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Abstract—Synchronous solutions for Byzantine Fault Tolerance
(BFT) can tolerate up to minority faults. In this work, we present
Sync HotStuff, a surprisingly simple and intuitive synchronous
BFT solution that achieves consensus with a latency of 2∆ in
the steady state (where ∆ is a synchronous message delay upper
bound). In addition, Sync HotStuff ensures safety in a weaker
synchronous model in which the synchrony assumption does not
have to hold for all replicas all the time. Moreover, Sync HotStuff
has optimistic responsiveness, i.e., it advances at network speed
when less than one-quarter of the replicas are not responding.
Borrowing from practical partially synchronous BFT solutions,
Sync HotStuff has a two-phase leader-based structure, and has
been fully prototyped under the standard synchrony assumption.
When tolerating a single fault, Sync HotStuff achieves a through-
put of over 280 Kops/sec under typical network performance,
which is comparable to the best known partially synchronous
solution.

I. INTRODUCTION

Byzantine Fault Tolerance (BFT) protocols relying on a
synchrony assumption have the advantage of tolerating up to
one-half Byzantine faults [1], while asynchronous or partially
synchronous protocols tolerate only one-third [2]. On the flip
side, synchronous protocols are often considered impractical
for three main reasons. First, existing synchronous protocols
require a large number of rounds. Second, most synchronous
protocols require lock-step execution (i.e., replicas must start
and end each round at the same time), making them hard
to implement and further exacerbating the latency problem.
Third, an adversary may attack the network to violate the
synchrony assumption, causing the protocol to be unsafe.

In this work, we introduce Sync HotStuff, a synchronous
BFT state machine replication (SMR) protocol that addresses
the above concerns with a surprisingly simple and intuitive
solution (see Figure 1). In Sync HotStuff, in the standard
synchrony model, a leader broadcasts a proposal; the replicas
echo it; and each replica can commit after waiting for the
maximum round-trip delay unless it hears by that time an
equivocating proposal signed by the leader. (If the leader does
not propose, replicas time out and perform a leader change;
details on this step are given in the body of the paper.)

Simple yet powerful, Sync HotStuff achieves the following
desirable properties. First, as in most synchronous solutions,
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Sync HotStuff tolerates up to one-half Byzantine replicas.
Second, inspired by Hanke et al. [3], Sync HotStuff does
not require lock-step execution in the steady state. Third,
with minor modifications, Sync HotStuff can handle a weaker
and more realistic synchrony model suggested by Chan et
al. [4]. Finally, Sync HotStuff is prototyped and shown to offer
practical performance. It achieves a throughput comparable
to partially synchronous protocols and the commit latency is
roughly a single maximum round-trip delay. Given the above
properties, we believe Sync HotStuff can be the protocol
of choice for single-datacenter replicated services as well as
consortium blockchain applications.

We proceed to elaborate on the key techniques and key
results of Sync HotStuff, which removes performance barriers
on synchronous BFT under weaker assumptions.

Near-optimal latency. The first key contribution is the afore-
mentioned extremely simple steady state protocol (Figure 1).
We observe that waiting for a single maximum round-trip de-
lay suffices for replicas to commit. Furthermore, our protocol
does not have to be executed in a lock-step fashion, despite
relying on synchrony. In other words, other than the concurrent
waiting step, replicas move to the next step upon receiving
enough messages of the previous step, without waiting for
the conservative synchrony delay bound. This gives a latency
of 2∆ + O(δ) in steady state where ∆ denotes the known
bound assumed on maximal network transmission delay and δ
denotes the actual network delay, which can be much smaller
than ∆.

Assuming δ � ∆, the above latency is within a factor of
two of the optimal latency that can be obtained by synchronous
protocols: we give a minor adaptation to the proof of Dwork
et al. [2] to show that a ∆ latency is necessary for any
protocol tolerating more than one-third Byzantine faults. The
∆ latency lower bound should not be surprising because a
protocol that commits faster than ∆, in a way, does not take
advantage of synchrony and is thus subject to the one-third
partial synchrony barrier. In fact, we conjecture a stronger
latency lower bound of 2∆. Our intuition is that replicas can
be out-of-sync by ∆, so one ∆ is needed for lagging replicas to
catch up and another ∆ is needed for messages to be delivered
(the current lower bound proof only captures the latter ∆).
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Moreover, though O(δ) latency is impossible to guarantee
under more than one-third faults, it can be achieved opti-
mistically. The Thunderella protocol [5] achieves O(δ) latency
when the leader is honest and more than three-quarter of the
replicas are responding. We show that our protocol can be
adapted to incorporate this idea.

Practical throughput. The key technique to improve through-
put is to move the synchronous waiting steps off the critical
path. The only step in steady state that requires waiting for
a conservative O(∆) time is to check for a leader equivo-
cation before committing and it is made concurrent to main
logic. Thus, replicas start working on the next block without
waiting for the previous blocks to be committed. (The non-
blocking commit also reduces latency, since a block can
now be proposed before the previous block is committed.)
The other synchronous waiting steps are in the view-change
protocol, which occurs infrequently. Therefore, in the steady
state, replicas are always sending protocol messages and
utilizing the entire network capacity, thus behaving exactly
like partially synchronous protocols. Our experiments validate
that Sync HotStuff achieves throughput comparable to partially
synchronous protocols. In fact, since a synchronous solution
tolerates more corruption (half vs. one-third), it requires fewer
replicas to be deployed to tolerate a given number of faults. In
our experiments, we observe that in some cases, Sync HotStuff
can even slightly outperform partially synchronous solutions
in throughput.

Safety despite some sluggish honest replicas. Synchronous
protocols proven secure under the standard synchrony as-
sumption fail to provide safety if a single message between
honest replicas is delayed. Recently, Guo et al. [6] proposed a
“weak synchrony” model that allows the message delay bound
∆, at any point in time, to be violated for a set of honest
replicas. We call these replicas sluggish. We call the remaining
honest replicas prompt and messages of prompt replicas can
reach each other within ∆ time. To reflect reality and be
more conservative, the model allows sluggish replicas to be
arbitrarily mobile, i.e., an adversary decides which replicas are
sluggish at any time. Messages sent by or sent to a sluggish
replica may take an arbitrarily long time until the replica is
prompt again. Since “weak synchrony” has been used in the
literature to describe other models (e.g., [7], [8], [9]), we will
refer to this model as the mobile sluggish model in this paper.
We call the synchrony model without mobile sluggish faults
standard synchrony.

With standard synchrony, if a replica sends a message to
another replica, it is guaranteed to arrive within ∆ time. Our
protocol and proofs crucially use this fact to achieve safety.
With a mobile sluggish fault model, on the other hand, the
delivery is not guaranteed if the sender or the receiver is
sluggish. In that sense, the guarantee for a single replica
sending or receiving a message is similar to that of partially
synchronous network model. The central observation enabling
us to tackle mobile sluggish faults is the following: assuming a
minority of the replicas are sluggish or Byzantine at any point

in time, if a replica receives a message from a majority of
replicas, at least one of the senders must be prompt and honest.
We use this observation atop Sync-HotStuff-under-standard-
synchrony to obtain a protocol in the mobile sluggish model.
The resulting protocol ensure safety as long as the number of
sluggish plus Byzantine faults combined is less than one-half;
in other words, at any time, a majority of replicas must be
honest and prompt, which has been shown to be a necessary
condition [6] in the mobile sluggish model.

