay is profitable then
Front-run TV with Treplay

end
end

(5th of August, 2021) capturing a total of 883,023,232 trans-
actions over 32 months. We execute every constructed replay
transaction at the position of the potential victim transaction
and verify the profitability. Except for ETH, we consider all
ERC20 tokens earned in the replay transactions as revenues.
When a replay transaction yields a token revenue, we enforce
an exchange transaction that converts the received token to ETH
via on-chain Uniswap markets [1]. We, therefore, measure the
profitability entirely in ETH without the need for an external
price oracle. For simplicity of our analysis, we assume that the
adversary pays 1 Wei more than the victim transaction for the
gas price of the replay and the potential exchange transaction
(i.e., the minimal cost for a non-mining adversary to front-run).
When measuring the profitability, we count the replay and
exchange transaction fees as cost.

We perform our evaluation on a Ubuntu 20.04.1 LTS
machine with AMD Ryzen Threadripper 3990X (64-core,
2.9 GHz), 256 GB of RAM and 4 × 2 TB NVMe SSD in
Raid 0 configuration. To execute a replay transaction in a past
block, we download the blockchain state from an Ethereum
full archive node running on the same machine. On average,
generating a replay transaction and verifying its profitability
takes 0.18 ± 0.29 seconds (i.e., the time from observing a
victim transaction to broadcasting the replay transaction). We
remark that an adversary can achieve better performance by
running the real-time replay attack inside an Ethereum client
without downloading blockchain states from external sources.

Results: We find 188,365 profitable transactions (0.02%)
that could have been replayed, accumulating to an estimated
profit of 57,037.32 ETH (35.37M USD). The most profitable
replay transaction yields a profit of 16,736.9 ETH. Apart from
ETH, there are 1,213 ERC20 tokens contributing a revenue
of 179,843.52 ETH in 128,200 transactions. Note that the
ERC20 token revenue is higher than the total profit, because
ETH is being used to purchase the ERC20 token in some
transactions (recall that profit equals income minus expenses).
Among all replayable transactions, 171,219 transactions fol-
low the sender benefits pattern, while the remaining 17,146
transactions fall into the controllable input category.
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(b) Monthly number of replayable transactions.

Fig. 10: Replay attacks amount to a profit of 35.37M USD.
We detect 19,825 replayable transactions in June, 2021 alone.

We show the accumulative profit of the transaction replay
attack in Fig. 10a along with the monthly number of replayable
transactions in Fig. 10b. Notably, from block 10954411
to 10954419, three transactions, which seem to exploit a
smart contract vulnerability [29], generate a total profit of
over 41,529 ETH. We also observe a general uptrend in the
number of replayable transactions since January, 2020.

In Table IV, we show the distribution of the upfront ETH
capital (i.e., the transaction value) required by the replay
transactions, and outline the average profit. We find that 83.2%
of the replay transactions do not require upfront ETH, except
the transaction fees. We notice that the replay profit is not
directly correlated to the transaction value. 1,926 replay
transactions yield a profit of more than one ETH, out of
which 1,007 transactions are of zero-value.

We find 6,685 replayable transactions with zero gas price,
representing a total value of 3.63M USD. These privately
relayed transactions hence are only replayable by mining
adversaries or relay operators. For the other transactions with
positive gas price, in our evaluation, we assume that these
transactions are at some point, prior to being mined, visible in
the mempool. However, from the 22nd of December, 2020 to
the 29th of December, 2020 (in prior to the emergence of BEV
relay systems), we do not find 13 out of the 1, 156 replayable
transactions in our mempool (cf. Appendix C). Our replay
results may hence overestimate the replay potential by 1.12%.

TABLE IV: Required upfront ETH and average profit of replay.

Required upfront capital r (ETH) # replay transactions Average profit (ETH)

100 < r 136 2.48± 8.05
10 < r ≤ 100 2,145 0.86± 2.97
0 < r ≤ 10 29,372 0.21± 3.93
r = 0 156,712 0.31± 63.01

C. Real-Time Detection

Our previous replay results make use of historical on-chain
data, and we extend this analysis with an investigation where
we locally replay transactions in real-time from block 12926988
(30th of July, 2021) to block 12965000 (5th of August, 2021).
To this end, we modify a go-ethereum client which connects
to at most 200 peers. Following Algorithm 1, our client tests
whether every received transaction from the P2P network is
replayable. To avoid any doubt, our experiments remain local
as we do not attempt to share our replay transactions.

Results: From a total of 8,206,977 tested transactions,
our real-time investigation find 166 unique and non-conflicting
transactions that are locally replayable. If we compare that
number to the replayable candidates from on-chain data,
within the same time-frame, we find 576 unique (and non-
conflicting) replayable transactions with a positive gas price.
The discrepancy of those numbers indicates, that our node
is insufficiently connected in the P2P network, and hence
misses relevant replayable victims. We would welcome future
work to use this metric as a success indicator of P2P network
connectivity of an adversarial node.

The on-chain data moreover exposes 89 replayable transac-
tions with zero gas price. These transactions were likely mined
through private agreements or a BEV relayer, and our real-time
node naturally has no means to capture these transactions.

D. Understanding Replayable Transactions

The replay algorithm may act on any unconfirmed transaction
without understanding its logic. To shed light on the nature
of the replayable transactions, we cross-compare the 188,365
replayable transactions with the data from Section IV. We
detect 443 fixed spread liquidations (cf. Section IV-B) con-
tributing a total profit of 20.44K USD, and 1,268 arbitrages
(cf. Section IV-C) contributing a total profit of 165.38K USD.
These results suggest that the replay transactions capture a
different set of profit-generating transactions than liquidations
and arbitrage. In Appendix B-A, we provide a case study of
replayable transactions. We find that two DeFi attacks are
replayable, the Eminence exploit [29] and the bZx attack [25].

E. Naive Replay Protection

We proceed to present two simple methods that protect
profitable transactions from being replayed by Algorithm 1.

(Insecure) Authentication: Authentication schemes are widely
adopted in on-chain asset custody, e.g., when depositing assets
into a smart contract wallet that can only be redeemed by an
owner. Such schemes can also help to prevent simple replay
attacks (cf. Authentication in Listing 2, Appendix B-B).
When the authentication-enabled contract is invoked with
an unauthorized address, the replay transaction execution is
reverted. Such authentication method, however, does not remain
secure against a more sophisticated replay algorithm.

