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Abstract—The problem of fitting parameters of a dynamical
system appears to be relevant in many areas of knowledge, like
weather forecasting, system biology, epidemiology, and financial
markets. In this paper, we analyze the Susceptible-Infected-
Recovered (SIR) epidemiological model. We first derive an
alternative representation of the SIR model, reducing it to one
differential equation that models the cumulative number of
infected cases in function of time. Then we present a differential
evolution approach to estimate the parameters of this dynamical
model from data. We illustrate the proposed approach with
COVID-19 data from Santiago, Chile. The goodness of fit,
obtained by the differential evolution algorithm outperformed
ten times the results obtained by a random search strategy used
in previous works.

Index Terms—Dynamical System, SIR model, Differential Evo-
lution, COVID-19 data.

I. INTRODUCTION

Dynamical systems are transversally used to describe a vari-
ety of dynamical behaviour from disparate areas of knowledge.
In short, let us assume we have a dynamical system given by
a set of ordinary differential equations (o.d.e.), that contain d
variables u(t) = {u1(t), u2(t), . . . ud(t)} that depend explic-
itly on time, and a set of parameters {µ} = {µ1, µ2, . . . µp}:

d

dt
u(t) = f{µ}(u(t); t),

with a set of initial conditions

u(t = t0) = u
(0).

In this paper, we focus on the problem of fitting the parameters
of a given dynamical system to obtain the best fit between the
data and the solution given by the dynamical system.

Then, the parameters to be determined are P =

{t0, u(0)1 , u
(0)
2 , . . . u

(0)
d , µ1, µ2, . . . µp}, thus the total number

which values for the parameters {µ} and the initial conditions
u(0) best fit the dataset in the sense that the norm:

N−1∑
n=0

||u(tn)− un||2,

is minimum.
This kind of optimization problems appear in many fields

such as physics, engineering, biology, and finance. In many
cases, practical problems have objective functions that are non-
differentiable, non-continuous, non-linear, noisy, flat, multi-
dimensional or have many local minima, constraints or
stochasticity, making these problems difficult (if not impos-
sible) to solve analytically.

More precisely, we address this question to the SIR epi-
demiological model. Almost a hundred years ago, Kermack
and McKendrick [1] introduced a mathematical model for
epidemics, which is known today as the SIR model for
infectious deseases. Later in the seventies this epidemiological
model was introduced to understand the temporal evolution
of the 1960’s racial riots in different cities of USA as Los
Angeles, Detroit and Washington DC [2]. The SIR epidemi-
ological model appears to describe satisfactorily riots as the
one happened in France in 2005 [3] or in Chile in 2019 [4].

The problem of estimating parameters to fit as best as
possible the model with the number of riots events in time,
provided by authorities, was developed in [4]. Using a simple
random search algorithm the results appears to be satisfactory,
nevertheless a more systematic approach is desirable for this
class of problem.

Evolutionary computation approaches have also been used
for parameter estimation in ordinary differential equations. For
example, in Simos, et al. [5], particle swarm optimization was
used to fit an epidemic model to data. A genetic algorithm
was used to find parameter sets using available time-series
data from the introduction of cholera in Haiti [6]. Instead of
working with o.d.e., [7] performs a simulation of epidemics
using cellular automata and differential evolution, showing that
despite their simplicity, they are able to contribute significantly
to an understanding of the spread of real epidemics. The SEIR

of parameters to determine is D = d+p+1. The problem is the 
following, given a dataset of discrete values of the variables 
at some discrete times:

(tn, un), for n = 1, 2, . . . N
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with Social Distancing model was analyzed in [8]. The estima-
tion of the SEIR–SD model parameters with data from Covid-
19 from Italy, was carried out through the use of differential
evolution. Other approaches like [9], [10], consider modeling
epidemic networks, where evolutionary computation is used to
locate likely epidemic networks for different epidemic profiles
(simulated using the SIR model over the network).

In this paper, due to its real value parameter search charac-
teristics, we formulate a differential evolution algorithm [11]
to estimate the parameters of the SIR model from the COVID-
19 data for the city of Santiago, Chile. We also use the random
search approach described in [4] for comparison. Overall, we
show the effectiveness of the use of differential evolution for
this problem.