Organization. In the remainder of this section, we define state
machine replication. In Section II, we describe Sync HotStuff
in the standard synchrony model without sluggish faults. Sec-
tion III augments this protocol to tolerate sluggish faults. Sec-
tion IV adds an optimistically responsive mode to Sync Hot-
Stuff with sluggish faults. Section V presents the results based
on our implementation and evaluation. Section VI compares
with closely related works.

A. Definitions and Model

State Machine Replication (SMR). A state machine repli-
cation protocol is used for building a fault-tolerant service
to process client requests. The service consists of n replicas,
up to f of which may be faulty. The service commits client
requests into a linearizable log and produces a consistent view
of the log akin to a single non-faulty server. More formally, a
state machine replication service provides the following two
guarantees:

(safety) non-faulty replicas do not commit different val-
ues at the same log position,
(liveness) each client request is eventually committed by
all non-faulty replicas.

We assume that the network consists of pairwise, authenti-
cated communication channels between replicas. We assume
digital signatures and a public-key infrastructure (PKI), and
use 〈x〉p to denote a message x signed by replica p. (It is
sufficient to sign the hash digest of a message for efficiency.)
Wherever it is clear from context, we omit the subscript p. We
also assume that there is no drift between the clocks used by
the replicas, i.e., the clocks run at the same rate. Our protocol
is secure under a sluggish mobile adversary. However, for
ease of exposition we first explain the protocol in the standard
synchrony model. We describe these models in the respective
sections.

II. SYNC HOTSTUFF UNDER STANDARD SYNCHRONY

We first present Sync HotStuff in the standard synchrony
model (without mobile sluggish faults). Here, the synchrony
assumption states that a message sent at time t by any
replica arrives at another replica by time t + ∆ where ∆ is
a known maximum network delay. We use δ to denote the
actual message delay in the network. We show a protocol
that tolerates minority Byzantine replicas, i.e., n = 2f + 1.
We reiterate that although the protocol assumes synchrony,
replicas do not progress in lock-steps.
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Sync HotStuff takes the Paxos/PBFT’s approach of having
a stable leader in a steady state. Each period of steady state
is called a view, numbered by integers. The leader of view v
can simply be replica (v mod n), i.e., leaders are scheduled
in a round-robin order. The leader is expected to keep making
progress by committing client requests at increasing heights.
If replicas detect Byzantine behavior by the leader or lack of
progress in a view, they blame the leader and engage in a view-
change protocol to replace the leader. Figures 1 and 2 describe
the steady state and view-change protocols, respectively.

Blocks and block format. As commonly done in SMR, client
requests are batched into blocks. The protocol forms a chain
of blocks. We refer to a block’s position in the chain as its
height. A block Bk at height k has the following format

Bk := (bk, H(Bk−1))

where bk denotes a proposed value at height k and H(Bk−1)
is a hash digest of the predecessor block. The first block B1 =
(b1,⊥) has no predecessor. Every subsequent block Bk must
specify a predecessor block Bk−1 by including a hash of it.
A block is valid if (i) its predecessor is valid or ⊥, and (ii) its
proposed value meets application-level validity conditions and
is consistent with its chain of ancestors (e.g., does not double
spend a transaction in one of its ancestor blocks).

Block extension and equivocation. If a block Bk is an
ancestor of another B` (` ≥ k), we say B` extends Bk. Note
that a block extends itself. We say two blocks B` and B′`′
equivocate each other if they do not extend one another.

Certified and locked blocks. A key ingredient of BFT
solutions is a quorum certificate, a set of signed votes on
a block from a quorum of replicas in the same view. In
Sync HotStuff, a quorum consists of f + 1 replicas (out of
2f + 1). If a block Bk has a quorum certificate from view v,
we say it is a certified block in view v, and write it as Cv(Bk).

Certified blocks are ranked first by views and then by
heights, i.e., (i) blocks certified in a higher view has higher
rank, and (ii) for blocks certified in the same view, a higher
height gives a higher rank. During the protocol execution, each
replica keeps track of all certified blocks and keeps updating
the highest certified block to its knowledge.

In Sync HotStuff, replicas will lock on certified blocks at the
beginning of each view. Looking ahead, the notion of locked
blocks will be used to guard the safety of a commit.

Block chaining. Blocks across heights are chained by hashes
(cf. block format) and certificates (cf. Figure 1). This idea
originated from the Bitcoin white paper [10] and it was
incorporated into BFT by Casper [11] and HotStuff [12]. It
greatly simplifies BFT protocols since now the voting step on
a block also serves as a voting step for all its ancestor blocks
that have not been committed. Hence, crucially, committing a
block commits all its ancestors.

A. Steady State Protocol
The steady state protocol runs in iterations. We explain each

step in a iteration.

Propose. The leader L proposes a block Bk = (bk, H(Bk−1))
by broadcasting 〈propose, Bk, v, Cv(Bk−1)〉L. The proposal
contains a view-v certificate for its predecessor block Bk−1.
The first view-v certificate will be obtained in the view-change
protocol in Section II-B. If any replica receives propose (or
new-view , cf. Section II-B) messages containing equivocating
blocks, we say the replica detects leader equivocation.

Vote. Each replica r, upon receiving the above proposal for
Bk, broadcasts a vote 〈vote, Bk, v〉r for Bk (Step 2), if it has
not observed leader equivocation in the view. Note that r may
first hear a proposal from a non-leader replica r′ because r′

forwards the proposal when voting. The voting step can thus
be considered a re-proposal step.

Commit. Once replica r votes for a proposal for Bk, it starts
a timer denoted commit-timerv,k (Step 3). Bk is committed
if r is still in view-v after 2∆ time (i.e., if r does not detect
leader equivocation or a view change within 2∆ time). We note
again that blocks across heights form a chain, and committing
a block commits all its ancestors.

Note that the commit timers do not affect the critical path
of progress. A replica votes and starts timers for subsequent
heights without waiting for the previous height to be com-
mitted. In fact, a replica can potentially have many previous
heights whose commit timers are still running.

Why does the 2∆ time ensure safety? Consider an honest
replica r that votes for a block Bk at time t, does not observe
leader equivocation or a view change, and hence commits Bk

at time t + 2∆. We provide some intuition why this commit
is safe by showing that Bk will be the only certified block at
height k in the view. For that, we need to show that (i) Bk will
be certified, and (ii) no equivocating block can be certified.