Beneficiary Provision: To avoid a replay, the beneficiary
address should not be specified in the transaction input and
can instead be stored, for example, in the contract storage (cf.
MoveBeneficiary in Listing 2, Appendix B-B).
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The aforementioned methods mitigate the simple replay
attacks. However, an adversary could go further in locally
emulating a victim transaction, extract all emitted events and at-
tempt to reconstruct its application layer logic. Specifically, the
adversary can verify (e.g., given the heuristics of Section IV),
if a transaction is an arbitrage or liquidation. A profitable
transaction can then be constructed following the extracted
application logic and parameters. We however remark that
this replay method requires prior understanding of the specific
application and therefore does not generalize further.

F. Advanced Replay Protection

A more robust replay protection mechanism requires that
(i) no entity besides the issuer can inspect the transaction and,
(ii) the miner can validate, but not view, the transaction.

Ironically, under strong trust assumptions, a BEV relayer,
which we further discuss in the next section, may help to
protect against replay attacks. The relayer, however, needs to
be trusted and the miner must not perform replay attacks.

Fair ordering techniques [30] (as further outline in Sec-
tion VII-B) may also help to grant the original transaction
issuer priority access to the blockchain. Unfortunately, state-of-
the-art fair ordering techniques for permissionless blockchains
are still vulnerable to well connected network layer adversaries.

A more elaborate alternative replay protection mechanism
could be constructed with trusted hardware modules such
as Intel SGX [31]. Let’s assume that miners are operating
SGX enclaves ordering transactions within mined blocks.
Traders could perform remote attestation to verify that the
ordering enclave is following transparently outlined rules of
inclusion. The trader can then establish an end-to-end encrypted
TLS connection towards the miner enclave, and provide its
transactions privately. The trader would be required to establish
direct E2E-encrypted channels to all major miners/pools and
concurrently send its transaction as in to avoid a replay attack.
Unfortunately, in part due to DoS concerns, it is unclear whether
miners would be willing to broadly open up their transaction
ordering mining nodes to the public internet.

Also note that the approaches above are not immune to
blockchain fork and reorganization attacks (which unfortunately
are incentivised through BEV revenue, cf. Section VII), as a
transaction becomes public once its block is broadcasted.

VI. BEV RELAYER AND AUCTIONS

Miners by default choose transactions from the mempool
in a descending transaction fee order (e.g., gas price). The
emerging BEV relayer, however, provide an additional transac-
tion “salesroom”: an trader propagates transactions to miners
through a centralized relay system and shares the transaction
profit with miners directly instead of paying transaction fees.
In the following, we formalize an abstract BEV auction game
capturing the P2P and the centralized BEV relayer model. We
then quantitatively analyze how the introduction of BEV relayer
impacts the P2P network and the consensus layer.

BEV Relayer

Searchers

BEV transaction(s)

Miners

BEV transaction(s) Block with the most
profitable transaction(s)

in the first position(s)

May mitigate DoS but has full visibility
of profit generating transactions.

Can censor and reorder transactions.

Fig. 11: Architecture of a BEV relay mechanism, where
a centralized and trusted server mediates between traders
discovering BEV-extracting opportunities and miners.

A. BEV Relayer
BEV relayers are centralized entities that provide a mediation

service between traders seeking to extract BEV (so-called
“searchers”) and miners (cf. Fig. 11). The relayer is a server,
to which searchers submit one or multiple transactions (a
bundle) that are then forwarded to the miners peered with the
relayer. We observe that searchers perform sandwich attacks
(cf. Section IV-A) by packing the victim transaction and
attack transactions into one bundle. The bundle fee mechanism
guarantees that no transaction fee is paid if the transactions
would fail. Miners operate an augmented client, which filters
and positions the most profitable bundle(s) at the top of the next
mined block. The BEV relay service is advertised to provide the
following benefits: (i) The relayer claims not to publish BEV
transactions. (ii) Searchers do not pay for failed transactions.
(iii) Miners receive a share from the bundle revenue. (iv) P2P
network congestion is claimed to be reduced. (v) Blockchain
transaction fees are claimed to be reduced.

B. BEV Auction Modeling
We assume that a set of n players {P0,P1, ...,Pn−1}

compete for a BEV opportunity O, which can be extracted
through front- or back-running (cf. Section III-C). We assume
that if extracted, O yields a revenue of Ri(O) for player Pi.
Players may extract different values from the same opportunity
depending on the extraction execution (e.g., the arbitrage paths
and potentially sub-optimal parameters).

We call miners adopting the BEV relayer system “relay
miners” and assume that relay miners control a hash-rate α of
the total mining power. The remaining miners are denoted as
“P2P miners”. In this section, we assume that the BEV relayer
honestly relays the transactions from players (i.e., searchers in
Section VI-A) without censoring or reordering transactions. We
further assume that the relayer neither joins the BEV auction
nor reveals any transaction to other players. The relay miners
only pick the most profitable transactions(s) from the relayer
system. We assume that the remaining block space is filled
with the transactions from the P2P network sorted by the paid
transaction fee. The P2P miners pick transactions solely from
the P2P network in transaction fee descending order.

Every player Pi can participate in two optional auctions to
extract O. In the P2P auction, Pi broadcasts transactions in
the P2P network. Pi places a publicly readable bid in the form
of transaction fees. In the second auction, the relay auction, Pi

does not broadcast transactions. Instead, Pi forwards crafted
transactions to a centralized BEV relayer which forwards the
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transactions to relay miners. The relay miner is promised a
share of the revenue ofRi(O), freely configurable by the player.
We assume that players are rational, i.e., Pi participates in an
auction iff the expected payoff is positive. In the following,
we use the term player and bidder interchangeably.

P2P Auction (PA): The P2P auction is a first-price all-pay
auction [32], where the bidder only realizes a profit when its
transaction is executed in the intended future block position.
If the bidder’s transaction does not execute at the intended
position, upon block inclusion the bidder remains liable to a
pay a transaction fee, or may realize a sub-optimal revenue.

We assume that Pi adopts the strategy Si in the P2P auction,
which provides a winning probability of PrPA(O,Si). We
further assume that Si and PrPA(O,Si) are prior knowledge of
Pi obtained from past experience. We formalize the expected
payoff of a P2P auction participation in Eq. 2.

E
[
uPA
i | α

]
= (1− α) PrPA(O,Si)Ri(O)− bPA

i (O,Si) (2)

bPA
i (O,Si) is the transaction fee Pi is willing to pay to the

miners. Note that we ignore that the transaction execution result
may impact the transaction fee. In a front-running competition,
Pi might issue multiple transactions to increase the transaction
fee bid, bPA

i (O,Si) denotes the last bid. Eq. 2 shows that
the existence of BEV relayers (i.e., α) decreases the players’
expected payoff in the P2P auction. Players may hence refrain
from broadcasting the BEV transactions. We further analyze
the network layer impact of BEV relayers in Section VI-D.

