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Abstract—Ledger-based systems that support rich applications
often suffer from two limitations. First, validating a transaction
requires re-executing the state transition that it attests to. Second,
transactions not only reveal which application had a state
transition but also reveal the application’s internal state.

We design, implement, and evaluate Zexe, a ledger-based
system where users can execute offline computations and sub-
sequently produce transactions, attesting to the correctness of
these computations, that satisfy two main properties. First,
transactions hide all information about the offline computations.
Second, transactions can be validated in constant time by anyone,
regardless of the offline computation.

The core of Zexe is a construction for a new cryptographic
primitive that we introduce, decentralized private computation
(DPC) schemes. In order to achieve an efficient implementation of
our construction, we leverage tools in the area of cryptographic
proofs, including succinct zero knowledge proofs and recursive
proof composition. Overall, transactions in Zexe are 968 bytes re-
gardless of the offline computation, and generating them takes less
than 1min plus a time that grows with the offline computation.

We demonstrate how to use Zexe to realize privacy-preserving
analogues of popular applications: private user-defined assets and
private decentralized exchanges for these assets.

I. Introduction

Distributed ledgers are a mechanism for maintaining data

across a distributed system while ensuring that every party

has the same view of the data, even in the presence of

corrupted parties. Ledgers can provide an indisputable history

of all “events” logged in a system, thus enabling multiple

parties to collaborate with minimal trust, as any party can

ensure the system’s integrity by auditing history. Interest in

distributed ledgers has soared recently, catalyzed by their use

in cryptocurrencies (peer-to-peer payment systems) and by

their potential as a foundation for new forms of financial

systems, governance, and data sharing. In this work we study

two limitations of ledgers, one about privacy and the other

about scalability.

A privacy problem. The main strength of distributed ledgers

is also their main weakness: the history of all events is available
for anyone to read. This severely limits a direct application of

distributed ledgers.

For example, in ledger-based payment systems such as Bit-

coin [Nak09], every payment transaction reveals the payment’s

sender, receiver, and amount. This not only reveals private

financial details of individuals and businesses using the system,1

1Even just revealing addresses in transactions can reveal much information

about the flow of money [RH11; RS13; AKR+13; MPJ+13; SMZ14; KGC+17].

There are even companies that offer analytics services on the information

stored on ledgers [Ell13; Cha14].

but also violates fungibility, a fundamental economic property

of money. This lack of privacy becomes more severe in smart

contract systems like Ethereum [Woo17], wherein transactions

not only contain payment details, but also embed function calls

to specific applications. In these systems, every application’s

internal state is necessarily public, and so is the history of

function calls associated to it.

This problem has motivated prior work to find ways to

achieve meaningful privacy guarantees on ledgers. For example,

the Zerocash protocol [BCG+14] provides privacy-preserving

payments, and Hawk [KMS+16] enables general state transi-

tions with data privacy, that is, an application’s data is hidden

from third parties.

However, all prior work is limited to hiding the inputs and

outputs of a state transition, but not which transition function

is being executed. That is, prior work achieves data privacy but

not function privacy. In systems with a single transition function

this is not a concern.2 In systems with multiple transition

functions, however, this leakage is problematic. For example,

Ethereum currently supports thousands of separate ERC-20

“token” contracts [Eth18], each representing a distinct currency

on the Ethereum ledger; even if these contracts each individually

adopted a protocol such as Zerocash to hide details about token

payments, the corresponding transactions would still reveal

which token was being exchanged. Moreover, the leakage of

this information would substantially reduce the anonymity set

of those payments.

A scalability problem. Public auditability in the afore-

mentioned systems (and many others) is achieved via direct

verification of state transitions that re-executes the associated

computation. This creates the following scalability issues.

First, note that in a network consisting of devices with

heterogeneous computing power, requiring every node to re-

execute transactions makes the weakest node a bottleneck, and

this effect persists even when the underlying ledger is “perfect”,

that is, it confirms every valid transaction immediately. To

counteract this and to discourage denial-of-service attacks

whereby users send transactions that take a long time to

validate, current systems introduce mechanisms such as gas to

make users pay more for longer computations. However, such

mechanisms can make it unprofitable to validate legitimate

but expensive transactions, a problem known as the “Verifier’s

2For example, in Zerocash the single transition function is the one governing

cash flow of a single currency.
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Dilemma” [LTK+15]. These problems have resulted in Bitcoin

forks [Bit15] and Ethereum attacks [Eth16].

In sum, there is a dire need for techniques that facilitate

the use of distributed ledgers for rich applications, without

compromising privacy (of data or functions) or relying on

unnecessary re-executions. Prior works only partially address

this need, as discussed in Section I-B below.

A. Our contributions
We design, implement, and evaluate Zexe (Zero knowledge

EXEcution), a ledger-based system that enables users to

execute offline computations and subsequently produce publicly-

verifiable transactions that attest to the correctness of these

offline executions. Zexe simultaneously provides two main

security properties.

• Privacy: a transaction reveals no information about the
offline computation, except (an upper bound on) the number
of consumed inputs and created outputs.3 One cannot link

together multiple transactions by the same user or involving

related computations, nor selectively censor transactions

based on such information.

• Succinctness: a transaction can be validated in time that
is independent of the cost of the offline computation whose
correctness it attests to. Since all transactions are indistin-

guishable, and are hence equally cheap to validate, there is

no “Verifier’s Dilemma”, nor a need for mechanisms like

Ethereum’s gas.

Zexe also offers rich functionality, as offline computations

in Zexe can be used to realize state transitions of multiple

applications (such as tokens, elections, markets) simultaneously

running atop the same ledger. The users participating in

applications do not have to trust, or even know of, one another.

Zexe supports this functionality by exposing a simple, yet

powerful, shared execution environment with the following

properties.

• Extensibility: users may execute arbitrary functions of their

choice, without seeking anyone’s permission.

• Isolation: functions of malicious users cannot interfere with

the computations and data of honest users.

• Inter-process communication: functions may exchange data

with one another.

DPC schemes. The technical core of Zexe is a protocol for

a new cryptographic primitive for performing computations

on a ledger called decentralized private computation (DPC).

Informally, a DPC scheme supports a simple, yet expressive,

programming model in which units of data, which we call

records, are bound to scripts (arbitrary programs) that specify

the conditions under which a record can be created and

consumed (this model is similar to the UTXO model; see

Remark III.3). The rules that dictate how these programs

interact can be viewed as a “nano-kernel” that provides a

3One can fix the number of inputs and outputs (say, fix both to 2), or

carefully consider side channels that could arise from revealing bounds on the

number of inputs and outputs.

shared execution environment upon which to build applications.