Replica r votes at time t. Its vote with the forwarded
proposal reaches all honest replicas before t + ∆. After that,
honest replicas would not vote for an equivocating block.
Thus, if any honest replica votes for an equivocating block,
it must do so before t + ∆; but then r would have detected
leader equivocation before t + 2∆. This contradicts with the
fact that r commits Bk. Hence, (ii) holds. The above also
means all honest replicas will vote for Bk by time t + ∆,
and a certificate for Bk will form at all honest replicas before
t+ 2∆. Hence, (i) holds. Note that (i) holds even if the leader
did not propose Bk to all replicas.

Note that a commit by some honest replica at height k does
not imply a commit by all honest replicas at that height. This is
because a Byzantine leader can send equivocating proposals to
a subset of honest replicas before their commit timers expires,
causing them to not commit. Thus, to complete the safety
proof, we also need to show that no honest replica will vote for
equivocating blocks in subsequent views. This will be ensured
by the view-change protocol in the next subsection.

B. View-change Protocol

The view-change protocol maintains safety across views and
ensures liveness. The leader can prevent progress through two
mechanisms – stalling and equivocating. The two conditions
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Let v be the current view number and replica L be the leader of the current view. While in view v, a replica r runs the
following protocol in the steady state.

1) Propose. If replica r is the leader L, upon receiving Cv(Bk−1), broadcast 〈propose, Bk, v, Cv(Bk−1)〉L where Bk

extends Bk−1.

2) Vote. Upon receiving a proposal 〈propose, Bk, v, Cv(Bk−1)〉L (not necessarily from L) where Bk extends Bk−1, if no
leader equivocation is detected, forward the proposal to all other replicas, broadcast a vote in the form of 〈vote, Bk, v〉r,
set commit-timerv,k to 2∆ and start counting down.

3) (Non-blocking) Commit. When commit-timerv,k reaches 0, commit Bk and all its ancestors.

Fig. 1: The steady state protocol under standard synchrony.

Let L and L′ be the leaders of views v and v + 1, respectively. Each replica r runs the following steps.
i Blame and quit view. If fewer than p proposals trigger r’s votes in (2p+ 4)∆ time in view v, broadcast 〈blame, v〉r.

Upon gathering f+1 〈blame, v〉 messages, broadcast them, and quit view v. If leader equivocation is detected, broadcast
the two equivocating messages signed by L, and quit view.

ii Status. Wait for ∆ time. Pick a highest certified block Cv′(Bk′), lock on Cv′(Bk′), send Cv′(Bk′) to the new leader L′,
and enter view v + 1.

iii New-view. The new leader L′ waits for 2∆ time after entering view v+ 1 and broadcasts 〈new-view, v+ 1, Cv′(Bk′)〉L′
where Cv′(Bk′) is a highest certified block known to L′.

iv First vote. Upon receiving 〈new-view, v + 1, Cv′(Bk′)〉L′ , if Cv′(Bk′) has a rank equal to or higher than r’s locked
block, forward 〈new-view, v + 1, Cv′(Bk′)〉L′ to all other replicas and broadcast 〈vote, Bk′ , v + 1〉r.

Fig. 2: The view-change protocol under standard synchrony.

of quitting a view, based on no progress and equivocation,
defend against these two attacks, respectively (Step i). A
leader is expected to propose a block every 2∆ time: one
∆ for its proposal to reach other replicas and one ∆ for other
replicas’ votes to arrive. This forces a Byzantine leader to
propose a block every 2∆ time to avoid being overthrown. If a
leader equivocates, i.e., sends propose or new-view messages
that contain equivocating blocks, the equivocating messages
serve as a proof of Byzantine behavior and, once received,
make an honest replica quit the view. Note that equivocating
messages may be received directly from L or forwarded by
other replicas.

Once a replica quits view v, it stops voting in that view and
aborts all commit-timers of that view. The replica then waits
for ∆ time, picks a highest certified block, locks on it, reports
the lock to L′, and enters the new view (Step ii).

The ∆ wait before locking ensures that every honest replica
learns all blocks committed by all honest replicas in previous
views before sending its lock status to the new leader. This
maintains the safety of all committed blocks by all honest
replicas up until this view (formalized in Lemma 1).

Once in the new view, the new leader L′ waits for 2∆
time to collect locked blocks from all honest replicas and
then broadcasts a new-view message containing a highest
certified block known to it (Step iii). When a replica receives
a new-view message, if the certified block it contains ranks
greater than or equal to its own locked block, it forwards
the new-view message and broadcasts a vote for the block

(Step iv).

C. Safety and Liveness

We say a block Bk is committed directly in view v if it
is committed as a result of its own commit-timerv,k expiring.
We say a block Bk is committed indirectly if it is a result of
directly committing a block B` (` > k) that extends Bk.

Lemma 1. If an honest replica directly commits B` in view
v, then (i) no equivocating block is certified in view v, and
(ii) every honest replica locks on a certified block that ranks
equal to or higher than Cv(B`) before entering view v + 1.

Proof. Suppose an honest replica r directly commits B` in
view v at time t. Then, at time t − 2∆, replica r votes for
and forwards a proposal for B`. All honest replicas receive
the proposal for B` by time t−∆.

For part (i), observe that after time t−∆, no honest replica
will vote for an equivocating block in the same view. If any
other honest replica had voted for an equivocating block B′`′
before t−∆, replica r would have received the equivocating
propose or new-view message for B′`′ before time t, which
contradicts the hypothesis of r committing B` directly in view
v at time t. Therefore, an equivocating block will not get any
honest vote in view v and will not be certified in view v.

For part (ii), let us understand the situation of honest replicas
at time t − ∆. First, no honest replica has quit view v by
time t − ∆ because otherwise r would have quit view v by
time t and would not have committed B` in view v at time
t. Second, since r entered view v before time t − 2∆, every
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honest replica has entered view v before time t − ∆. Thus,
every honest replica will vote for B` by time t − ∆ and all
honest replicas receive Cv(B`) by time t. Due to the ∆ wait
before entering the next view, every honest replica enters view
v + 1 after time t. Hence, before entering view v + 1, they
will lock on Cv(B`) or higher.

Lemma 2 (Unique Extensibility). If an honest replica directly
commits B` in view v, then any certified block that ranks equal
to or higher than Cv(B`) must extend B`.

Proof. Let S be the set of certified blocks that rank equal
to or higher than Cv(B`) but do not extend B`. Suppose for
contradiction that S 6= ∅. Let Cv∗(Bk∗) be a lowest ranked
block in S. It is easy to show that v∗ > v; otherwise, we have
v∗ = v, k∗ ≥ `, and it contradicts Lemma 1(i). Also note that
as Bk∗ does not extend B`, its predecessor Bk∗−1 does not
extend B`, either.

For Cv∗(Bk∗) to exist, some honest node must vote for Bk∗

in view v∗ upon receiving 〈new-view, v∗, Cv′(Bk∗)〉 where
v′ < v∗ or 〈propose, Bk∗ , v

∗, Cv∗(Bk∗−1)〉. If it is the former,
Cv′(Bk∗) must rank higher than or equal to Cv(B`), because
due to Lemma 1(ii) and the fact that a replica never decreases
the rank of its lock, every honest replica locks on Cv(B`) or
higher at the beginning of view v∗. However, this contradicts
the definition of Cv∗(Bk∗), because Cv′(Bk∗) now belongs
to S and ranks lower than Cv∗(Bk∗). A similar contradiction
exists for the latter case: Cv(Bk∗−1) belongs to S and ranks
lower than Cv∗(Bk∗).