Relay auction (RA): A BEV relay auction is a first-price
sealed-bid auction [33] as bidders do not pay transaction fees
unless they win. Eq. 3 outlines the payoff for Pi in the relay
auction, when a replay miner produces the next block.

uRA
i =

{
Ri(O)− bRA

i (O) if Pi wins the auction
0 otherwise

(3)

bRA
i (O) is the rebate bidders pay to the miner. Note that a

rational bidder would only pay a fee inferior to the revenue
that O yields, i.e., bRA

i (O) < Ri(O).

C. Incentive Compatibility of the Relay auction Participation

Under a rational setting, the relay auction payoff for Pi

is non-negative (cf. Eq. 3). This result implies that players
are always encouraged to participate in the relay auction,
regardless of the mining power of relay miners or other players’
strategies. [7] proposes a discouragement hypothesis that in
the P2P front-running competition, players are discouraged
by the market leaders and hence exit the game. We claim
that this discouragement hypothesis never stands in the relay
auction due to the risk-free nature of the relay auction (under
the honest relayer assumption). Therefore, given the same
BEV opportunity, the relay auction leads to a more intense
competition than the P2P auction.

Increasing bRA
i (O) renders Pi more likely to win, but

provides less payoff to the player. In a first-price auction, Pi

does not have a dominant strategy (a strategy that maximizes
the payoff) without knowing the other players’ strategies [33],
which makes it challenging to reason about how Pi should

bid. We hence simplify and assume that the reward Ri(O) is
independently drawn from the same uniform distribution, i.e.,
Ri(O) ∼ U(0,Rmax). We assume that n and U(0,Rmax) are
prior knowledge of Pi

6. Under this simplifying assumption, the
Bayesian Nash equilibrium strategy of Pi is shown in Eq. 4,
with the expected revenue of the miner provided in Eq. 5.
Proofs for Eq. 4 and 5 can be found in [33].

bPA
i (O,Si) =

n− 1

n
Ri(O) (4)

E
[
max

i
bPA
i (O,Si)

]
=
n− 1

n+ 1
Rmax (5)

Eq. 4 implies that a player should bid more (i.e., pay higher
fees) when the number of players increases. Therefore, the relay
miners earn more revenue under a Bayesian Nash equilibrium
when there are more relay auction bidders (cf. Eq. 5). We have
shown that a first-price setting ensures a non-negative payoff,
which incentivises participation. We can conclude that the first-
price relay auction leans toward allocating the vast majority
of BEV to relay miners, which we call revenue concentration.
This concentration then aggravates the incentivizes miners have
to perform attacks on the consensus layer, which endangers
the blockchain security (cf. Section VII).

D. Network Impact of the BEV Relayer

BEV relayers advertise to reduce the P2P network layer
congestion from competitive trading bots. In this section,
we proceed to analyze when players actually refrain from
broadcasting BEV transactions on the P2P network due to the
availability of BEV relayer. We first define the concept of a
protogenetic opportunity (cf. Definition VI.1).

Definition VI.1. (Protogenetic Opportunity) A BEV oppor-
tunity O is protogenetic for a player Pi, if E

[
uPA
i | 0

]
> 0,

i.e., the expected reward is positive when the mining power
adopting BEV relayers is zero.

Protogenetic opportunities represent the transactions that Pi

would broadcast to the P2P network, when there is no BEV
relayer. To quantify the impact of BEV relayers on the P2P
network, we empirically measure how many protogenetic BEV
transactions could have been prevented from propagating in
the P2P network due to the introduction of BEV relayers.

Given BEV relayers, Pi participates in the P2P auction only
when E

[
uPA
i | α

]
> 0. Following Eq. 2 and Def. VI.1, we

claim that the BEV relayers prevent Pi from broadcasting a
transaction extracting O when satisfying Eq. 6.

1

PrPA(O,Si)
<

Ri(O)
bPA
i (O,Si)︸ ︷︷ ︸

revenue-fee ratio

<
1

(1− α) PrPA(O,Si)
(6)

Intuitively, for an opportunity O, if the revenue-fee ratio is
too low, a rational player Pi will not broadcast the transaction,
no matter whether a BEV relayer exists or not. If the revenue-
fee ratio is high, Pi may still want to take a risk and participate

6In practice, Pi can approximate U(0,Rmax) or any other hypothetical
distribution from all the P2P auction transactions, which are public, and n
from the success rate of the previous relay auctions.
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Fig. 12: The percentage of the arbitrage transactions (cf.
Section IV-C) that could have been prevented from broadcasting
on the P2P network due to the introduction of BEV relayers.

in the P2P auction. Therefore, the BEV relay system only helps
to discourage the propagation when the transaction revenue-fee
ratio falls into the middle-range specified in Eq. 6, given the
mining power of relay miners (i.e., α).

Results: We measure the network impact of BEV relayers
given the 1,041,422 arbitrages with positive transaction fees in
Section IV-C. Specifically, we calculate the revenue-fee ratio
of every transaction and check if the ratio satisfies Eq. 6. We
are unaware of the winning probability of the players in the
P2P auction (i.e., PrPA(O,Si)). Hence, for every transaction,
we draw the value of PrPA(O,Si) from a uniform distribution
ranging from 10% to 90%, i.e., PrPA(O,Si) ∼ U(0.1, 0.9). We
present the results under different relay mining power values in
Fig. 12. Under 10% relay miners, only 5.5% of the arbitrage
transactions would be prevented from propagating in the P2P
network. We show that even when 90% of the miners adopt
BEV relayer systems, there are still 56.1% of the arbitrage
transactions that would propagate in the P2P network.

E. Privately Relayed Transactions

Transactions that are mined without appearing in the P2P net-
work are referred to as privately relayed transactions. Besides
BEV relayers, we notice that miners also reach agreements,
e.g., with exchanges to mine privately propagated transactions.
From the 22nd December, 2020 to 29th December, 2020
(prior to the emergence of BEV relayers), we identify 136,143
privately relayed transactions out of a total of 8,285,218
(1.64%). Detailed results are shown in Appendix C.

F. BEV Relayer Remarks

Summarizing, our analysis provides the following novel and
generic insights for smart contract enabled blockchains:
• BEV relayers aggravate consensus layer attacks by rendering

MEV more competitive, yielding higher MEV opportunities
and further incentivising miners to fork over MEV [8].

• Contrary to the suggestions of the practitioners community
(e.g., https://github.com/flashbots), our results suggest that
BEV relay mechanisms do not substantially reduce the P2P
network overhead. That is despite the fact that a BEV relayer
introduces an intermediary which increases the centralization
of a permissionless blockchain.