From a technical perspective, DPC can be viewed as extending

Zerocash [BCG+14] to the foregoing programming model,

while still providing strong privacy guarantees, not only within

a single application (which is a straightforward extension) but

also across multiple co-existing applications (which requires

new ideas that we discuss later on). The security guarantees of

DPC are captured via an ideal functionality, which our protocol

provably achieves.

Applications. To illustrate the expressivity of the RNK, we

show how to use DPC schemes to construct privacy-preserving

analogues of popular applications such as private user-defined

assets and private decentralized or non-custodial exchanges

(DEXs). Our privacy guarantees in particular protect against

vulnerabilities of current DEX designs such as front-running

[BDJ+17; BBD+17; EMC19; DGK+19]. Moreover, we sketch

how to use DPC to construct a privacy-preserving smart

contract system. See Sections III-A and V for details.

Techniques for efficient implementation. We devise a set of

techniques to achieve an efficient implementation of our DPC

protocol, by drawing upon recent advances in zero knowledge

succinct cryptographic proofs (namely, zkSNARKs) and in

recursive proof composition (proofs attesting to the validity of

other proofs).

Overall, transactions in Zexe with two input records and

two output records are 968 bytes and can be verified in

tens of milliseconds, regardless of the offline computation;

generating these transactions takes less than a minute plus a

time that grows with the offline computation (inevitably so).

This implementation is achieved in a modular fashion via a

collection of Rust libraries (see Fig. 6), in which the top-level

one is libzexe. Our implementation also supports transactions

with any number m of input records and n of output records;

transactions size in this case is 32m+ 32n+ 840 bytes (the

transaction stores the serial number of each input record and

the commitment of each output record).

A perspective on costs. Zexe is not a lightweight construction,

but achieves, in our opinion, tolerable efficiency for the

ambitious goals it sets out to achieve: data and function
privacy, and succinctness, with rich functionality, in a threat
model that requires security against all efficient adversaries.
Relaxing any of these goals (assuming rational adversaries or

hardware enclaves, or compromising on privacy) will lead to

more efficient approaches.

The primary cost in our system is, unsurprisingly, the cost

of generating the cryptographic proofs that are included in

transactions. We have managed to keep this cost to roughly a

minute plus a cost that grows with the offline computation. For

the applications mentioned above, these additional costs are

negligible. Our system thus supports applications of real-world

interest today (e.g., private DEXs) with reasonable costs.

B. Related work

Avoiding naive re-execution. A number of proposals for

improving the scalability of smart contract systems, such as
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TrueBit [TR17], Plasma [PB17], and Arbitrum [KGC+18],

avoid naive re-execution by having users report the results

of their computations without any cryptographic proofs, and

instead putting in place incentive mechanisms wherein others

can challenge reported results. The user and challenger engage

in a so-called refereed game [FK97; CRR11; CRR13; JSS+16;

Rei16], mediated by a smart contract acting as the referee, that

efficiently determines which of the two was “telling the truth”.

In contrast, in this work correctness of computation is ensured

by cryptography, regardless of any economic motives; we thus

protect against all efficient adversaries rather than merely all

rational and efficient ones. Also, unlike our DPC scheme, the

above works do not provide formal guarantees of strong privacy

(challengers must be able to re-execute the computation leading

to a result and in particular must know any private inputs).

Private payments. Zerocash [BCG+14], building on earlier

work [MGG+13], showed how to use distributed ledgers

to achieve payment systems with strong privacy guarantees.

The Zerocash protocol, with some modifications, is now

commercially deployed in several cryptocurrencies, including

Zcash [Zcaa]. Solidus [CZJ+17] enables customers of financial

institutions (such as banks) to transfer funds to one another in

a manner that ensures that only the banks of the sender and

receiver learn the details of the transfer; all other parties (all

other customers and banks) only learn that a transfer occurred,

and nothing else. zkLedger [NVV18] enables anonymous

payments between a small number of distinguished parties

via the use of homomorphic commitments and Schnorr proofs.

None of these protocols support scripts (small programs that

dictate how funds can be spent), let alone arbitrary state

transitions as in Zexe.

Privacy beyond payments. Hawk [KMS+16], combining

ideas from Zerocash and the notion of an evaluator-prover

for multi-party computation, enables parties to conduct offline

computations and then report their results via cryptographic

proofs. Hawk’s privacy guarantee protects the private inputs

used in a computation, but does not hide which computation

was performed. That said, we view Hawk as complementary to

our work: a user in our system could in particular be a semi-

trusted manager that administers a multi-party computation and

generates a transaction about its output. The privacy guarantees

provided in this work would then additionally hide which
computation was carried out offline.

Zether [BAZ+19] is a system that enables publicly known
smart contracts to reason about homomorphic commitments

in zero knowledge, and in particular enables these to transact

in a manner that hides transaction amounts; it does not hide

the identities of parties involved in the transaction, beyond

a small anonymity set. Furthermore, the cost of verifying a

transaction scales linearly with the size of the anonymity set,

whereas in Zexe this cost scales logarithmically with the size

of anonymity set.

Succinct blockchains. Coda [MS18] uses arbitrary-depth

recursive composition of SNARKs to enable blockchain nodes

to verify the current blockchain state quickly. In contrast, Zexe

uses depth-2 recursive composition to ensure that all blockchain

transactions are equally cheap to verify (and are moreover

indistinguishable from each other), regardless of the cost of the

offline computation. In this respect, Coda and Zexe address

orthogonal scalability concerns.

MPC with ledgers. Several works [ADM+14b; ADM+14a;

KMB15; KB16; BKM17; RCGJ+17] have applied ledgers to

obtain secure multi-party protocols that have security properties

that are difficult to achieve otherwise, such as fairness. These

approaches are complementary to our work, as any set of

parties wishing to jointly compute a certain function via one

of these protocols could run the protocol “under” our DPC

scheme in such a way that third parties would not learn any

information that such a multi-party computation is happening.