The rest of the paper is organized as follows. Section II
defines the SIR model and develop briefly its main characteris-
tics, then, we summarize the basis of the differential evolution
algorithm. The application of the SIR model fitted with
COVID-19 data for the city of Santiago, Chile is presented
in Section III. Results and analysis of the simulations are
shown in Section IV. Final conclusions and future directions
are discussed in Section V.

II. BACKGROUND

A. The SIR model.

The model is governed by three variables: I(t) represents
the number of “infected” individuals as a function of time,
S(t) is the number of individuals susceptible to the disease
and may be “infected” at time t, and R(t) = N −S(t)− I(t)
is the number of recovered individuals at time t, that only
follows the dynamics of I(t) and S(t), because N , the total
population, is constant. Then the equations for susceptible and
infected individuals of the SIR model reads [1]

d

dt
I(t) = −αI(t) + βS(t)I(t) (1)

d

dt
S(t) = −βS(t)I(t) (2)

where α is a decaying rate of the infected population and
the nonlinear term βS(t)I(t) represents a transmission rate
at which a susceptible individual becomes infected. The two
parameters α, with units of (time)−1, and β with units of
(individuals)−1×(time)−1 represent the exit rate from the
infected class and the transmission rate per individual.

Finally, this set of ordinary differential equations is com-
plemented by the initial conditions:

I(t0) = I0 & S(t0) = S0.

A first consequence of the model, one has that the number of
susceptible individuals, decrease strictly in time, therefore the
asymptotic dynamics is: I(t)→ 0 as t→∞ and S(t)→ S∞,
as well. Second, the dynamics depends crucially on the initial
value S0, in particular, if it is greater or smaller than α/β.
Therefore, it appears useful to use a dimensionless variable

instead of S(t), namely a kind of dynamic reproduction
number

ξ(t) =
1

ν
S(t),

where we define the shorthand notation

ν =
α

β
.

Thus equations (1) and (2) read
d

dt
I(t) = α (−1 + ξ(t)) I(t), (3)

d

dt
ξ(t) = −α

ν
ξ(t)I(t). (4)

We have explicitly not included α in a dimensionless temporal
scale because, its selected value by the data has a fundamental
interpretation, therefore it is better to keep it with the natural
units. As before, equations (3) and (4) must be solved together
with the initial conditions:

I(t0) = I0 & ξ(t0) = ξ0.

Usually the parameter ξ0 is named the reproduction num-
ber [12], [13]. If ξ0 < 1 the evolution of I(t) is a decreasing
function. Indeed, if initially ξ0 < 1, and because ξ(t) is a
decreasing function, then the right hand side of eqn. (3) is
always negative so that I(t) is a strictly decreasing function
of time, moreover I(t) → 0 exponentially in time. However,
if initially ξ0 > 1, then, the right hand side of eqn. (3) is
positive so that I(t) increases in time after a maximum value,
Imax, that is reached whenever ξ(tmax) = 1. Afterwards, this
sign becomes negative and thus I(t) decreases exponentially
in time. This simple dynamics is represented in Fig. 1 (b &
c). Therefore, ξ0 > 1 acts as a trigger that ignites an epidemic
event.

In the following we reduce the ordinary differential equa-
tions (3) and (4) set to a single variable. Although this is a
particular property of the SIR model, the general method rules
formally speaking in the same way to an arbitrary number of
o.d.e. Integrating (4) one gets [14]

ξ(t) = ξ0e
−αν

∫ t
t0
I(t′) dt′

, (5)

and defining

v(t) =

∫ t

t0

I(t′) dt′, (6)

so that v′(t) = I(t) and v(t0) = 0, and, introducing ξ(t) from
(5) into (3) one gets

d2

dt2
v(t) = −α d

dt
v(t) + αξ0e

−αν v(t)
d

dt
v(t),

which can be integrated once:
d

dt
v(t) = −αv(t) + νξ0

(
1− e−αν v(t)

)
+ I0. (7)

Here we have used that v(t0) = 0, and v′(t0) = I0.
Although, one may integrate directly (7), and thus it is ex-

actly solvable, we shall work directly with the time dependent
ordinary differential equation (7) because the aim of this paper
is to show how to adjust the prediction of a dynamical rule in
time with the available data.
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B. Differential evolution

Optimization problems appear in many fields such as
physics, engineering, biology, and finance. In many cases,
practical problems have objective functions that are non-
differentiable, non-continuous, non-linear, noisy, flat, multi-
dimensional or have many local minima, constraints or
stochasticity, making these problems difficult (if not impossi-
ble) to solve analytically. Here, evolutionary computation can
be used to find an approximate solution, in particular, we will
describe a class of evolutionary algorithm called differential
evolution.