0.5× 1× 2× 4× 8× 16× 32× 64× 128× 256× 512×
BEV / Block Reward

0%

10%

20%

30%

40%

50%

M
in

in
g

Po
w

er

BEV Forking Threshold
1242513

10672 4508
2035 1108

488 397 390

17
4

2
1

# BEV Opportunities

Fig. 13: Minimum mining power on Ethereum that is incen-
tivized to fork the chain to extract a BEV opportunity of x×
the block reward (i.e., BEV forking threshold). We present the
number of historical BEV opportunities per reward multiplier.

VII. SECURITY INSIGHTS OF BEV

Previous studies [7] have shown that the blockchain consen-
sus is prone to time-bandit attacks, where miners deliberately
fork and overwrite the main chain attempting to extract MEV
(a subset of BEV). Zhou et al. [8] point out that the time-bandit
attacks are essentially equivalent to double-spending attacks,
which can be captured by an MDP framework [11]. When
BEV is four times higher than the block reward, a financially
rational miner with 10% mining power is incentivized to fork
the blockchain instead of performing honest mining.

Our measurements show that from the 1st of December, 2018
to the 5th of August, 2021 at least 2,407 blocks expose a BEV
value of over four times the block reward plus transaction
fees. The highest single-block BEV we find is 8, 453.9 ETH
(4.1M USD) in block 11333037 (616.6 times the block reward
plus transaction fees). This BEV opportunity could have
incentivized a miner with only 0.1% mining power to fork,
which portrays the danger of drastic forking competition among
BEV aware miners. To further understand empirically how the
past BEV opportunities could have endangered the blockchain
consensus security, we follow the MDP framework in [11] and
similar to Zhou et al. [8] derive the BEV forking threshold (cf.
Fig. 13). The BEV forking threshold captures the minimum
mining power that is incentivized to fork the blockchain
to extract a BEV opportunity of x× block reward. Fig. 13
further classifies each empirically identified BEV opportunity
depending on its size with respect to the block reward.

BEV moreover provides miners an additional financial
resources to perform bribery [34] and undercutting attacks [35],
where adversarial miners deliberately offer financial rewards
(e.g., extractable BEV and transaction fee) on a forked chain to
attract mining power. The revenue concentration objective of
a BEV relayer further escalates the potential value that miners
can extract, intensifying the risks of consensus layer forks.

BEV also causes congestion on the P2P network layer by
attracting traders to heavily use the P2P network through many
front- or back-running transactions. A congested P2P network,
however, reduces communication throughput and latency, which
was shown to increase the stale block rate, which in turn
negatively affects consensus security [11].
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BEV relayer threats: Throughout our analysis in Section VI,
we assume that BEV relayers and relay miners behave honestly.
However, in reality, a relayer or miner may analyze and
sell trader strategies in private. BEV relayer and miners can
moreover replay profiting transactions (cf. Section V). In a relay
auction, all bids (i.e., the amounts of rebate that players pay to
the miner) are visible to the relayer who can also manipulate
the auction process. Knowing the highest bid, the relayer can
for instance choose to bid a higher amount and win the auction.
Through the use of multiple pseudonymous addresses, the
relayer could deliberately pretend to lose auctions to deter
manipulation detection. Such manipulation would lower the
success rate of bidders and provide an illusion of a fierce
competition, forcing bidders to raise their bids, aggravating the
revenue concentration problem (cf. Section VI-C). Finally, to
the financial detriment of DeFi users, BEV relayers provide a
risk-free approach to perform, for example, sandwich attacks.

A. DeFi’s Impact on BEV

DeFi is one of the most promising applications of permission-
less blockchains. However, our empirical data from Section IV),
intuitively suggests that the amount of extracted BEV grew with
the overall DeFi TVL, hence clearly deteriorating blockchain
security. Various DeFi attacks, including economic exploits [25]
and sandwich attacks [2], are threatening DeFi users.

While BEV sources may appear benign from an application
layer perspective (e.g., arbitrage synchronizes prices across
different markets and liquidations help to secure debt), we claim
that BEV should never be considered a desired “feature”, and
rather a design flaw. That is because BEV triggers transaction
overhead and erodes the blockchain incentive mechanisms
underpinned by the block reward and transaction fees.

B. BEV Mitigation

As long as the transaction executions remain transparent
and the transaction order is unilaterally manipulable, the BEV
challenge is likely to remain. Nevertheless, we observe several
promising avenues towards reducing or mitigating BEV.

Fair Ordering: Kelkar et al. [36] formally define the concept
of order-fairness and propose permissioned Aequitas protocols
to order transactions fairly and were applied to DeFi [30]. A
variant of Aequitas [37] extends order fairness for permission-
less blockchains, yet a powerful network adversary retains an
information asymmetry advantage to front-run slower victims.

Application-Specific BEV Mitigation: Previous works [2]
show that sandwich attacks can be mitigated if traders keep
the trade sizes under the so-called minimum profitable victim
input. Zhou et al. [38] propose the idea of exploiting a BEV
opportunity atomically in the same transaction. For instance,
when a trader performs an exchange on one market, an arbitrage
opportunity might be created on another market. The trader
can immediately execute an arbitrage following the exchange,
which may yield an additional financial profit. Due to the
atomicity of blockchain transactions, no adversary can extract
the arbitrage profit. We can further imagine how BEV can be
mitigated in lending protocols, if a price oracle update would

atomically liquidate unhealthy debt position while paying out
the liquidation revenue to a shared liquidity pool.

VIII. RELATED WORK

Eskandir et al. [5] are the first to introduce a front-
running taxonomy for blockchains. While the authors focus
on displacement, insertion and suppression front-running, we
explicitly highlight the different side effects of adversarial front-
running transactions, which therefore allows to differentiate
between destructive or tolerating front-running. We moreover
introduce the concept of back-running and show how these
ordering strategies are used to extract value. We further identify
the concept of an internal back-running transaction, where
a transaction is atomically prepended with a “high-priority”
transactions, such as a price oracle update.

Bonneau [34] is the first to study bribery attacks in the
context of Bitcoin-style consensus. With their seminal work,
Daian et al. [7] then introduce the concept of Miner Extractable
Value, a specific financial source of bribing revenue. Through
elaborate empirical data of the network layer, the authors
show how competitive trading bots engage in front-running
price gas auctions on the network layer. In this work, we offer
quantifyable insights into the monetary value which traders have
extracted through BEV, by analysing the historical blockchain
data. We further capture regular and internal back-running, and
propose the first practical transaction replay algorithm. Finally,
we also model BEV relayer, which converts part of the public
bidding game into a private relay auction.