Hardware enclaves. Kaptchuk et al. [KGM19] and Eki-

den [CZK+18] combine ledgers with hardware enclaves, such as

Intel Software Guard Extensions [MAB+13], to achieve various

integrity and privacy goals for smart contracts. Beyond ledgers,

several systems explore privacy goals in distributed systems by

leveraging hardware enclaves; see for example M2R [DSC+15],

VC3 [SCF+15], and Opaque [ZDB+17]. All of these works are

able to efficiently support rich and complex computations. In

this work, we make no use of hardware enclaves, and instead

rely entirely on cryptography. This means that on the one

hand our performance overheads are more severe, while on

the other hand we protect against a richer class of adversaries

(all efficient ones). Moreover, the techniques above depend on

secure remote attestation capabilities, which have recently been

broken for systems like SGX [VBMW+19].

II. Technical challenges

We now describe the key technical challenges that arise when

trying to design a ledger-based system which achieves the goals

of this paper, namely enabling arbitrary offline computations

while simultaneously providing privacy and succinctness.
Most of the challenges we face revolve around achieving

privacy. Indeed, if privacy is not required, there is a straight-

forward folklore approach that provides succinctness and low

verification cost: each user accompanies the result reported in a

transaction with a succinct cryptographic proof (i.e., a SNARK)

attesting to the result’s correctness. Others who validate the

transaction can simply verify the cryptographic proof, and

do not have to re-execute the computation. Even this limited

approach rules out a number of cryptographic directions, such

as the use of Bulletproofs [BCC+16; BBB+18] (which have

verification time linear in the circuit complexity), but can be

accomplished using a number of efficient SNARK techniques

[GGP+13; BCT+14; BCS16; BCT+17]. In light of this, we

shall first discuss the challenges that arise in achieving privacy.

A. Achieving privacy for a single arbitrary function
Zerocash [BCG+14] is a protocol that achieves privacy for

a specific functionality, namely, value transfers within a single
currency. Therefore, it is natural to consider what happens if

we extend Zerocash from this special case to the general case

of a single arbitrary function that is publicly known.
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Sketch of Zerocash. Money in Zerocash is represented via

coins. The commitment of a coin is published on the ledger

when the coin is created, and its serial number is published

when the coin is consumed. Each transaction on the ledger

attests that some “old” coins were consumed in order to

create some “new” coins: it contains the serial numbers of

the consumed coins, commitments of the created coins, and a

zero knowledge proof attesting that the serial numbers belong

to coins created in the past (without identifying which ones),

and that the commitments contain new coins of the same total

value. A transaction is private because it only reveals how

many coins were consumed and how many were created, but

no other information (each coin’s value and owner address

remain hidden). Also, revealing a coin’s serial number ensures

that a coin cannot be consumed more than once (the same

serial number would appear twice). In sum, data in Zerocash

corresponds to coin values, and state transitions are the single

invariant that monetary value is preserved.

Extending to an arbitrary function. One way to extend

Zerocash to a single arbitrary function Φ (known in advance

to everybody) is to think of a coin as a record that stores

some arbitrary data payload, rather than just some integer

value. The commitment of a record would then be published

on the ledger when the record is created, and its unique serial

number would be published when the record is consumed. A

transaction would then contain serial numbers of consumed

records, commitments of created records, and a proof attesting

that invoking the function Φ on (the payload of) the old records

produces (the payload of) the new records.

Data privacy holds because the ledger merely stores each

record’s commitment (and its serial number once consumed),

and transactions only reveal that some number of old records

were consumed in order to create some number of new records

in a way that is consistent with Φ. Function privacy also holds

but for trivial reasons: Φ is known in advance to everybody,

and every transaction is about computations of Φ.

Note that Zerocash is indeed a special case of the above: it

corresponds to fixing Φ to the particular (and publicly known)

choice of a function Φ$ that governs value transfers within

a single currency. However the foregoing protocol supports

only a single hard-coded function Φ, while instead we want to

enable users to select their own functions, as we discuss next.

B. Difficulties with achieving privacy for user-defined functions
We want to enable users to execute functions of their choice

concurrently on the same ledger without seeking permission

from anyone. That is, when preparing a transaction, a user

should be able to pick any function Φ of their choice for creating

new records by consuming some old records. If function privacy

is not a concern, then this is easy: just attach to the transaction

a zero-knowledge proof that Φ was correctly evaluated offline.

However, because this approach reveals Φ, we cannot use it

because function privacy is a goal for us.

An approach that does achieve function privacy would be to

modify the sketch in Section II-A by fixing a single function that

is universal, and then interpreting data payloads as user-defined

functions that are provided as inputs. Indeed, zero knowledge

would ensure function privacy in this case. However merely

allowing users to define their own functions does not by itself

yield meaningful functionality, as we explain next.

The problem: malicious functions. A key challenge in this

setting is that malicious users could devise functions to attack

or disrupt other users’ functions and data, so that a particular

user would not know whether to trust records created by other

users; indeed, due to function privacy, a verifier would not

know what functions were used to create those records. For a

concrete example, suppose that we wanted to realize the special

case of value transfers within a single currency (i.e., Zerocash).

One may believe that it would suffice to instruct users to pick

the function Φ$ (or similar). But this does not work: a user

receiving a record claiming to contain, say, 1 unit of currency

does not know if this record was created via the function Φ$

operating on prior records; a malicious user could have instead

used a different function to create that record, for example, one

that illegally “mints” records that appear valid to Φ$, and thus

enables arbitrary inflation of the currency. More generally, the

lack of any enforced rules about how user-defined functions

can interact precludes productive cooperation between users

that are mutually distrustful. We stress that this challenge arises

specifically due to the requirement that functions be private:

if the function that created (the commitment of) a record was

public knowledge, users could decide for themselves if records

they receive were generated by “good” functions.

One way to address the foregoing problem is to augment

records with a new attribute that identifies the function that

“created” the record, and then impose the restriction that in

a valid transaction only records created by the same function

may participate. This new attribute is contained within a hiding

commitment and thus is never revealed publicly on the ledger

(just like a record’s payload); the zero knowledge proof is

tasked with ensuring that records participating in the same

transaction are all of the same “type”. This approach now

does suffice to realize value transfers within a single currency,

by letting users select the function Φ$. More generally, this

approach generalizes that in Section II-A, and can be viewed

as running multiple segregated “virtual ledgers” each with a

fixed function. Function privacy holds because one cannot tell

if a transaction belongs to one virtual ledger or another.

The problem: functions cannot communicate. The limita-

tion of the above technique is that it forbids any “inter-process

communication” between different functions, and so one cannot

realize even simple functionalities like transferring value

between different currencies on the same ledger. It also rules

out more complex smart contract systems, as communication

between contracts is a key part of such systems. It is thus clear

that this crude “time sharing” of the ledger is too limiting.