Theorem 3 (Safety). No two honest replicas commit different
blocks at the same height.

Proof. Suppose for contradiction that two distinct blocks Bk

and B′k are committed at height k. Suppose Bk is committed
as a result of B` being directly committed in view v and B′k is
committed as a result of B′`′ being directly committed in view
v′. This implies B` extends Bk and B′`′ extends B′k. Without
loss of generality, assume v ≤ v′; if v = v′, further assume
` ≤ `′. By Lemma 2, B′`′ extends B`. Thus, B′k = Bk.

Lemma 4 (Liveness). All honest replicas keep committing new
blocks.

Proof. Due to the blame condition, a Byzantine leader needs
to propose at least p proposals that trigger honest replica votes
within (2p+ 4)∆ time to avoid a view-change (for all p > 0).
All honest replicas will soon commit these proposed blocks
unless a view-change occurs. Due to the round-robin leader
order, eventually there will be an honest leader.

Next, we will show that once the leader is honest, a view-
change will not occur and all honest replicas keep committing
new blocks. The leader may enter the view ∆ later than others
and need to wait for 2∆ time before proposing. Another ∆
is needed for others to receive the proposal. The 2∆ wait
ensures an honest leader receives locked blocks of all honest
replicas up until the beginning of that view. Hence, the block
it proposes will extend the locked blocks of all honest replicas
and receive votes from all honest replicas. After that, the

honest leader is able to propose a block every 2∆ time: one
∆ for its proposed block to reach all honest replicas and
another ∆ for all honest replicas’ votes to arrive. Thus, an
honest leader is able to make every other honest replica vote
for p proposals in (2p + 4)∆ time. In addition, an honest
leader does not equivocate. So no honest replica will blame
the honest leader and all honest replicas keep committing new
blocks.

D. Efficiency Analysis

Throughput. In steady state (Figure 1), the key step that uses
the synchrony bound ∆ is the commit step. But as we have
mentioned, the commit step is not on the critical path (non-
blocking). Thus, the choice of ∆, no matter how conservative,
does not affect the protocol’s throughput in steady state. Thus,
Sync HotStuff should have similar throughput as partially
synchronous protocols. Our experiments in Section V confirm
this.

Latency. From an honest leader’s perspective, each block in-
curs a latency of 2∆+δ after being proposed. (Step 1 proceeds
at the actual network delay δ.) But for SMR, it is more
customary to calculate latency from a client’s perspective, that
is, the time difference between when a client sends a request
and when it receives a response. If a client’s request arrives
between two leader proposals, it incurs an additional delay
before being getting proposed. From a client’s perspective, it
takes δ to send its request to the replicas; on average, this
request will arrive half way between two leader proposals,
which are 2δ time apart, so another δ delay on average; it
takes an additional δ time for replicas to reply to the client.
So the average client latency of Sync HotStuff is 2∆ + 4δ.
Our experiments in Section V confirm this.

For comparison, the best prior synchronous protocol in
terms of latency is Hanke et al. [3]. Its average latency is
8∆ + 9δ from a leader’s perspective [13], and 9∆ + 11.5δ
from a client’s perspective, following a similar analysis.

E. Bound on Responsiveness

Sync HotStuff commits with a 2∆ latency in the steady state
when f < n/2. For completeness, in this section, we show a
lower bound on the latency when f > n/3. The lower bound
and the proof closely follow Dwork et al. [2]. For clarity,
we present the bound in the Byzantine broadcast formulation.
Recall that in Byzantine broadcast, a designated sender tries
to broadcast a value to n parties. A solution needs to satisfy
three requirements:

(termination) all honest parties eventually commit,
(agreement) all honest parties commit on the same value,
and
(validity) if the sender is honest, then all honest parties
commit on the value it broadcasts.

Theorem 5. There exists no Byzantine broadcast protocol that
simultaneously satisfy the following:
• termination, agreement and validity as defined above;
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• tolerates f ≥ n/3 Byzantine faults;
• terminates in less than ∆ time if the designated sender

is honest.

Proof. Suppose such a protocol exists. Divide parties into
three groups P , Q and R, each of size at most f . Consider
the following three scenarios. In Scenario A, parties in Q are
Byzantine and remain silent and an honest designated sender
sends 0. In this scenario, parties in P and R commit 0 in less
than ∆ time. In Scenario B, parties in P are Byzantine and
remain silent and an honest designated sender sends 1. In this
scenario, parties in Q and R commit 1 in less than ∆ time.
In Scenario C, the designated sender is Byzantine and sends 0
to P and 1 to Q; parties in R are Byzantine and they behave
like in Scenario A to P , and behave like in scenario B to Q.
Messages from P take ∆ to reach Q and messages from Q
take ∆ to reach P . Before time ∆, P receive no messages from
Q and Q receive no messages from P , and thus the scenario is
indistinguishable from Scenario A to P and indistinguishable
from Scenario B to Q. Thus, P commits 0 and Q commits 1
in less than ∆ time, violating agreement.

III. SYNC HOTSTUFF WITH MOBILE SLUGGISH FAULTS

The standard synchrony model used in the previous section
requires that every message sent by an honest replica arrives
at every other honest replica within ∆ time. In practice, such
an assumption may not hold all the time due to potential
unforeseen aberrations in the network at either the sender or
the receiver, causing some messages to be delayed. Under
such aberrations, a protocol proved secure under the stan-
dard synchrony assumption may lose safety. For our protocol
specifically, if a replica that voted for an equivocating block
runs into a network glitch, then another honest replica may not
receive it in time and may incorrectly commit another block.
A potential way to “fix” this is to account for the sender (or
receiver) of the delayed message as Byzantine and thus tolerate
fewer actual Byzantine faults. Unfortunately, over the course
of a long execution, every replica is bound to observe such an
aberration and this “fix” will result in a dishonest majority of
replicas, thus breaking safety eventually.

A. The Mobile Sluggish Model

Chan et al. [4] consider a weaker model that allows some
replicas to be sluggish, i.e., allows delays for messages
sent/received by sluggish replicas in the network. On the
other hand, messages sent by prompt replicas will respect the
synchrony bound. More specifically, if a replica r1 is prompt
at time t1, then any message sent by r1 at time ≤ t1 will arrive
at a replica r2 prompt at time t2 if t2 ≥ t1 +∆. Moreover, the
set of sluggish replicas can arbitrarily change at every instant
of time. Hence, we call this model the mobile sluggish fault
model. We denote the number of sluggish replicas by d, the
number of Byzantine replicas by b and the total number of
faults by f . Thus, f = d+ b.

We note that the mobile sluggish model expects that a
message sent by a sluggish replica would respect the syn-
chrony bound as soon as it becomes prompt. In practice,

this model captures temporary loss in network connectivity
causing message delays. The replica can resend messages or
download buffered messages as soon as network connectivity
is restored. However, it is not a good model for capturing a
replica going offline for a while since this model would require
the replica to either buffer a huge amount of messages to be
resent or to resend each message many times, both of which
are impractical.