Differential evolution is a stochastic, population-based op-
timization algorithm introduced by Storn and Price [11] for
optimizing functions with real-valued parameters (solution
space). The general problem formulation is as follows: for
an objective function f : X ⊆ RD → R where the feasible
region X 6= ∅, the minimization problem is to find:

x∗ ∈ X such that f(x∗) ≤ f(x) ∀x ∈ X

where f(x∗) 6= −∞. To solve this problem, differential
evolution follows a standard evolutionary algorithm procedure
composed of the following four stages:

1) Initialization,
2) Mutation,
3) Recombination,
4) Selection.

The algorithm loops (generations) between stages 2), 3), and
4) until a satisfactory solution is found. More details of each
stage is as follows.

Let us start with some notations. Suppose we want to
optimize a function with D real parameters. The user must
define the size of the population popsize (it must be at least
four). The parameter vectors have the form:

xi,G = [x1,i,G, x2,i,G, . . . , xD,i,G] i = 1, 2, . . . , popsize

where G is the generation number.
1) Initialization: The user must define upper and lower

bounds for each parameter (G = 1):

xLj ≤ xj,i,1 ≤ xUj j = 1, . . . , D.

Then, randomly select the initial parameter values uniformly
on the intervals

[
xLj , x

U
j

]
. Each of the popsize parameter

vectors undergoes mutation, recombination and selection.
2) Mutation: The purpose of the mutation stage is to

expand the search space. For a given parameter vector xi,G,
the algorithm randomly selects three vectors xr1,G, xr2,G, and
xr3,G such that the indices i, r1, r2 and r3 are distinct. Then
the weight difference of two of the vectors is added to the
third:

vi,G+1 = xr1,G + F (xr2,G − xr3,G)

where 0 ≤ F ≤ 2 is a constant, called the mutation factor and
vi,G+1 is called the donor vector.

3) Recombination: Recombination incorporates successful
solutions from the previous generation. The trial vector ui,G+1

is developed from the elements of the target vector, xi,G,
and the elements of the donor vector, vi,G+1. Elements of
the donor vector enter the trial vector with probability CR

uj,i,G+1 =

vj,i,G+1 if randj,i ≤ CR or j = Irand

xj,i,G if randj,i > CR and j 6= Irand

i = 1, 2, . . . , popsize; j = 1, 2, . . . , D

where randj,i ∼ U [0, 1] and Irand is a random integer from
[1, 2, . . . , D]. Irand ensures that vi,G+1 6= xi,G.

4) Selection: The target vector xi,G is compared with the
trial vector vi,G+1 and the one with the lowest function value
is admitted to the next generation:

xi,G+1 =

ui,G+1 if f(ui,G+1) ≤ f(xi,G)

xi,G otherwise

i = 1, 2, . . . , popsize

The mutation, recombination and selection stages continue
until some stopping criterion is reached.

III. METHODS

A. Parameters of the SIR-model to be estimated
To fit the data with the solution of the system of ordinary

differential equation (7), we need to fit the parameters α, ν
together with an initial condition, {t0, I0, ξ0}; that is, we need
to find the best fit varying five parameters of a dynamical
problem. Naturally, because (7) does not depend explicitly on
time any modification on t0 just shifts the solution on the time
axis, therefore, it allows to better adjust by a simple transfor-
mation of the data. In any case, in the current application we
do not consider this particular invariance so that the algorithm
chooses itself the best value of t0 regardless of any assumption.
In the following we describe the raw data, then we provide
the results and discuss it.