III. Our system design

The approaches in Section II-B lie at opposite extremes:

unrestricted inter-process interaction prevents the secure con-

struction of even basic applications such as a single currency,
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while complete process segregation limits the ability to con-

struct complex applications that interact with with each other.

Balancing these extremes requires a shared execution environ-

ment: one can think of this as an operating system for a shared

ledger. This operating system manages user-defined functions: it

provides process isolation, determines data ownership, handles

inter-process communication, and so on. Overall, processes

must be able to concurrently share a ledger, without violating

the integrity or confidentiality of one another.

However, function privacy (one of our goals) dictates

that user-defined functions are hidden, which means that an

operating system cannot be maintained publicly atop the ledger

(as in current smart contract systems) but, instead, must be part

of the statement proved in zero knowledge. This is unfortunate

because designing an operating system that governs interactions

across user-defined functions within a zero knowledge proof

is not only a colossal design challenge but also entails many

arbitrary design choices that we should not have to take.

In light of the above, we choose to take the following

approach: we formulate a minimalist shared execution envi-

ronment that imposes simple, yet expressive, rules on how

records may interact, and enables programming applications in

the UTXO model (see Remark III.3 for details on privacy

in the UTXO model). Section III-A describes this shared

execution environment, which we call the “records nano-

kernel”. Section III-B then shows how to realise this nano-

kernel via a novel cryptographic primitive, decentralized private
computation schemes.

A. The records nano-kernel: a minimalist shared execution
environment

As stated above, our setting calls for a minimalist shared

execution environment, or “nano-kernel”, that enables users to

manage records containing data by programming two boolean

functions (or predicates) associated with each record. These

predicates control the two defining moments in a record’s life,

namely creation (or “birth”) and consumption (or “death”), and

are hence called the record’s birth and death predicates. A user

can create and consume records in a transaction by satisfying

the predicates of those records. In more detail,

The records nano-kernel (RNK) is an execution envi-

ronment that operates over units of data called records. A

record contains a data payload, a birth predicate Φb, and

a death predicate Φd. Records are created and consumed

by valid transactions. These are transactions where

the death predicates of all consumed records and the

birth predicates of all created records are simultaneously

satisfied when given as input the transaction’s local data
(see Fig. 4), which includes: (a) every record’s contents

(such as its payload and the identity of its predicates);

(b) a piece of shared memory that is publicly revealed,

called transaction memorandum; (c) a piece of shared

memory that is kept hidden, called auxiliary input; and

(d) other construction specifics.

The foregoing definition enables predicates to see the contents

of the entire transaction and hence to individually decide if

the local data is valid according to its own logic. This in

turn enables predicates to communicate with each other in a

secure manner without interference from malicious predicates.

In more detail, a record r can protect itself from other records

that contain “bad” birth or death predicates the r’s predicates

could refuse to accept when they detect (from reading the local

data) that they are part of a transaction containing records

having bad predicates. At the same time, a record can interact

with other records in the same transaction when its predicates

decide to accept, thus providing the flexibility that we seek.

We briefly illustrate this via an example, user-defined assets,
whereby one can use birth predicates to define and transact

with their own assets, and also use death predicates to enforce

custom access control policies over these assets.

Example III.1 (user-defined assets). Consider records whose

payloads encode an asset identifier id, the initial asset supply

�, and a value v. Fix the birth predicate in all such records

to be a mint-or-conserve function MoC that is responsible for

creating the initial supply of a new asset, and then subsequently

conserving the value of the asset across all transactions. In

more detail, MoC can be invoked in one of two modes. In mint
mode, when given as input a desired initial supply �, MoC
deterministically derives a fresh unique identifier id for a new

asset and stores (id,�, v = �) in a genesis record. Later on,

MoC can be invoked in conserve mode, where it inspects all

records in a transaction having birth predicate equal to MoC
and whose asset identifiers equal the identifier of the current

record, and ensures that these records conserve asset values.

Users can program death predicates of such records to

enforce conditions on how assets can be consumed, e.g.,

by realizing conditional exchanges with other counter-parties.

Suppose that Alice wishes to exchange 100 units of an asset

id1 for 50 units of another asset id2, but does not have a

counter-party for the exchange. She creates a record r with 100
units of id1 whose death predicate enforces that any transaction

consuming r must also create another record, consumable by

Alice, with 50 units of id2. She then publishes out of band

information about r, and anyone can subsequently claim it by

creating a transaction doing the exchange.

Since death predicates can be arbitrary, many different

access policies can also be realized, e.g., to enforce that a

transaction redeeming a record (a) must be authorized by two

of three public keys, or (b) becomes valid only after a given

amount of time, or (c) must reveal the pre-image of a hash.

One can generalize this basic example to show how the RNK

can realize smart contract systems in which the transaction

creator knows both the contract code being executed, as well

as the (public and secret) state of the contract. At a high level,

these contracts can be executed within a single transaction, or

across multiple transactions, by storing suitable intermediate

state/message data in record payloads, or by publishing that

data in transaction memoranda (as plaintext or ciphertext as

needed). We discuss in more detail below.

Example III.2 (smart contracts with caller-known state). At
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the highest level, smart contract systems operate over a set of

individual contracts, each of which consists of a function (or

collection of functions), some state variables, and some form

of address that serves to uniquely identify the contract. The

contract address ensures that the same code/functions can be

deployed multiple times by different individuals, without two

contracts inadvertently sharing state.4 A standard feature of

smart contract systems is that a contract can communicate with

other contracts: that is, a contract can invoke a second smart

contract as a subroutine, provided that the second contract

provides an interface to allow this behavior. In our setting, we

consider contracts in which the caller knows at least part of

the state of each contract.

In this setting, one can use the records nano-kernel to

realize basic smart contracts as follows. Each contract can be

implemented as a function Φsc. The contract’s state variables

can be stored in one or more records such that each record

ri is labeled with Φsc as the birth and death predicate. Using

this labeling, Φsc (via the RNK) can enforce that only it can

update its state variables, thus fulfilling one requirement of a

secure contract. Of course, while this serves to prevent other
functions from updating the contract’s state, it does not address

the situation where multiple users wish to deploy different

instances of the same function Φsc, each with isolated state.