Guo et al. [6] show that no protocol can tolerate a total
number of faults (sluggish plus Byzantine replicas) greater
than n/2. The intuition is that a majority set consisting of
Byzantine and sluggish replicas might reach a commit decision
without interacting with the rest of the world and might cause
conflicting commits. Again, we assume n = 2f + 1. Thus,
we assume f + 1 replicas are honest and prompt at any time.
Moreover, our protocol provides liveness when f + 1 honest
replicas are prompt for a “sufficiently long” period of time,
i.e., there can be sluggish replicas but they are not mobile.
The duration is directly related to the time required to commit
a block in the protocol.

B. Protocol

In the synchronous protocol described in Section II, the 2∆
period after a vote ensures two things: (i) every honest replica
receives Cv(Bk) within before entering the next view, and (ii)
no honest replica votes for an equivocating block.

If this replica can be sluggish, unfortunately, neither of the
above arguments holds. Other replicas may not receive the
proposal it forwards and hence certificates may not form; and
even if the leader equivocates, this sluggish replica may not
know about it in time.

The following modifications are used to ensure the above
two properties in the presence of mobile sluggish faults. To
ensure (i), we require a replica to start its timer after receiving
Cv(Bk) (contained in the next proposal) from f + 1 replicas.
One of those replicas must be honest and prompt when the
timer was started, so all prompt replicas receive Cv(Bk) in
time. For (ii), we require a replica to commit only after hearing
from f + 1 replicas that no equivocation happened in a 2∆
period. This is safe because an equivocation could not have
missed all of them. We call the former step a pre-commit and
the latter step a commit.

Interestingly, despite a weaker model than standard syn-
chrony, based on the intuition presented above, the protocol
is only marginally different from the one in Section II. For
clarity we present the entire steady state protocol and gray
out the repetition in Figure 3. The view-change protocol need
not change.

C. Safety and Liveness

The proof in the mobile sluggish model has the same
structure as the standard synchrony model. Lemma 6 below
is almost identical to Lemma 1 except that the claim is made
for f + 1 honest replicas instead of all honest replicas, which
is as expected because the remaining d honest replicas can
be sluggish. We can prove unique extensibility and safety
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Let v be the current view number and replica L be the leader of the current view. While in view v, a replica r runs the
following protocol in the steady state.

1) Propose. If replica r is the leader L, upon receiving Cv(Bk−1), broadcast 〈propose, Bk, v, Cv(Bk−1)〉L where Bk extends
Bk−1.

2) Vote. Upon receiving a proposal 〈propose, Bk, v, Cv(Bk−1)〉L (not necessarily from L) where Bk extends Bk−1, if no
leader equivocation is detected, forward the proposal to all other replicas, broadcast a vote in the form of 〈vote, Bk, v〉r.

3) (Non-blocking) Pre-commit. On receiving 〈propose, Bk+1, v, Cv(Bk)〉L from f + 1 replicas, set pre-commit-timerv,k
to 2∆ and start counting down. When pre-commit-timerv,k reaches 0, pre-commit Bk and broadcast 〈commit, Bk, v〉r.

4) (Non-blocking) Commit. On receiving 〈commit, Bk, v〉 from f + 1 replicas, commit Bk and all its ancestors.

Fig. 3: The steady state protocol with mobile sluggish faults.

identically as Lemma 2 and Theorem 3 by invoking Lemma 6
in place of Lemma 1.

As before, we say a block Bk is committed directly if it is
committed due to f + 1 pre-commits. We say a block Bk is
committed indirectly if it is a result of directly committing a
block extending Bk.

Lemma 6 (Lemma 1 extended to mobile sluggish). If an
honest replica directly commits B` in view v, then (i) no
equivocating block is certified in view v, and (ii) f + 1 honest
replicas lock on a certified block that ranks equal to or higher
than Cv(B`) before entering view v + 1.

Proof. If an honest replica directly commits B` in view v,
then d + 1 honest replicas pre-commit B` in view v. Denote
the set of these d+1 replicas by R. Let the earliest pre-commit
among R be performed by replica r1 at time t. At time t−2∆,
replica r1 must have received view-v proposals for B`+1 from
f + 1 distinct replicas. One of those replicas, say replica r2,
is honest and prompt at time t−2∆. Denote the set of honest
and prompt replicas at time t − ∆ by R′. Every replica R′

receives 〈propose, B`+1, v, Cv(B`)〉L from r2 by time t−∆.
We will prove that the set R′ is the required set that does not
vote for equivocating blocks in view v and locks on a certified
block that ranks equal to or higher than Cv(Bl) before entering
view v + 1.

For part (i), observe that after time t − ∆, replicas in
R′, having seen a proposal for B`+1, will not vote for a
block that equivocates B`. If any replica in R′ had voted
for an equivocating block before t − ∆, its broadcast of
the equivocating propose or new-view message will reach all
honest replicas that are prompt at time t by time t. At least
one replica in R would be prompt at time t. This replica
would have detected leader equivocation by time t and would
not have pre-committed B`, a contradiction. Therefore, an
equivocating block will not get any vote from R′ in view v
and will not be certified in view v.

For part (ii), observe that no replica in R′ has quit view by
time t − ∆, because otherwise some replica in R would not
have pre-committed following the same argument as above.
Therefore, every replica in R′ locks on Cv(B`) or higher before
quitting view v, which is before entering view v + 1.

Remark. Note that the proof of the above lemma shows that
all replicas in R′ receive Cv(Bk) before quitting view v. Thus,
the ∆ wait during view-change is not needed for the protocol
with sluggish faults.

Liveness. In the mobile sluggish model, liveness is guaranteed
only during periods in which f + 1 honest replicas including
the leader stay prompt. In that case, the same arguments in
Lemma 4 hold. We do not repeat the proof.

D. Efficiency

In the mobile sluggish model, each pre-commit timer
starts 3δ later. The commit messages add another round of
communication and δ latency. So the total latency becomes
2∆ + 4δ + 4δ = 2∆ + 8δ from the client’s perspective.

IV. SYNC HOTSTUFF WITH OPTIMISTIC RESPONSIVENESS

In this section, we incorporate the Thunderella [5] opti-
mistic responsive mode into Sync HotStuff. In Section II, a
certificate/quorum required only f + 1 votes. Thus, a vote
from a single honest replica can result in a certificate if all f
Byzantine replicas vote on the same block. Therefore, before
committing a block, a replica needs to wait long enough to
hear all honest replicas’ votes and make sure none of them
voted for an equivocating block. The commit latency thus
inherently depends on the maximum network delay ∆. In
contrast, partially synchronous protocols rule out the existence
of a conflicting certificate with larger quorums. For instance,
PBFT requires > 2n/3 votes (in two phases) and tolerates
f < n/3 Byzantine replicas. A simple quorum intersection
argument shows that two equivocating blocks cannot both
receive > 2n/3 votes. Thus, partially synchronous protocols
commit as soon as these quorums of votes are obtained, so
the latency does not depend on ∆.