B. The data
We use the official on-line available data [15]. More

precisely, the data contains the date as time in units of
[days], and the cumulative number of infected people to date,
for the sixteen different administrative regions, that is v(t)
for different regions. Initially, we focus on the Metropolitan
Santiago-area which has the largest number of infected people.
The data runs from March 3rd, 2020 (t = 0) up to date.
However, for the analysis we consider a window from March
3rd up to June 16th (t = 106). Subsequently an extra 30000
infected people was added to the records on June 17th. This
data is shown in Fig. 1 (a).

Using the presented algorithm we estimate the parameters
of the SIR model by minimizing the following objective
functional which is a sort of mean squared error:

f [v] =
1

N

N−1∑
n=0

(
v(tn)

vn
− 1

)2

,
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where N is the number of elements of the dataset, v(t) is
the numerical solution of the o.d.e. (7) using the obtained
parameters, thus, v(tn) is this solution evaluated at tn. On the
other hand, vn is the value of the cumulative infected people
from the data at day tn.

C. Differential evolution implementation

We used the differential evolution implementation available
from SciPy [16] optimize built on the NumPy library of
Python. We used the default differential evolution parameter
values: popsize = 15, F = U [0.5, 1] (sampled for each
generation), CR = 0.7, and maxiter = 1000 (the maximum
number of generations). The parameter vector of our problem
has de form: [α, ν, t0, I0, ξ0]. The upper and lower bounds for
each parameter used in this work for the differential evolution
are shown in Table I.

TABLE I
PARAMETER RANGE

Parameter Range
α [0.001, 0.1]
ν [1000, 30000]
t0 [1, 50]
I0 [0, 30]
ξ0 [1, 7]

The fitness function that was fed into the differen-
tial evolution function of SciPy optimize, consisted in a func-
tion that first obtained a numerical solution v(t) of the o.d.e.
(7) using the current parameter vectors (candidate solutions),
then we proceeded evaluating in the error function described
above. For the case studied (106 points) the execution time is
only a few seconds (see Table II).

IV. RESULTS AND ANALYSIS

Applying the algorithm for the dataset of N = 106 different
days one gets the parameters summarized in Table II. Briefly,
the differential evolution method finds an optimal value for
solution of the o.d.e. which is 10 time more precise, that
a random method. The random method requires an initial
estimations of the parameters. In the current situation, we
can estimate easily one parameter by noticing the following:
equation (7) provides us an interesting relation among I and
v,

I = −αv + νξ0
(
1− e−αν v

)
+ I0. (8)

One notices that for small v, a linear relation (≈ I0 +α(ξ0 −
1)v,+ . . . ) among these variables holds. This provides us with
a relation between α and the reproduction number ξ0. From
the data one gets α(ξ0 − 1) ≈ 0.075, moreover varying the
parameters we can easily fit the data with the previous relation.
We used this as a first guess. Then we explored randomly 104

trials around this initial guess for a better set of parameters,
i.e., parameters that yield smaller error. The random search

TABLE II
PARAMETER RESULTS

Parameters of the SIR model
Class Diff. Evol. Random Search

α [1/day] 3.03176239× 10−2 3.87501× 10−2

ν [ind] 7.01702615× 103 4.40952× 103

t0 [day] 28.243323 10.3795
I0 [ind] 7.61079388× 10−2 18.3495
ξ0 3.27161825 3.08074

v(t0) a 1420 0
τ = 1/α [day] 32.9841 25.8064

β = α/ν b 4.32058× 10−6 8.78783× 10−6

error f [·] 6.7385429751× 10−3 4.41214× 10−2

Execution time 6.5 secs c 457.6 secs d

aThis value is added at the end.
b Units of [ind−1× day−1].
c In an iMac Pro (2017).
d In an iMac Pro (2017); 3.76× 103 in a MacBookAir 2014.

is limited to a finite size domain. Next, this random process
is iterated and the size is reduced by half for instance at each
step. After a number of iterations, the search converges to a
better set of parameters. The results using this random search
are presented in the Table II. As we can see the differential
evolution is almost 10 times more precise.