Fortunately (and validating our argument that the RNK realizes

the minimal requirements needed for such a system), addressing

this problem does not require changes to the RNK. Instead,

one can devise the function Φsc so that it reasons over a

unique contract address identifier id, which is recorded within

the payload of every record.5 The function Φsc can achieve

contract state isolation by enforcing that each input and output

state record considered by single execution of Φsc shares the

same contract address.

To realize “inter-contract calls” between two functions Φsc1
and Φsc2

, one can use “ephemeral” records that communicate

between the two functions. For example, if Φsc1
wishes to call

Φsc2
, the caller may construct a record re that contains the

“arguments” to the called function Φsc2
, as well as the result

of the function call. A transaction would then show that both

Φsc1
and Φsc2

are satisfied.

The above example outlines how to implement a general

smart contract system atop the RNK. We leave to future work

the task of developing this outline into a full-fledged smart

contract framework, and instead focus on constructing a scheme

that implements the RNK, and on illustrating how to directly

program the RNK to construct specific applications such as

private user-defined assets and private decentralized asset
exchanges. We discuss these applications in detail in Section V.

4In concrete implementations such as Ethereum [Woo17], contract identifi-

cation is accomplished through unique contract addresses, each of which can

be bound to a possibly non-unique codeHash that identifies the code of the

program implementing the contract.

5This identifier can be generated in a manner similar to the asset identifier

in Example III.1.

Remark III.3 (working in the UTXO model). In the records

nano-kernel, applications update their state by consuming

records containing the old state, and producing new records

that contain the updated state. This programming model is

popularly known as the “unspent transaction output” (UTXO)

model. This is in contrast to the “account-based” model which

is used by many other smart contract systems [Goo14; Woo17;

EOS18]. At present, it is not known how to efficiently achieve

strong privacy properties in this model even for the simple

case of privacy-preserving payments among any number of

users, as we explain below.

In the account-based model, application state is stored in a

persistent location associated with the application’s account, and

updates to this state are applied in-place. A smart contract that

implements a currency in this model would store user balances

in a persistent table T that maps user account identifiers to

user balances. Transactions from a user A to another user B
would then decrement A’s balance in T and increment B’s

balance by a corresponding amount. A straightforward way to

make this contract data-private (i.e., to hide the transaction

value and the identities of A and B) would be to replace

the user balances in T with hiding commitments to these

balances; transactions would then update these commitments

instead of directly updating the balances. However, while this

hides transaction values, it does not hide user identities; to

further hide these, every transaction would have to update all
commitments in T , which entails a cost that grows linearly

with the number of users. This approach is taken by zkLedger

[NVV18], which enables private payments between a small

number of known users (among other things).

Even worse, achieving function privacy when running

multiple applications in such a system would require each

transaction to hide which application’s data was being updated,

which means that the transaction would have to update the

data of all applications at once, again severely harming the

efficiency of the system.

In sum, it is unclear how to efficiently achieve strong data and

function privacy in the account-based model when users can

freely join and leave the system at any time. On the other hand,

we show in this paper that these properties can be achieved in

the UTXO model at a modest cost.

B. Decentralized private computation

A new cryptographic primitive. To realize a ledger-based

system that supports privacy-preserving computations in the

records nano-kernel, we introduce a new cryptographic primi-

tive called decentralized private computation (DPC) schemes.

Fig. 1 provides an overview of their interface; see the full

version for a formal definition, including the ideal functionality

that we use to express security.

Below we describe only a high-level sketch of our construc-

tion of a DPC scheme, and provide the details in Appendix B.

We take Zerocash [BCG+14] as a starting point, and then

extend the protocol to support the records nano-kernel and

also to facilitate proving security in the simulation paradigm

relative to an ideal functionality (rather than via a collection
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DPC.Setup
Input: security parameter 1

λ

Output: public parameters pp

DPC.GenAddress
Input: public parameters pp
Output: addr. key pair (apk, ask)

DPC.Execute
L

Input:
• public parameters pp

• old

{
records [ri]

m
1

address secret keys [aski]
m
1

• new

⎧⎪⎨
⎪⎩

address public keys [apkj ]
n
1

record payloads [payloadj ]
n
1

record birth predicates [Φb,j ]
n
1

record death predicates [Φd,j ]
n
1

• auxiliary predicate input aux
• transaction memorandum memo
Output: new records [rj ]

n
1 and transaction tx

DPC.Verify
L

Input: public parameters pp and transaction tx
Output: decision bit b

Fig. 1: Algorithms of a DPC scheme.

of separate game-based definitions as in [BCG+14]). The full

version contains our proof of security for this construction.

Data structures. A record is a data structure representing

a unit of data in our system. Each record is associated with

an address public key, which is a commitment to a seed for a

pseudorandom function acting as the corresponding address
secret key; addresses determine ownership of records, and in

particular consuming a record requires knowing its secret key.

A record itself consists of an address public key, a data payload,

a birth predicate, a death predicate, and a serial number nonce

and a record commitment that is a commitment to all of these

attributes. The serial number of this record is the evaluation

of a pseudorandom function, seeded with the record’s address

secret key and evaluated at the record’s serial number nonce.

The record’s commitment and serial number, which appear

on the ledger when the record is created and consumed

respectively, reveal no information about the record attributes.

This follows from the hiding property of the commitment, and

the pseudorandom nature of the serial number. The derivation

of a record’s serial number ensures that a user can create a

record for another in such a way that its serial number is fully

determined and yet cannot be predicted without knowing the

other user’s secret key. All the above is summarized in Fig. 2.

Records can be created and consumed via transactions, which

represent state changes in the system. Each transaction in the

ledger consumes some old records and creates new records in

a manner that is consistent with the records nano-kernel. To

ensure privacy, a transaction only contains serial numbers of the

consumed records, commitments of the created records, and a

zero knowledge proof attesting that there exist records consistent

with this information (and with the records nano-kernel). All

commitments on the ledger are collected in a Merkle tree,

which facilitates efficiently proving that a commitment appears

on the ledger (by proving in zero knowledge the knowledge

of a suitable authentication path). All serial numbers on the

ledger are collected in a list that cannot contain duplicates. This

implies that a record cannot be consumed twice because the

Commit

cm

apk payload Φb Φd 𝝆

Commit skPRF

PRF

sn

record commitment

birth & death 
predicates

serial number 
nonce

address 
public key

data 
payload

record r
serial 

number

address secret key ask

PRF secret key

CRH

unique info from 
tx that created r

Fig. 2: Construction of a record.

same serial number is revealed each time a record is consumed.