Zhou et al. [2] focus on the problem of sandwich attacks
on AMM exchanges. The authors simulate, based on past
blockchain data, how much revenue an adversary could have
yielded theoretically from sandwich attacks. In this work, we
measure the actual value extracted by sandwich adversaries,
based on past blockchain data. Our data in Section IV-A
suggests, that only 63.30% (62.13 ETH) of the available
extracted sandwich attack value was extracted.

Related work captures extensively blockchain security
through various models and quantification efforts. The most
commonly captured attacks are selfish mining [39], double-
spending [11], bribery [34], and undercutting attacks [35]. Zhou
et al. [8] quantify the value threshold at which MEV would
incentivize miners to fork the blockchain based on optimal
adversarial strategies given by an MDP. Based on this model,
we empirically show the extent to which BEV could have
endangered the blockchain consensus layer.

IX. CONCLUSION

In this paper we shed light on the practices of obscure and
predatory traders on blockchains. We provide empirical data
for the state-of-the-art BEV, by notably studying past sandwich
attacks and arbitrage on seven decentralized exchanges as
well as liquidations on three lending platforms. To the best of
our knowledge, we are the first to provide a generalized real-
time replay trading algorithm. We alarmingly observe that the
emerging BEV relayer endanger the blockchains’ security. We
hope that our work provides insights into the current practices,
and further helps to improve DeFi and blockchain security.
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and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2016, pp. 3–16.

[12] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies,” in Security and Privacy (SP), 2015 IEEE Symposium
on. IEEE, 2015, pp. 104–121.

[13] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in International conference on principles of
security and trust. Springer, 2017, pp. 164–186.

[14] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meik-
lejohn, and G. Danezis, “Sok: Consensus in the age of blockchains,”
in Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, 2019, pp. 183–198.

[15] K. Qin, L. Zhou, Y. Afonin, L. Lazzaretti, and A. Gervais, “Cefi vs.
defi–comparing centralized to decentralized finance,” in 2021 Crypto
Valley Conference on Blockchain Technology (CVCBT). IEEE, 2021.

[16] E. Hertzog, G. Benartzi, and G. Benartzi, “Bancor Protocol Continuous
Liquidity for Cryptographic Tokens through their Smart Contracts,”
Tech. Rep., 2018. [Online]. Available: https://storage.googleapis.com/w
ebsite-bancor/2018/04/01ba8253-bancor protocol whitepaper en.pdf

[17] Aave, “Aave Protocol,” https://github.com/aave/aave-protocol, 2020.
[18] dYdX, “dYdX,” https://dydx.exchange/, 2020.
[19] T. M. Foundation, “Makerdao,” https://makerdao.com/en/, 2019.
[20] C. Finance, “Compound finance,” 2019. [Online]. Available: https:

//compound.finance/
[21] “Bzx network,” 2020. [Online]. Available: http://bzx.network
[22] R. Dalio, “How the economic machine works,” Economic Principles,

2012.
[23] K. Qin, L. Zhou, P. Gamito, P. Jovanovic, and A. Gervais, “An

empirical study of defi liquidations: Incentives, risks, and instabilities,” in
Proceedings of the 21st ACM Internet Measurement Conference. ACM,
2021, p. 336–350.
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APPENDIX A
ADDITIONAL EMPIRICAL DATA

A. Sandwich attack

1) Monthly Statistics: Table V shows the detailed monthly
statistics of the sandwich attacks on Ethereum. We observe an
increase in the number of attacks and the number of adversarial
addresses (user/smart contract) from 2020. In April 2021, we
find 94,956 attacks, of which 96.5% occur on Uniswap V2.

2) Sandwich Gas Prices: We observe that 80.02% of the
back-running transactions (TA2) pay only 0 to 1 GWei less than
TV ’s gas price (cf. Table VII)7. Intuitively, the closer TA2 and
TV are, the higher the attacks’ success rate due to a chance of
other transaction interference. For the front-running transaction
(TA1), the adversary must also consider the competing sandwich
attacker. Given a multi-adversary game, Daian et al. [7]
have outlined two primary gas-bidding adversarial strategies:

7Note that we only consider the 510,476 sandwich attacks with positive
adversarial gas price.
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TABLE V: Monthly statistics of the sandwich attacks on Ethereum.
Total 18-12 19-01 19-02 19-03 19-04 19-05 19-06 19-07 19-08 19-09 19-10 19-11 19-12 20-01 20-02 20-03 20-04 20-05 20-06 20-07 20-08 20-09 20-10 20-11 20-12 21-01 21-02 21-03 21-04 21-05 21-06 21-07 21-08

Num. of smart contracts 1069 2 6 8 4 6 6 3 3 6 3 3 4 8 11 19 59 85 57 27 40 175 62 64 106 97 93 81 97 129 115 97 85 48
0.2% 0.6% 0.7% 0.4% 0.6% 0.6% 0.3% 0.3% 0.6% 0.3% 0.3% 0.4% 0.7% 1.0% 1.8% 5.5% 8.0% 5.3% 2.5% 3.7% 16.4% 5.8% 6.0% 9.9% 9.1% 8.7% 7.6% 9.1% 12.1% 10.8% 9.1% 8.0% 4.5%

Num. of user addresses 2419 8 11 14 4 6 4 9 5 8 5 4 5 16 15 28 63 86 73 31 73 955 134 143 193 254 215 152 190 285 327 290 377 147
0.3% 0.5% 0.6% 0.2% 0.2% 0.2% 0.4% 0.2% 0.3% 0.2% 0.2% 0.2% 0.7% 0.6% 1.2% 2.6% 3.6% 3.0% 1.3% 3.0% 39.5% 5.5% 5.9% 8.0% 10.5% 8.9% 6.3% 7.9% 11.8% 13.5% 12.0% 15.6% 6.1%

Num. of detected attacks 750529 52 756 495 229 365 745 896 589 375 184 295 479 621 2117 1337 962 1052 3138 5991 12527 23393 34306 54980 41659 48748 35996 44513 71218 94956 85095 90152 80977 11331
0.0% 0.1% 0.1% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.1% 0.1% 0.3% 0.2% 0.1% 0.1% 0.4% 0.8% 1.7% 3.1% 4.6% 7.3% 5.6% 6.5% 4.8% 5.9% 9.5% 12.7% 11.3% 12.0% 10.8% 1.5%