From the data we see that the fundamental parameters are
roughly α = 3.03 × 10−2 [1/day], therefore the typical time
scale is of the order of τ = 1/α = 33 [days], therefore, if the
parameters keeps their value, the epidemic will be reduced
by a factor 20 in almost 3 months. The transmission rate
per individual β = 4.32 × 10−6 [ ind−1 day−1]. Although
this number looks to be very small, it must be interpreted by
equation (5), as follows: during the infected period τ ∼ 1/α,
an infected individual may transmit the disease with a rate
β × τ ∼ 1/ν ≈ 1.4× 10−4 [ ind−1], that is, it is enough that
7000 of susceptible individuals propagate with probability 1
(in average) the disease. This can be seen via the reproduction
number ξ0 = 3.27 which is above the unit critical value.

Figure 1 (a) shows the analyzed data for visual comparison
of the solutions of the model by using the parameters from the
differential evolution method (continuous lines in all plots) and
from the random search (segmented lines in all plots). As said
previously, we made the estimation with a dataset of 106 days.

Figure 1 (b) shows the daily number of infected individual
In = vn−vn−1 from the data as a function of time. This data
is compared with the solution of the o.d.e. via equation (8)
for comparison.

The dynamic reproduction number ξ(t) = ξ0e
−βv(t) is a

good indicator of the current state of dissemination probability,
Fig. 1 (c) shows the dynamic reproduction number ξ(t) as a
function of time, today (t = 115 day), its value is close to the
unit, showing, if data is trustable, that the disease may decay
in the following month. The maximum daily infected people
is expected to occur at the day 121, that is roughly 4 months
after March 3rd or early July.

On June 16, the Ministry of Health (MINSAL) of Chile
announced that they would be adding more than 30000 new
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Fig. 1. (a) Plot of v(t) vs. t, with the time in [days]. The red dots correspond
to the data that we used to estimate the parameters. The blue continues line is
the result of the numerical calculation of the solutions of the o.d.e. using the
estimation of parameters via the differential evolution method (the parameters
given in Table II). The blue segmented line for a numerical calculation of the
solution of the o.d.e. with the parameters obtained via the random search
(the parameters are also given in Table II). The purple dots represents data
collected post the day t = 106, therefore not used in the estimations. (b)
Plot of the daily infected people I(t) vs t. This result shows that maximum
daily infected population is reached at a time t = 120.7 [day]. (c) Plot of the
dynamic reproduction number ξ(t). In all plots the continuous curves follow
after the differential evolution protocol and the segmented ones follow after
the random search.
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Fig. 2. Projection of v(t) with models fitted with different amount of data
points (days). The different fits correspond to the following time intervals:
(cyan) t ∈ [29, 45], (pink) t ∈ [29, 60], (green) t ∈ [29, 75], (orange) t ∈
[29, 90], and (blue) t ∈ [29, 106].

cases (on June 17). This measure was explained by the
authorities pointing out that the national counting system had
been subjected to stress, and had detected a significant number
of people, who had not been notified of their status, had
not been updated. Thus, there are people who took a PCR
test, came out positive and the count was not performed.
According to MINSAL, that number reached 31412 cases,
which were fundamentally in the Metropolitan Region and
are distributed throughout the entire pandemic period. The
operation of the counting system is fed by the notifications
that doctors make when diagnosing and then updated with the
information provided by the corresponding laboratory. In the
midst of the pandemic, there had been delays in these two
actions. For our analysis, these additional cases, appear as a
“jump” (discontinuity) from day 107 onwards as can be seen
in Fig. 1 (a). Both the model fitted using the random search
and the differential evolution approach were fitted with data
until day 106. It is interesting to notice, that when performing
projections with the models, we notice that the model fitted
via differential evolution predicted better the “miscount”.

In fact, the SIR model can only be used for short-range
predictive purposes, since the dynamic can vary significantly
depending of the amount of data that is used to fit the model.
Also, the growth speed of the new infected cases, changes
depending on the control actions, like quarantines, which can
not be captured rapidly by the SIR model. Fig. 2 shows
projections of v(t) using differential evolution with different
number of data points (days) to fit the model.