See Fig. 3.

Lledger tx1 tx2 ... tx ... txt

all record commitments all serial numbers

sn1,...,snm cm1,...,cmn memo stL 𝛑

serial numbers 
of old records

commitments 
of new records

transaction 
memorandum

ledger 
digest

zkSNARK

...

ledger 
digest

...

Fig. 3: Construction of a transaction.

System usage. To set up the system, a trusted party invokes

DPC.Setup to produce the public parameters for the system.

Later, users can invoke DPC.GenAddress to create address key

pairs. In order to create and consume records, i.e., to produce a

transaction, a user first selects some previously-created records

to consume, assembles some new records to create (including

their payloads and predicates), and decides on other aspects

of the local data such as the transaction memorandum (shared

memory seen by all predicates and published on the ledger)

and the auxiliary input (shared memory seen by all predicates

but not published on the ledger); see Fig. 4. If the user

knows the secret keys of the records to consume and if all

relevant predicates are satisfied (death predicates of old records

and birth predicates of new predicates), then the user can

invoke DPC.Execute to produce a transaction containing a

zero knowledge proof that attests to these conditions. See

Fig. 5 for a summary of Re, the NP statement being proved.

953

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 05:37:38 UTC from IEEE Xplore.  Restrictions apply. 



Finally, nodes maintaining the ledger use DPC.Verify to check

whether a candidate transaction is valid.

In sum, a transaction only reveals the number of consumed

records and number of created records, as well as any data

that was deliberately revealed in the transaction memorandum

(possibly nothing).6

record 
commitment

serial 
numbers

address 
public keys

data 
payloads

descriptions 
of birth/death predicates

data 
from old 

records

cmold,1

⋮

cmold,m

snold,1

⋮

snold,m

apkold,1

⋮

apkold,m

payloadold,1

⋮

payloadold,m

Φb,old,1

⋮

Φb,old,m

Φd,old,1

⋮

Φd,old,m

data 
from new 

records

cmnew,1

⋮

cmnew,n

n/a
apknew,1

⋮

apknew,n

payloadnew,1

⋮

payloadnew,n

Φb,new,1

⋮

Φb,new,m

Φd,new,1

⋮

Φd,new,m

transaction 
memorandum memo common 

aux input aux

local data for predicate (ldata)

Φd,old,1(ldata) =  = Φd,old,m(ldata) = 1
Φb,new,1(ldata) =  = Φb,new,n(ldata) = 1

old death predicates
new birth predicates

Fig. 4: Predicates receive local data.

serial numbers 
of old records

commitments 
of new records

transaction 
memorandum

ledger 
digest

zkSNARK

sn1,...,snm cm1,...,cmn memo stL 𝛑

old records (rold,1, ..., rold,m) 
old secret keys (askold,1, ..., askold,m) 
new records (rnew,1, ..., rnew,n) 
auxiliary input aux

each old record rold,i 
    - has a commitment that is in a ledger with digest stL 
    - is owned by secret key askold,i 
    - has serial number sni

each new record rnew,j has commitment cmj

each old death predicate Φold,d,i (in rold,i) is satisfied by local data 
each new birth predicate Φnew,b,j (in rnew,j) is satisfied by local data

∃ 

such that

Fig. 5: The execute statement.

Achieving succinctness. Our discussions so far have focused

on achieving (data and function) privacy. However, we also

want to achieve succinctness, namely, that a transaction can be

validated in “constant time”. This follows from a straightforward

modification: we take the protocol that we have designed so far

and use a zero knowledge succinct argument rather than just

any zero knowledge proof. Indeed, the NP statement Re being

proved involves attesting the satisfiability of all (old) death

and (new) birth predicates, and so we need to ensure that the

time needed to verify the corresponding proof does not depend

on the complexity of these predicates. While turning this idea

into an efficient implementation requires more ideas (as we

discuss in Section IV), the foregoing modification suffices from

a theoretical point of view.

6By supporting the use of dummy records, we can in fact ensure that only

upper bounds on the foregoing numbers are revealed.

IV. Achieving an efficient implementation

Our system Zexe (Zero knowledge EXEcution) implements

our construction of a DPC scheme (see Section III-B and Ap-

pendix B). Achieving efficiency in our system required overcom-

ing several challenges. Below we adopt a “problem-solution”

format to highlight some of these challenges and explain how

we addressed them.

Problem 1: universality is expensive. The NP statement Re

that we need to prove involves checking user-defined predicates,

so it must support arbitrary computations that are not fixed

in advance. However, state-of-the-art zkSNARKs for universal

computations rely on expensive tools [BCG+13; BCT+14;

WSR+15; BCT+17]. Using such “heavy duty” proof systems

would make the system costly for all users, including those that

produce transactions that attest to simple inexpensive predicates.

Solution 1: recursive proof verification. We address this

problem by relying on one layer of recursive proof composition
[Val08; BCC+13]. Instead of tasking the NP statement with

directly checking user-defined predicates, we only task it with

checking succinct proofs attesting to the satisfaction of the

same. Checking these succinct predicate proofs is a (relatively)

inexpensive computation that is fixed for all predicates, and

which can be “hardcoded” in Re. Since the single succinct

proof produced for Re does not reveal information about the

predicate proofs (thanks to zero knowledge), the predicate

proofs do not have to hide what predicate was checked, and

hence can be specialized for particular user-defined predicates.

This approach further ensures that a user only has to incur the

cost of proving satisfiability of the specific predicates involved

in her transactions, regardless of the complexity of predicates

used by other users in their transactions.

Problem 2: recursion is expensive. Recursive proof composi-

tion has so far been empirically demonstrated for pairing-based

SNARKs [BCT+17] as these have proofs that are extremely

short and cheap to verify. We thus focus our attention on these,

and explain the efficiency challenges that we must overcome

in our setting. Recall that pairings are instantiated via elliptic

curves of small embedding degree. If we instantiate a SNARK’s

pairing via an elliptic curve E defined over a prime field Fq and

having a subgroup of large prime order r, then (a) the SNARK

supports NP statements expressed as arithmetic circuits over

Fr, while (b) proof verification involves arithmetic operations

over Fq . This means that we need to express Re via arithmetic

circuits over Fr. In turn, since the SNARK verifier is part of

Re, this means that we need to also express the verifier via

an arithmetic circuit over Fr, which is problematic because

the verifier’s “native” operations are over Fq. Simulating Fq

operations via Fr operations is expensive, and one cannot avoid

simulation by picking E such that q = r [BCT+17].