Bancor 2061 52 756 459 6 7 2 242 37 34 2 5 1 166 79 49 13 28 49 14 8 23 18 11 0 0 0 0 0 0 0 0 0 0
0.3% 100.0% 100.0% 92.7% 2.6% 1.9% 0.3% 27.0% 6.3% 9.1% 1.1% 1.7% 0.2% 26.7% 3.7% 3.7% 1.4% 2.7% 1.6% 0.2% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Uniswap V1 14304 0 0 36 223 358 743 654 552 341 182 290 478 455 2038 1288 949 1024 3079 1121 317 139 1 20 0 1 0 0 4 6 0 1 4 0
1.9% 0.0% 0.0% 7.3% 97.4% 98.1% 99.7% 73.0% 93.7% 90.9% 98.9% 98.3% 99.8% 73.3% 96.3% 96.3% 98.6% 97.3% 98.1% 18.7% 2.5% 0.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Uniswap V2 688466 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 4856 12202 23231 34057 54882 41559 48534 34214 43105 68861 91652 80297 79639 62687 8680
91.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 81.1% 97.4% 99.3% 99.3% 99.8% 99.8% 99.6% 95.0% 96.8% 96.7% 96.5% 94.4% 88.3% 77.4% 76.6%

Sushiswap attacks 27243 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 230 67 100 213 1782 1408 2353 3298 4185 5884 6549 1174
3.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.1% 0.2% 0.4% 5.0% 3.2% 3.3% 3.5% 4.9% 6.5% 8.1% 10.4%

Uniswap V3 18455 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 613 4628 11737 1477
2.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 5.1% 14.5% 13.0%

TABLE VI: The gas price paid by the adversaries for the front-
running sandwich transaction TA1. A previous study suggests
that 79% of the miners (using geth) configure a price bump
percentage of 10% to replace an existing transaction from
the mempool, while 16% of the miners (using parity) set
12.5% as replacement threshold [2]. Assuming a price bump
percentage of 10%, we estimate that at least 19.11% of the
attacks experienced more than 5 counter-reactive bids [7].

r =
GasPriceTA1

GasPriceTV
Count Percentage Estimated Bids

r ≤ 1 80,392 15.75% 1
1 < r ≤ 1.1 265,330 51.98% 1
1.1 < r ≤ 1.12 39,963 7.83% 2
1.12 < r ≤ 1.13 17,014 3.33% 3
1.13 < r ≤ 1.14 10,223 2.00% 4
1.14 < r 97,554 19.11% >= 5
total 510,476 100.00% None

reactive counter-bidding and blind raising. Under reactive
counter-bidding, an adversary only increases its gas price when
another competing transaction pays a higher gas price. In blind
raising, the adversary raises the gas price of its transaction in
anticipation of a raise of its competitors, without necessarily
observing competing transactions yet. Recall that geth only
accepts an increase of the gas price by at least 10%.

When assuming that all attackers adopt the reactive counter-
bidding strategy, based on the past sandwich attacks, we
estimate that at least 19.11% of the sandwiches went through
more than five rounds of bidding (cf. Table VI). This is because
the first TA1 bid only needs to add 1 Wei to TV ’s gas price, then
each subsequential bid must raise the gas price by 10%. After
five rounds of bidding, the adversary needs to pay a gas price
of at least (110%)4×(GasPriceV +1) Wei. Fig. 4a visualizes
the number of adversarial sandwich attack smart contracts we
detected. In particular, from the 10th to the 11th of August 2020
(Block 10630000-10640000), we identified 49 smart contract
addresses attempting to extract value simultaneously.

B. Clogging
Eskandir et al. [5] have observed smart contract games which

follow the The War of Attrition [40], [41]. In such a game,
players can bid into a pool of money. Each bid resets a timeout,
which, once expired, grants the last bidder the entirety of the
amassed money. Economists and evolutionary biologists have
studied such games for decades [42], and shown that humans
overbid significantly. To participate in such contests, users
are likely to construct dedicated bidding bots. Those bots are
then configured with a specific budget to pay for transaction

TABLE VII: Adversarial gas prices for the back-running
sandwich transaction TA2. 80.02% of the transactions pay
only 0 to 1 GWei less than TV .

d = GasPriceTV
−GasPriceTA2

Count Percentage

d < 0 GWei 14,162 2.77%
0 GWei ≤ d < 1 GWei 408,522 80.03%
1 GWei ≤ d < 10 GWei 6,813 1.33%
10 GWei ≤ d < 100 GWei 43,194 8.46%
100 GWei ≤ d 37,785 7.40%
Total 510,476 100.00%

fees. If an adversary manages to clog the blockchain, such
that those bots run out of funding, the attacker can win the
bidding game. This is what appears to have happened with
the infamous Fomo3D game, where an adversary realized a
profit of 10,469 ETH by conducting a clogging attack over 66
consecutive blocks (from block 6191962 to 6191896).

The throughput of permissionless blockchains is typically
limited to about 7-14 transactions per second, and transaction
fee bidding contests have shown to raise the average transaction
fees well above 50 USD. A clogging attack is, therefore,
a malicious attempt to consume block space to prevent the
timely inclusion of other transactions. To perform a clogging
attack, the adversary needs to find an opportunity (e.g., a
liquidation, gambling, etc.) which does not immediately allow
to extract monetary value. The adversary then broadcasts
transactions with high fees and computational usage to congest
the pending transaction queue. Clogging attacks on Ethereum
can be successful because 79% of the miners order transactions
according to the gas price [2].

1) Heuristics: To identify past clogging period, we apply
the following heuristics.
• Heuristic 1: The same address (user/smart contract) con-

sumes more than 80% of the available gas in every block
during the clogging period.

• Heuristic 2: The clogging period lasts for at least five
consecutive blocks. Empirical data suggests that the average
block time is 13.5 ± 0.12 seconds [43], a clogging period
of five blocks, therefore, lasts around 1 minute.

2) Empirical Results: We identify 333 clogging periods
from block 6803256 to 12965000 , where 10 user addresses
and 75 smart contracts are involved (cf. Table VIII). While
the longest clogging period lasts for 5 minutes (24 blocks),
most of the clogging periods (83.18%) account for less than 2
minutes (10 blocks).

Case Studies: While our heuristics can successfully detect
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TABLE VIII: Detected clogging periods.

Duration Clogging Detected Avg. Gas Used Avg. Cost

5 ∼ 9 blocks (1 ∼ 2 mins) 270 50413969 8 ETH (12K USD)
10 ∼ 14 blocks (2 ∼ 3 mins) 38 137697972 54 ETH (117K USD)
15 ∼ 19 blocks (3 ∼ 4 mins) 10 199507881 90 ETH (188K USD)
20 ∼ 24 blocks (4 ∼ 5 mins) 9 278092700 143 ETH (326K USD)
25 ∼ 29 blocks (5 ∼ 6 mins) 3 348737828 369 ETH (854K USD)
30 ∼ 34 blocks (6 ∼ 7 mins) 2 458057340 250 ETH (551K USD)
35 ∼ 39 blocks (7 ∼ 8 mins) 1 528647491 297 ETH (739K USD)

TABLE IX: Selected clogging events.