Pass and Shi [5] use the term responsive to capture the
above latency distinction. A protocol is said to be responsive
if the latency only depends on the actual network δ but not
the maximum network delay ∆. A protocol is said to be
optimistically responsive if it achieves responsiveness when
some additional constraints are met.

Since Sync HotStuff aims to tolerate up to minority corrup-
tion, similar to Thunderella [5], to achieve responsiveness the
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Let v be the current view number and replica L be the leader of the current view. While in view v, a replica r runs the
following protocol in the steady state. All certificates created in view v require > 3n/4 votes.

1) Propose. If replica r is the leader L, upon receiving Cv(Bk−1), broadcast 〈propose, Bk, v, Cv(Bk−1)〉L where Bk extends
Bk−1.

2) Vote. Upon receiving 〈propose, Bk, v, Cv(Bk−1)〉L (not necessarily from L) where Bk extends Bk−1, if no leader
equivocation is detected, forward the proposal to all other replicas, and broadcast a vote in the form of 〈vote, Bk, v〉r.

3) Pre-commit. On receiving 〈propose, Bk+1, v, Cv(Bk)〉L from f + 1 replicas, pre-commit Bk and broadcast
〈commit, Bk, v〉r right away.

4) Commit. On receiving 〈commit, Bk, v〉 from f + 1 replicas, commit Bk and all its ancestors.

Fig. 4: The steady state protocol in a responsive view.

Let v be the current view and L be the current leader. Let L2 be the next leader and v2 be the synchronous view of L2.
Note that v2 = v + 2 if v is a synchronous view, and v2 = v + 1 is v is a responsiveness view.

i Blame. If fewer than p proposals trigger r’s votes in (2p + 4)∆ time in view v, broadcast 〈blame, v2 − 1〉r. Upon
gathering f + 1 〈blame, v2 − 1〉 messages, broadcast them along with 〈blame2, v2 − 1〉r, and quit view v. If leader
equivocation is detected, broadcast 〈blame2, v2 − 1〉r and the two equivocating messages, and quit view v.

ii Status. Upon gathering f + 1 〈blame2, v2 − 1〉 messages, wait for 2∆ time. Pick a highest certified block Cv′(Bk′),
lock on Cv′(Bk′), send Cv′(Bk′) to the new leader L2, and enter view v2.

iii New-view. The new leader L2 waits for 2∆ time after entering view v2 and broadcasts 〈new-view, v2, Cv′(Bk′)〉L2
where

Cv′(Bk′) is a highest certified block known to L2.

iv First vote. Upon receiving 〈new-view, v2, Cv′(Bk′)〉L2 , if Cv′(Bk′) has a rank equal to or higher than r’s locked block,
forward 〈new-view, v2, Cv′(Bk′)〉L2

to all other replicas, broadcast 〈vote, Bk′ , v2〉r.

Fig. 5: The view-change protocol to support responsive reviews.

quorum size should be > 3n/4. This will give Sync HotStuff a
responsive mode when messages from > 3n/4 replicas reach
within time δ. This happens if the actual number of faults is
less than n/4. Put differently, if more than n/4 (but fewer
than n/2) replicas are faulty, they can prevent responsiveness
but they cannot cause a safety violation. In that case, we fall
back to the synchronous mode in Section III.

Protocol. The new protocol will give two views to each leader.
Each odd view is a synchronous view and runs the protocol
in Figure 3. Each even view is a responsive view and runs
the protocol in Figure 4. As mentioned, a certificate from a
responsive view requires a quorum of > 3n/4. The only other
difference from Figure 3 is that a replica pre-commits Bk−1
immediately on receiving f + 1 proposals for Bk, rather than
waiting for a 2∆ period.

To switch from a synchronous view to a responsive view,
the leader simply broadcasts a signed switch message. Upon
receiving the switch message, a replica forwards it and enters
the responsive view. The leader sends a new-view message to
obtain the first certificate in the view as before.

Whenever a view fails due to an equivocating leader or lack
of progress, replicas engage in a view-change protocol to move
to the next leader’s synchronous view. Guarding the safety of
responsive commits across view changes requires some care
as we explain below. In the protocol without responsiveness,

a commit implied that a certificate was broadcast by some
prompt replica 2∆ time earlier. This ensured that a certificate
was obtained at a majority of honest replicas before they
quit the view. Since there is no 2∆ time in the responsive
mode, the above does not hold. The solution is to insert a
2∆ wait between quitting the old view and entering the new
view (Step ii in Figure 5). The delay is introduced at a replica
after learning that a majority of replicas have quit the view,
giving sufficient time for the certificates to be received at a
majority of prompt replicas before they enter the next view.
These changes will be utilized in the proof of Lemma 7.

A. Safety of Responsive Views
Lemma 7 (Lemma 6 extended to responsiveness views). If
an honest replica directly commits B` in view v, then (i) no
equivocating block is certified in view v, and (ii) f + 1 honest
replicas lock on a certified block that ranks equal to or higher
than Cv(B`) before entering view v + 1.

Proof. If view v is a synchronous view, then the proof of
Lemma 6 still applies. It remains to prove the lemma for
responsive views.

Part (i) directly follows from quorum intersection. Since
certificates in a responsive view requires > 3n/4 votes, for
there to be equivocating certified blocks, at least 3n/4+3n/4−
n = n/2 > f replicas need to vote for equivocating blocks,
which cannot happen.
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Part (ii) mostly follows from the proof of Lemma 6. Suppose
an honest replica directly commits B` in view v. Then a set R
of d+1 honest replicas have pre-committed B`. Let the earliest
pre-commit among them be performed at time t. This implies
that more than f + 1 replicas broadcast a proposal containing
Cv(B`) before time t. At least one of them is honest and
prompt at time t. Denote the set of honest and prompt replicas
at time t+ ∆ by R′. R′ receives Cv(B`) by time t+ ∆. We
will now prove that the set R′ satisfies part (ii). It remains
to show that no replica in R′ has entered view v2 = v + 1.
Suppose this is not true, i.e., one of the replicas in R′, say
replica r′ has entered view v2 before time t+ ∆. In that case,
due to the 2∆ wait during view-change, r′ has received f + 1
blame2 messages before time t−∆. Thus, f+1 replicas have
sent blame2 and quit view v before time t−∆. At least one
of them is honest and prompt at time t − ∆. At least one
replica in the pre-committing set R would be prompt at time
t and would have received this blame2 message by time t. It
would have prevented the pre-commit of B` at that replica, a
contradiction.

The rest of the safety proof remains unchanged.

V. EVALUATION

In this section, we first evaluate the throughput and latency
of Sync HotStuff under different parameters and conditions
(batch size, payload, and client command load). We then eval-
uate the impact of ∆ on throughput and latency and show it is
insignificant as expected. Lastly, we compare Sync HotStuff
with HotStuff [12] and Dfinity [3].