Prior work overcomes this by using multiple curves

[BCT+17]. Specifically, Ben-Sasson et al. distribute the re-

cursion across a two-cycle of pairing-friendly elliptic curves,

which is a pair of prime-order curves E1 and E2 such that the

size of one’s base field is the order of the other’s subgroup.

This ensures that a SNARK over E1 can be verified by a
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SNARK over E2, and vice versa. However, known cycles are

inefficient at 128 bits of security [BCT+17; CCW19].

Solution 2: tailored set of curves. In our setting we merely

need “a proof of a proof”, with the latter proof not itself

depending on further proofs. This implies that we do not

actually need a cycle of pairing-friendly elliptic curves (which

enables recursion of arbitrary depth), but rather only a “two-

chain” of two curves E1 and E2 such that the size of the base

field of E1 is the size of the prime order subgroup of E2. We

can use the Cocks–Pinch method [FST10] to set up such a

bounded recursion [BCT+17]. We now elaborate on this.

First, we pick a pairing-friendly elliptic curve E1 that not

only is suitable for 128 bits of security, but moreover, enables

efficient SNARK provers at both levels of the recursion. Namely,

letting p be the prime order of E1’s base field and r the

prime order of the group, we need that both Fr and Fp have

multiplicative subgroups whose orders are large powers of 2.

The condition on Fr ensures efficient proving for SNARKs

over E1, while the condition on Fp ensures efficient proving

for SNARKs that verify proofs over E1. In light of the above,

we set E1 to be EBLS, a curve from the Barreto–Lynn–Scott

(BLS) family [BLS02; CLN11] with embedding degree 12.

This family can be implemented at 128 bits of security very

efficiently [AFK+12]. We ensure that both Fr and Fp have

multiplicative subgroups of order 2α for α ≥ 40 by a suitable

condition on the parameter of the BLS family.7

Next we use the Cocks–Pinch method to pick a pairing-

friendly elliptic curve E2 = ECP over a field Fq such that the

curve group ECP(Fq) contains a subgroup of prime order p
(the size of EBLS’s base field). Since the method outputs a

prime q that has about 2× more bits than the desired p, and in

turn p has about 1.5× more bits than r (due to properties of

the BLS family), we only need ECP to have embedding degree

6 in order to achieve 128 bits of security [FST10].

In sum, a SNARK over EBLS is used to generate proofs of

predicates’ satisfiability; after that a zkSNARK over ECP is

used to generate proofs that these predicate proofs are valid

(along with the remaining NP statement’s checks). Because

the two curves have “matching” fields, proofs over EBLS are

efficiently verifiable.

Problem 3: Cocks–Pinch curves are costly. While the curve

ECP was chosen to facilitate efficient checking of proofs over

EBLS, the curve ECP is at least 2× more expensive (in time and

space) than EBLS simply because ECP’s base field is 2× larger

than EBLS’s base field. Checks in the NP relation Re that are

not directly related to proof checking are now unnecessarily

performed on a less efficient curve.

Solution 3: split relations across two curves. We split Re

into two NP relations RBLS and RCP, with the latter containing

just the proof check and the former containing all other checks

7We achieve this by choosing the parameter x of the BLS family to satisfy

x ≡ 1 mod 3 · 2α; indeed, for such a choice of x both r(x) = x
4 − x

2
+ 1

and p(x) = (x− 1)
2
r(x)/3 + x are divisible by 2

α
. This also ensures that

x ≡ 1 mod 3, which ensures that there are efficient towering options for the

relevant fields [Cos12].

(see the full version for details on these). We can then use a

zkSNARK over the curve EBLS (an efficient curve) to produce

proofs for RBLS, and a zkSNARK over ECP (the less efficient

curve) to produce proofs for RCP. This approach significantly

reduces the running time of DPC.Execute (producing proofs

for the checks in RBLS is more efficient over EBLS than over

ECP), at the expense of a modest increase in transaction size

(a transaction now includes a zkSNARK proof over EBLS in

addition to a proof over ECP). An important technicality that

must be addressed is that the foregoing split relies on certain

secret information to be shared across the NP relations, namely,

the identities of relevant predicates and the local data.

Problem 4: the NP relations have many checks. Even

using ECP only for SNARK verification and EBLS for all other

checks does not suffice: the NP relations RBLS and RCP still

have to perform expensive checks like verifying Merkle tree

authentication paths and commitment openings, and evaluating

pseudorandom functions and collision resistant functions.

Similar NP relations, like the one in Zerocash [BCG+14],

require upwards of four million gates to express such checks,

resulting in high latencies for producing transactions and large

public parameters for the system.

Solution 4: efficient EC primitives. Commitments and

collision-resistant hashing can be expressed as very efficient

arithmetic circuits if one opts for Pedersen-type constructions

over suitable Edwards elliptic curves (and techniques derived

from these ideas are now part of deployed systems [HBH+18]).

To do this, we pick two Edwards curves, EEd/BLS over the field

Fr (matching the group order of EBLS) and EEd/CP over the

field Fp (matching the group order of ECP). This enables us

to achieve very efficient circuits for primitives used in our NP

relations, including commitments, collision-resistant hashing,

and randomizable signatures. (Note that EEd/BLS and EEd/CP

do not need to be pairing-friendly as the primitives only rely

on their group structure.) Overall, we obtain highly optimized

realizations of all checks in Fig. 5.

A note on deploying Zexe with trusted setup. DPC

schemes include a setup algorithm that specifies how to sample

public parameters for the scheme. The setup algorithm in our

DPC construction (see Section III-B) simply consists of running

the setup algorithms for the various cryptographic building

blocks that we rely on (like NIZKs). However, this can be a

challenge for deployment because the entity performing the

setup may be able to break certain security properties of the

scheme by acting maliciously.

While one can mitigate this by using primitives that have

a transparent setup (one that uses only public randomness),

the efficiency considerations mentioned above drive our imple-

mented system to use pairing-based zkSNARKs whose setup is

not transparent (all other primitives we use are transparent). We

thus discuss below how to perform this setup when deploying

our implemented system.

Recall that prior zkSNARK deployments have used secure

multiparty computation [BCG+15; Zcab; BGM17; BGG18],

so that the sampled public parameters are secure as long as
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even a single participating party is honest. One can use this

technique to sample “master” parameters for SNARKs for the

NP relations RBLS and RCP. Since these public parameters do

not depend on any user-defined functions, they can be sampled

once and for all regardless of which applications will run over

the system. Note that these public parameters must be trusted by

everyone, because if they were compromised then the security

(but not privacy) of all applications running over the system

would be compromised as well.