Address Start
Block

Duration
(Blocks)

Avg. Gas
Consumed

Avg. Gas
Price

Cost
(ETH) Usage

0x0996..2747 12953443 37 95.38% 547 297.16 NFT
0xD4d8..706e 12910380 34 94.48% 790 388.16 NFT
0x004f..66CA 12885177 31 93.99% 252 112.37 NFT
0x18Df..7da5 12934303 26 90.35% 1,477 517.47 NFT
0x3a87..bB5f 12717845 25 95.85% 364 130.61 NFT
0x18c7..410b 12911156 25 90.05% 1,358 459.93 NFT
0x3a87..bB5f 12717893 24 92.62% 503 168.03 NFT
0x6670..3A4a 7091122 24 91.22% 31 5.48 Incentivised clogging
0xdAC1..1ec7 10130772 21 96.09% 40 8.05 Mass USDT transfers
0xA869..0AB1 8259506 15 92.59% 26 3.14 ETH CAT Attack
0x67a6..21d2 7788021 15 93.21% 32 3.72 ERD (E) Attack
0xA869..0AB1 8260063 14 94.48% 26 2.98 ETH CAT Attack
0xdAC1..1ec7 8509481 11 89.27% 28 2.27 Mass USDT transfers
0xA869..0AB1 8260051 11 97.28% 26 2.41 ETH CAT Attack

blockchain clogging, they do explain their motivation and
we hence manually inspect 14 selected clogging events (cf.
Table IX). We find that the top 7 longest clogging events are
related to the non-fungible tokens (NFT), while it’s unclear
how the adversaries might profit from these events.
Incentivised clogging: We detect a gambling contract “Lucky
Star” clogging, where 203 addresses perform 387 transactions.
This game draws the winners, when the cumulative lottery tick-
ets sold exceeds a pre-configured threshold. For every 30,000
ETH of lottery tickets sold, the accumulated prize is split among
the last 50 purchasers, the protocol, therefore, incentivizes its
users to congest the network at the fictive deadline.
Attacks on gambling protocols: We also find four clogging
events related to two FoMo3D games, namely ETH CAT (cf.
0x42ce..0ebb) and ERD (E) (cf. 0x2c58..e769). The rules of
these gambling protocols is similar to FoMo3D. If no user
address purchases a lottery ticket within a fixed time period,
the last participant wins the jackpot. We identify two contracts
involved in these four clogging events. To ensure that the
winner is not already drawn, both contracts have a function to
check the current round’s status in the corresponding gambling
smart contract before they start to spam transactions. These two
contracts are deployed by the same address (cf. 0xfefe..aa5c).
Mass USDT transfers: We find that two clogging events per-
form a large number of USDT transfers, wherein 2,462/1,868
Ethereum addresses made 2,463/2,032 transactions, consum-
ing 96.07%/89.27% of the gas respectively. Although these
activities appear abnormal, we cannot seem to figure out the
reason for such behavior.

APPENDIX B
TRANSACTION REPLAY EXTENSIONS

A. Replayable Transactions Case Study
In Table X, we present the top 15 replayable transactions

that produce more than 100 ETH and manually classify their

TABLE X: Case studies of the top 15 non-reverted replayable
transactions that yield a profit of more than 100 ETH.

Transaction
hash

Profit
(ETH)

Required upfront
capital (ETH) Motive

0x045b..0b2a 16,736.9 0 Eminence exploit [29]
0x3503..8ad8 16,393.3 0 Eminence exploit [29]
0x4f0f..0317 8,555.8 0 Eminence exploit [29]
0xa85b..9a83 448.1 0.036 —
0x148f..533f 224.0 0.036 —
0xbab8..e372 183.6 8.0 Arbitrage
0x4021..1f89 153.2 2.0 Arbitrage
0xe772..d496 153.2 2.0 Arbitrage
0x475a..cd8f 152.5 0 DSSLeverage
0xfa5f..bb03 144.3 0 DSSLeverage
0x2e27..ee45 136.3 0 DSSLeverage
0x7ca2..0765 129.8 9.0 Arbitrage
0xd46c..b091 118.0 5.0 Crypto Fishing [44]
0xc2f3..cac8 112.0 0.036 —
0x9f4b..ec7e 106.3 0.80609 Arbitrage

1 pragma solidity ˆ0.6.0;
2
3 contract ReplayProtections {
4 address owner;
5
6 constructor () {
7 owner = 0x00..33;
8 }
9

10 function Authentication() public {
11 require(msg.sender == owner);
12 uint profit;
13 // profiting logic omitted for brevity
14 msg.sender.transfer(profit);
15 }
16
17 function MoveBeneficiary() public {
18 address beneficiary = 0x01..89;
19 uint profit;
20 // profiting logic omitted for brevity
21 beneficiary.transfer(profit);
22 }
23 }

Listing 2: Protection from the transaction replay attack.

motive. We notice 3 replayable transactions associated with
a previous DeFi attack, the Eminence exploit [29]. It appears
that the attacker(s) did not consider the threat of replay
transactions. Except for the Eminence exploit, we notice that
the bZx attack [25] transaction is also replayable. We further
find 3 replayable transactions that invoke the same DSSLeverage
smart contract (cf. 0x4c14..bCA2). From the DSSLeverage
source code, we find that it allows any address to close the
contract’s position in MakerDAO and retrieve its balance.
This coding pattern matches the sender benefits pattern (cf.
Section V-A). We also discover one on-chain game transaction
(Crypto Fishing [44]) and five arbitrage transactions. For three
of the top 15 replayable transactions, we find that the trader is
purchasing ERC20 tokens at a favorable price (i.e., arbitrage),
as we convert the gained assets back to ETH for our evaluation.

B. Replay Protection

Listing 2 presents the solidity snippets that mitigates the
transaction replay attack (cf. Section V-A).
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Fig. 14: Number of connections of our modified geth node while
listening for transactions on the P2P network. The default geth
configuration maintains 50 connections. The more connections
a node manages, the earlier this node receives block and
transactions from neighboring peers.