V. CONCLUSION

In this paper we have presented the problem of estimating
the parameters of a dynamical system with data using dif-
ferential evolution. As an application, we show this approach
considering an alternative SIR model, which can be formulated
in one differential equation, modeling the cumulative number
of infected cases as a function of time. The results showed
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that using differential evolution for parameter estimation,
outperformed significantly the results obtained by a previously
employed random search approach [4]. Moreover, fine-tuning
of the parameters of the differential evolution algorithm was
not conducted, instead we used the default values of the SciPy
[16] optimize library. Future research will consider the impact
on the results (if any) of fine-tuning the differential evolution
parameters such as popsize, CR and, F .

It is important to point out that methodological changes in
how the pandemic is managed during the actual event, changes
the patterns/dynamics of the data, therefore, predictions using
the SIR model analyzed in this paper, cannot be used for long-
range predictions, since these types of models do not consider
external factors that modify the dynamics of the data.
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S. Roché, N. Rodriguez, and J.-P. Nadal, “Epidemiological modelling
of the 2005 french riots: A spreading wave and the role of contagion,”
Scientific Reports, vol. 8, no. 107, 2018.

[4] P. Caroca Soto, C. Cartes, T. P. Davies, J. Olivari, S. Rica, and K. Vogt-
Geisse, “The anatomy of the 2019 chilean social unrest,” Chaos:
An Interdisciplinary Journal of Nonlinear Science, vol. 30, no. 7, p.
073129, 2020. [Online]. Available: https://doi.org/10.1063/5.0006307

[5] T. E. Simos, D. Akman, O. Akman, and E. Schaefer, “Parameter
estimation in ordinary differential equations modeling via particle swarm
optimization,” Journal of Applied Mathematics, vol. 2018, pp. Article
ID 9 160 793, 9 pages, 2018.

[6] O. Akman and E. Schaefer, “An evolutionary computing approach for
parameter estimation investigation of a model for cholera,” Journal of
Biological Dynamics, vol. 9, no. 1, pp. 147–158, 2015.

[7] M. Kotyrba, E. Volna, and P. Bujok, “Unconventional modelling of
complex system via cellular automata and differential evolution,” Swarm
and Evolutionary Computation, vol. 25, pp. 52 – 62, 2015.

[8] I. D. Falco, A. D. Cioppa, U. Scafuri, and E. Tarantino, “Coronavirus
covid-19 spreading in italy: optimizing an epidemiological model with
dynamic social distancing through differential evolution,” ArXiv, vol.
abs/2004.00553, 2020.

[9] D. Ashlock, E. Shiller, and C. Lee, “Comparison of evolved epidemic
networks with diffusion characters,” in 2011 IEEE Congress of Evolu-
tionary Computation (CEC), 2011, pp. 781–788.

[10] D. Ashlock and E. Shiller, “Evolving a social fabric to fit and epidemic
profile,” in 2012 IEEE Symposium on Computational Intelligence in
Bioinformatics and Computational Biology (CIBCB), 2012, pp. 363–
370.

[11] R. Storn and K. Price, “Differential evolution –a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[12] A. Källén, “Thresholds and travelling waves in an epidemic model for
rabies,” Nonlinear Analysis: Theory, Methods & Applications, vol. 8,
no. 8, pp. 851 – 856, 1984.

[13] O. Diekmann, J. Heesterbeek, and J. Metz, “On the definition and the
computation of the basic reproduction ratio R0 in models for infectious-
diseases in heterogeneous populations,” Journal of Mathematical Biol-
ogy, vol. 28, pp. 365–82, 1990.

[14] H. Berestycki, J.-M. Roquejoffre, and L. Rossi, “Propagation of epi-
demics along lines with fast diffusion,” ArXiv, vol. abs/2005.01859,
2020.

[15] Chilean Ministry of Science, Datos-COVID19, 2019-
2020, https://github.com/MinCiencia/Datos-COVID19. [On-
line]. Available: https://raw.githubusercontent.com/MinCiencia/Datos-
COVID19/master/output/producto3/CasosTotalesCumulativo.csv

[16] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng,
E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and S. . . Contributors, “SciPy
1.0: Fundamental Algorithms for Scientific Computing in Python,”
Nature Methods, vol. 17, pp. 261–272, 2020.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 18:32:22 UTC from IEEE Xplore.  Restrictions apply. 