A. Implementation Details and Methodology

We implement the Sync HotStuff protocol under the stan-
dard synchrony model. Our implementation is an adaptation of
the open-source implementation of HotStuff [12]. We modify
the HotStuff code to primarily replace the core protocol logic
while reusing some of its utility modules, such as its event
queue and network library.

In our implementation, each block contains a batch of
commands sent by clients. A command consists of a unique
identifier and an associated payload. We refer to the maxi-
mum number of commands in a block as the batch size. A
conceptual representation of a block is shown in Figure 6.

All throughput and latency results were measured from
clients which are separate processes running on machines
different from those for replicas. Each client generates a
number of outstanding commands and broadcasts them to
every replica. Replicas only use the unique identifier (e.g.
hash) of a command to represent it in proposals and votes.
To execute the commands for the replicated state machine,
a replica either has the command content received from the
client’s initial broadcast, or fetches it from the leader if
the client crashes before it finishes the broadcast. We use
four machines, each running four client processes, to inject
commands into the system. Each client process can maintain
a configurable number of outstanding commands at any time.

Metadata ... prev ...

Commands

cmd id payload

cmd id payload

...

cmd id payload

batch
size

Fig. 6: Structure of a block in the implementation.

We ensure that the performance of replicas will not be limited
by lack of client commands.

Experimental setup. All our experiments were conducted
over Amazon EC2 where each replica was executed on a
c5.4xlarge instance. Each instance had 16 vCPUs sup-
ported by Intel Xeon Platinum 8000 processors. All cores
sustained a Turbo CPU clock speed up to 3.4GHz. The
maximum TCP bandwidth measured by iperf is around
4.9 Gbps, i.e., 0.6 Gigabytes per second. We did not throttle
the bandwidth in any run. The network latency between
two machines is measured to be less than 1 ms. We used
secp256k1 for digital signatures in votes and a certificate
consists of a compact array of secp256k1 signatures.

Baselines. We compare with two baselines: (i) HotStuff, a
partially synchronous protocol, and (ii) Dfinity , a synchronous
protocol. We use HotStuff as a baseline because Sync HotStuff
shares the same code base as HotStuff enabling a fair compar-
ison, and because HotStuff achieves comparable (or even bet-
ter) performance to state-of-the-art partially synchronous BFT
implementation [12]. We pick Dfinity as our other baseline
because it is the state-of-the-art synchronous BFT protocol.
We did not find an implementation of Dfinity’s cousensus
protocol in its Github repository, so we implemented our own
version of Dfinity with our codebase (which should also help
ensure a fair comparison). While implementing and evaluating
Dfinity, we made several simplifications that are favorable to
Dfinity. For instance, it was shown that a malicious leader can
exploit a flaw in the original Dfinity design to force unbounded
communication complexity [13]. We did not implement the
suggested fix to this flaw (and of course we did not exploit
this flaw). We assume all leaders in Dfinity are honest, which
will improve Dfinity’s theoretical latency from 9∆ to 7∆.
We simulate their Verifiable Random Functions (VRF), by
essentially assuming VRF generation takes negligible time in
Dfinity. Implementing these extra fixes and actual mechanisms
will only further hurt Dfinity’s performance.

B. Basic Performance

We first evaluate the basic performance of Sync HotStuff
to tolerate f = 1 fault for a synchrony bound of ∆ = 50 ms.
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Fig. 7: Throughput vs. latency of Sync HotStuff at varying batch sizes and payloads at ∆ = 50 ms and f = 1.
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Fig. 8: Performance of Sync HotStuff at varying ∆ and f at batch size = 400 and 0/0 payload.
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Fig. 9: Throughput vs. latency of Sync HotStuff at varying
batch sizes at ∆ = 50 ms and f = 1 for Dfinity [13].

We measure the observed throughput (in number of commands
committed/sec, or ops/sec) and end-to-end latency for clients
(in ms). We conduct two experiments. The first one fixes the
payload and varies batch size (Figure 7a) while the other fixes
a batch size and varies the payload size (Figure 7b).

In Figure 7a, each command has a zero-byte payload to
demonstrate the overhead induced solely by consensus and
state machine replication. We consider three different batch
sizes, 100, 400 and 800, represented by the three lines in the

throughput-latency graph. In the graph, each point represents
the measured throughput and latency for one run with a given
“load” by the clients. More specifically, a client process main-
tains a fixed number of outstanding commands at any moment.
When an outstanding command is committed, a new command
is immediately issued to keep up with the specified number.
We vary the size of the outstanding command pool to simulate
different loads. The points at the lower left represent the state
when the system is not saturated by client commands. As
the load increases, the throughput initially increases without
incurring a loss in latency. Finally, after the load saturates
the bandwidth, the throughput remains unchanged (or slightly
degrades) when clients inject more commands, while the
latency goes up. The latency increases because the commands
stay in the command pool longer before they are proposed
in a block for consensus. For a batch size of 400, we observe
that the throughput is saturated at around 280 Kops/sec. There
is no further throughput gain when batch size increases from
400 to 800. So in all of our following experiments, we fix our
batch size to 400.

We also test how payload size of a command affects
performance. Figure 7b shows the performance with three
client request/reply payload sizes (in bytes) 0/0, 128/128 and
1024/1024, denoted by “p0”, “p128”, and “p1024”. In
addition to the actual payload, each command also contains
an 8 byte counter to differentiate the commands. For example,
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Fig. 10: Performance as function of faults at ∆ = 50 ms, optimal batch size, and 0/0 payload.
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Fig. 11: Performance as function of faults at ∆ = 50 ms, optimal batch size, and 1024/1024 payload.

the actual command size for 0/0 is 8 bytes.

C. The Impact of ∆ on Performance

In the steady state of Sync HotStuff, replicas advance to
the next step as soon as previous messages arrive, without
waiting for any conservative ∆ bound. Thus, although each
block still incurs 2∆ latency to be committed, the system is
able to move on after a single round-trip time, process new
blocks in pipeline, and saturate available network bandwidth.
Figures 8a and 8b study the effect of varying ∆ on throughput
and latency. Each line represents a choice of f , denoted by
“1”, “8”, “32”, “64”. As expected, we observe that the
saturated throughput remains unaffected by different choices
of ∆, whereas the latency deviates little from the theoretical
2∆ line. We do note that the latency remains unaffected only
when the ∆ bound is conservative, because that is when the
time for certifying a block (the O(δ) terms in our theoretical
analysis) is overshadowed by the 2∆ wait. When tolerating a
larger number of faults or when deployed on slower network
conditions (e.g., consortium blockchains), ∆ should be set
appropriately to ensure safety.