APPENDIX C
PRIVATELY RELAYED TRANSACTION MEASUREMENT

A. Identifying Non-Broadcast Transactions
To measure the fraction of transactions that are mined, but not

broadcast on the P2P network, we set up a well connected geth
client with at most 1,000 connections in the Ethereum network
(cf. Fig. 14)8. The client records any new incoming transaction,
before it is added to the memory pool, or written to the
blockchain. The number of connections of the Ethereum client
are important as in to (i) receive data as early as possible [46]
and (ii) to maximize an all encompassing view of the network
layer. Once we stored all visible transactions, we compare this
network layer dataset with the resulting confirmed blockchain
transactions to identify the transactions that were mined, but
not broadcast.

B. Empirical Results
When observing the Ethereum P2P network over 45,669

blocks (1 week) from block 11503300 (22nd Decem-
ber, 2020) to 11548969 (29th December, 2020), the chain
recorded 8,285,218 transactions. When comparing those with
the transactions we observed on the network layer, we find
that 136,143 mined transactions were not broadcast prior
to being mined. We hence can conclude that 1.64% of the
transactions are privately relayed. We manually verify 100 trans-
actions at random from our dataset with the data provided by
Etherscan [47], and can confirm that our methodology matches
the privately relayed transactions reported. We notice that parts
of the detected private transactions are payout transactions from
mining pool operators to miners. By excluding the transactions
that consume 21,000 gas, we find 11,374 (8.35%) private
transactions invoking smart contracts (cf. Table XI). 21,000 is
the minimum gas cost of an Ethereum transaction, i.e., a simple
transfer costs 21,000 gas.
Private 1inch Trades: By observing privately relayed trans-
actions, we identify with which miners 1inch reached private

8A default geth client connects to a maximum of 50 peers. We remark that
our mass-connection client can cover a wide range of peers. This is because
peerings in Ethereum are primarily influenced by the distance of the peer
nodes’ ID hashes[45], rather than the physical location, although location does
influence latency.

TABLE XI: Distribution of the number of privately relayed
transactions per miner coinbase address over 45,669 blocks
(1 week). Data measured from the P2P network with a geth
client which consistently maintains over 800 P2P connections
(cf. Fig. 14). We measure the hashrate based on the number
of blocks found during measurement by the respective miner.

Miner address Private transactions
(contract invoking) Name Hashrate

0xEA674fdDe714fd979de3EdF0F56AA9716B898ec8 104, 674 (7, 310) Ethermine 20.81%
0x829BD824B016326A401d083B33D092293333A830 19, 560 (329) F2Pool 9.59%
0x99C85bb64564D9eF9A99621301f22C9993Cb89E3 5, 926 (19) BeePool 2.11%
0x5A0b54D5dc17e0AadC383d2db43B0a0D3E029c4c 3, 256 (2, 775) Spark Pool 23.50%
0xB3b7874F13387D44a3398D298B075B7A3505D8d4 980 (568) Babel Pool 4.83%
0xD224cA0c819e8E97ba0136B3b95ceFf503B79f53 697 (191) UUPool 3.46%
0x5921c6a53c2cD0987Ae111b59F2E5dDaAf275b60 360 (0) - 0.45%
0x04668Ec2f57cC15c381b461B9fEDaB5D451c8F7F 303 (1) zhizhu.top/SpiderPool 7.76%
0x314653F5933FC25D0A428424f5A645B2bcc37483 142 (135) - 0.11%
0x3EcEf08D0e2DaD803847E052249bb4F8bFf2D5bB 59 (5) MiningPoolHub 1.75%
0x52f13E25754D822A3550D0B68FDefe9304D27ae8 59 (1) EthashPool 2 0.1%
0xAEe98861388af1D6323B95F78ADF3DDA102a276C 58 (2) - 0.21%
0x00192Fb10dF37c9FB26829eb2CC623cd1BF599E8 25 (22) 2Miners: PPLNS 2.01%
0xB35c1055aAE02DA8497E9Dd866e27C86be16CFEF 22 (0) - 0.06%
0x002e08000acbbaE2155Fab7AC01929564949070d 7 (7) Hiveon Pool 0.95%
0x1aD91ee08f21bE3dE0BA2ba6918E714dA6B45836 7 (1) 2Miners: SOLO 4.01%
0x35F61DFB08ada13eBA64Bf156B80Df3D5B3a738d 4 (4) firepool 0.62%
0x45a36a8e118C37e4c47eF4Ab827A7C9e579E11E2 1 (1) - 0.11%
0x8595Dd9e0438640b5E1254f9DF579aC12a86865F 1 (1) EzilPool 2 0.68%
0xF541C3CD1D2df407fB9Bb52b3489Fc2aaeEDd97E 1 (1) - 0.32%
0x2A0eEe948fBe9bd4B661AdEDba57425f753EA0f6 1 (1) - 0.56%

Total 136, 143 (11, 374) - 84.00%

peering agreements. We for instance found two privately relayed
1inch transactions (cf. 0xa026..b15b and 0xaa45..c66f) from
the Spark Pool (23.50% hashrate), one (cf. 0xe4d4..86b5) from
the Babel Pool (4.83% hashrate) and one (cf. 0x4340..aeb5)
from the F2Pool (9.59% hashrate).
Mining Pools Engaging in Private Transactions: In Table XI
we provide the distribution of miners engaging in mining non-
broadcast transactions. Over the course of 45, 669 blocks (1
week), we identified 81 miners, of which 21 (26%) mine trans-
actions privately. We notice that the number of privately relayed
transactions does not necessarily correspond to the hashing
power of the miner. The Ethermine miner positions private
transactions (e.g., benign mining payouts) at the block start with
apparent low gas prices. The SparkPool, however, seemingly
trying to disguise its private transactions as ordinary instances
by paying regular gas prices. We identified for example the
following transaction hashes: 0x4e17..29cd, 0xa67e..4725. In
particular, we noticed the contract 0x0000..a4c4, for which all
interacting transactions are mined by the SparkPool and not
broadcast on the P2P network. Based on the available EVM
byte code and engaging transactions, this contract appears to
be involved in trading, strongly indicating that the SparkPool
is engaging in MEV before the emergency of BEV relayers.
Private Value Extracting Transactions: From block
11503300 to 11548969, we discover 340 liquidation trans-
actions on Aave, Compound and dYdX (cf. Section IV-B) out
of which we identify 18 private transactions. We also detect 5
private transactions among the 1,067 arbitrage transactions.
Private Replayable Transactions: We find that 1,156 of
the 8,285,218 transactions are replayable following the method-
ology of Section V-B. Out of these replayable transactions, we
identify 13 private transactions yielding a profit of 0.59 ETH.
Through manually inspection, we find that these 13 transactions
are 1inch exchange trades. We recall that private transactions
cannot be replayed by non-miners.
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