D. Scalability and Comparison with Prior Work

We perform an experiment to understand how Sync HotStuff
scales as the number of replicas increases. We also compare
this with HotStuff and Dfinity. In our baseline, clients issue
zero-byte payload commands and saturate the system, without
overloading the replicas. We then vary the choice of f . Each
experiment is repeated five times with the same setup to

average out fluctuations. A data point shows the average
value, capped by error bars indicating the standard deviation.
Since synchronous protocols tolerate one-half faults as against
one-third in case of partial synchrony, for the same f , the
actual number of replicas is 2f + 1 for Sync HotStuff and
Dfinity, whereas it is 3f + 1 for HotStuff. We would also
like to point out that such comparison is not entirely fair
since HotStuff does not assume synchrony. Nevertheless, it is
still helpful to understand the performance of Sync HotStuff
by comparing it to a state-of-the-art partially synchronous
protocol like HotStuff.

Comparison with HotStuff. Figures 10 and 11 show the
throughput and latency for two different payload configu-
rations, 0/0 and 1024/1024. We use a batch size of 400
for Sync HotStuff and HotStuff. Generally, the throughput
of Sync HotStuff tends to be slightly worse than HotStuff.
But at more faults, the throughput of Sync HotStuff gets
closer to HotStuff and in the 1024/1024 case, eventually
surpasses HotStuff. This is because in both cases the system is
bottlenecked by a leader communicating with all other replicas
and since Sync HotStuff requires fewer replicas to tolerate f
faults, its performance scales better than HotStuff.

Comparison with Dfinity. For Dfinity, we first perform an
experiment to determine good batch sizes that maximize its
throughput. The results are shown in Figure 9. We observe
that Dfinity requires a batch size of 14000 to reach its peak
throughput of ∼130 Kops/sec. The reason why Dfinity requires
a much larger batch size is because proposals are made much
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less frequently at every 2∆ time. In contrast, in Sync HotStuff,
a new proposal is made every 2δ � 2∆ time, i.e., as soon as
the previous proposal has been “processed” (i.e., certified).
This allows Sync HotStuff to fully utilize available network
bandwidth with much smaller batch sizes.

Figures 10b and 11b show the latency for two different
payload configurations, 0/0 and 1024/1024. As can be seen
in the figures, the latency of Dfinity varies between 330ms
and 400ms. This is much higher than that for Sync HotStuff
and is consistent with the expected theoretical average latency
as described in Section V-A. We also observe that at f = 64,
the large batch size we choose for Dfinity violates our ∆ =
50ms synchrony bound, leading to safety violations. Hence,
our evaluation does not include that data point.

VI. RELATED WORK

Several decades of research on the Byzantine agreement
problem [14] brought a myriad of solutions. Dolev and Strong
gave a deterministic protocol for its related problem, Byzantine
broadcast, with the tolerance of f < n [15]. Their protocol
achieves f + 1 round complexity and O(n2f) communica-
tion complexity. The f + 1 round complexity matches the
lower bound for deterministic protocols [16], [15]. To further
improve round complexity, randomized protocols have been
introduced [17], [18], [19], [20], [21], [22]. We review the
most recent and closely related works below.

Some key design goals of Sync HotStuff are inspired by
recent related works. In particular, elimination of lock-step
synchrony is first explored by Hanke et al. [3] and the mobile
sluggish model is introduced by Guo et al. [6]. Compared to
these works, Sync HotStuff uses techniques that are signifi-
cantly simpler and more efficient to achieve the same goals.

Dfinity. The Dfinity Consensus protocol described in [3] is
a replication protocol in the synchrony model that tolerates
f < n/2 Byzantine faults. It makes a key observation that a
synchronous replication protocol can start processing the next
client request without waiting for the previous one to commit.
While a standard practice in partially synchronous protocols,
this was not obvious for synchronous protocols.

However, it was later discovered [13] that the presentation
in [3] allowed unbounded communication complexity due to
an exploitable requirement that honest replicas vote for all
leader proposals, including equivocating ones from the same
leader. Another inefficient design in Hanke et al. is that each
leader makes only one proposal before getting replaced by a
new random leader. This hurts latency because (i) up to half of
the proposal opportunities are wasted on Byzantine leaders, (ii)
their leader election step is on the critical path and is blocking
(in this sense, Hanke et al. did not fully remove lock-step
execution.) This results in a large latency of 9∆ +O(δ).

In comparison, Sync HotStuff removes lock-step execution
using a simple and natural protocol (replicas do not vote for
equivocating proposals). Sync HotStuff embraces the stable
leader approach, common in the partial synchrony SMR (e.g.,
PBFT [23], Paxos [24]), that uses a steady state leader to

drive many decisions. These techniques allow Sync HotStuff
to achieve 2∆ + O(δ) latency and quadratic communication
complexity.

Guo et al. and PiLi. Guo et al. [6] introduced the mobile
sluggish model (called weak synchronous model in that work).
This model better reflects reality compared to the standard
synchrony model and we adopt it. PiLi [4] presents a BFT
SMR protocol in the mobile sluggish model. Its solution is
theoretical and highly involved. It assumes lock-step execution
in “epochs”. Each epoch lasts for 5∆ time and the protocol
commits five blocks after 13 consecutive epochs if certain
conditions are met. Thus, PiLi requires a latency of at least
40∆-65∆ (65∆ for the earliest and 40∆ for the latest of the
five blocks). In contrast, we observe that simple techniques
suffice to handle mobile sluggish faults at almost no extra
overhead.

Thunderella. The notion of optimistic responsiveness (un-
der one-quarter faults) was introduced in Thunderella [5].
Thunderella observes that it is safe to commit a decision
in O(δ) time if > 3n/4 votes are received. In this paper,
we adopt the key idea of Thunderella to achieve optimistic
responsiveness. But we also make two changes. First, when
more than 3n/4 replicas are correct, Thunderella commits a
decision after a single round of voting. However, the decision
cannot be conveyed to external clients, hence it does not
support SMR. Sync HotStuff uses two rounds to commit in
the responsive mode, and hence provides safety for SMR.
Second, Thunderella uses the synchronous mode to monitor
the progress of the responsive mode and, if the responsive
mode does not make progress quickly, falls back to the
synchronous mode. The fallback mechanism is presented in
a black-box fashion but it is unclear how it works in a
non-Nakamoto-style protocol. In Sync HotStuff, we take the
conventional approach of having replicas monitor the progress
of the responsive reviews, and using the view-change protocol
to perform the fallback.

XFT. A different type of protocol with optimistic respon-
siveness is XFT [25]. XFT guarantees responsiveness when
a group of f + 1 honest replicas is determined. Thus, when
the actual number of faults is t, it may take

(
n

f+1

)
/
(
n−t
f+1

)
view-changes for an honest group of f + 1 to emerge; after
that, the protocol is responsive. Such a solution is practical
when t is a small constant but for t = Θ(n), it requires an
exponential number of view-changes to find an honest group.
In comparison, Sync HotStuff and Thunderella are responsive
under t < n/4 faults after at most t view-changes.

VII. CONCLUSION

In this work, we introduce Sync HotStuff, a simple and
practical synchronous BFT SMR protocol. Sync HotStuff
does not require lock-step execution, tolerates mobile sluggish
faults, and offers practical performance. As we mentioned, the
mobile sluggish fault model captures short network glitches
but is not ideal for replicas going offline for too long. It
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remains interesting future work to come up with more realistic
synchronous models as well as practical solutions in them.
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