In addition to these “master” parameters, application devel-

opers must also sample “application” parameters. These are

the parameters corresponding to the predicates comprising an

application. Unlike “master” parameters, “application” parame-

ters can be sampled as applications are developed and deployed.

Furthermore, users only need to trust the parameters needed by

applications that the user cares about; compromised parameters

for other applications will not affect (the security and privacy

of) the user’s applications.

Very recent works [MBK+19; CFQ19; CHM+19; GWC19]

have proposed pairing-based SNARKs that have a universal

setup that can be used for any circuit. Once such SNARK

constructions mature into efficient implementations, our system

can be easily modified to use these instead of [GM17] to

mitigate the above concerns, as both our construction and

implementation make use of the underlying SNARKs in a

modular manner.

V. Applications

We describe example applications of DPC schemes by

showing how to “program” these within the records nano-kernel.

We focus on financial applications of smart contract systems

as these are not only popular, but also demand strong privacy.

We begin in Section V-A by describing how to enable users to

privately create and transact with custom user-defined assets
(expanding on Example III.1). We then describe in Section V-B

how to realize private DEXs, which enable users to privately

trade these assets while retaining custody of the same. These

descriptions are a high-level sketch; further details are available

in the full version.

A. User-defined assets

One of the most basic applications of smart contract systems

like Ethereum is the construction of assets (or tokens) that can

be used for financial applications. For example, the Ethereum

ERC20 specification [VB15] defines a general framework

for such assets. These assets have two phases: asset minting

(creation), and asset conservation (expenditure). We show below

how to express such custom assets via the records nano-kernel.

We consider records whose payloads encode: an asset

identifier id, the initial asset supply �, a value v, and application-

dependent data c (we will use this in Section V-B). We

fix the birth predicate in all such records to be a mint-or-
conserve function MoC that is responsible for asset minting

and conservation. In more detail, the birth predicate MoC can

be invoked in two modes, mint mode or conserve mode.

When invoked in mint mode, MoC creates the initial supply

� of the asset in a single output record by deterministically

deriving a fresh, globally-unique identifier id for the asset,

and storing the tuple (id,�,�,⊥) in the record’s payload.

The predicate MoC also ensures that in the given transaction

contains no other non-dummy input or output records. If MoC
is invoked in mint mode in a different transaction, a different
identifier id is created, ensuring that multiple assets can be

distinguished even though anyone can use MoC as the birth

predicate of a record.

When invoked in conserve mode, MoC inspects all records in

a transaction whose birth predicates all equal MoC (i.e., all the

transaction’s user-defined assets) and whose asset identifiers all

equal to the identifier of the current record. For these records

it ensures that no new value is created: that is, the sum of the

value across all output records is less than or equal to the sum

of the value in all input records.

The full version contains pseudocode for MoC.

B. Decentralized exchanges
We describe how to use death predicates that enforce custom-

access policies to build privacy-preserving decentralized ex-
changes, which allow users to exchange custom assets with

strong privacy guarantees while retaining full custody of these

assets. We proceed by first providing background on centralized

and decentralized exchanges. Then, we formulate desirable

privacy properties for decentralized exchanges. Finally, we

describe constructions that achieve these properties.

Motivation. Exchanging digital assets is a compelling use case

of ledger-based systems. A straightforward method to exchange

such assets is via a centralized exchange: users entrust the

exchange with custody of their assets via an on-chain transaction

so that subsequent trades require only off-chain modifications in

the exchange’s internal database. To “exit”, users can request an

on-chain transaction that transfers their assets from the exchange

to the user. Examples of such exchanges include Coinbase [Coi]

and Binance [Bin]. This centralized architecture is efficient,
because trades are recorded only in the exchange’s off-chain

database, and relatively private, because only the exchange

knows the details of individual trades. However, it also has

a serious drawback: having given up custody of their assets,

users are exposed to the risk of security breaches and fraud

by the exchange [PA14; De18; Zha18; Cim18].

In light of this, decentralized exchanges (DEXs) have been

proposed as an alternative means of exchanging assets that

enable users to retain custody of their assets. However, existing

DEX constructions have poor efficiency and privacy guarantees.

Below we describe how we can provide strong privacy for DEXs

(and leave improving the efficiency of DEXs to future work).

DEX architectures. There are different DEX architectures

with different trade-offs; see [Pro18] for a survey. In the

following, we consider DEX architectures where the exchange

has no state or maintains its state off-chain.8 Here we focus on

8This is in contrast to DEX architectures that involve, say, a smart contract

that stores on-chain the standing orders of all users.
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one such category of DEXs, namely intent-based DEXs; we

discuss other kinds of DEXs in the full version.

In intent-based DEXs, the DEX maintains an index, which

is a table where makers publish their intention to trade (say,

a particular asset pair) without committing any assets. A

taker interested in a maker’s intention to trade can directly

communicate with the maker to agree on terms. They can jointly

produce a transaction for the trade, to be broadcast for on-chain

processing. An example of such a DEX is AirSwap [Air]. An

attractive feature of intent-based DEXs is that they reduce

exposure to front-running because the information required for

front-running (like prices or identities of the involved parties)

has been finalized by the time the transaction representing the

trade is broadcast for processing.

Privacy shortcomings and goals. While the foregoing

DEX architecture offers attractive security and functionality,

it does not provide strong privacy guarantees. First, each

transaction reveals information about the corresponding trade,

such as the assets and amounts that were exchanged. Prior

work [BDJ+17; BBD+17; EMC19; DGK+19] shows that such

leakage enables front-running that harms user experience and

market transparency, and proposes mitigations that, while

potentially useful, do not provide strong privacy guarantees.

Even if one manages to hide these trade details, transactions in

existing DEXs also reveal the identities of transacting parties.

Onlookers can use this information to extract trading patterns

and frequencies of users. This reduces the privacy of users,

violates the fungibility of assets, and increases exposure to

front-running, because onlookers can use these patterns to infer

when particular assets are being traded.

These shortcomings motivate the following privacy goals

for DEXs. Throughout, we assume that an order is defined by

the pair of assets to be exchanged, and their exchange rates.

1) Trade confidentiality: No efficient adversary A should be

able to learn the trade details (i.e., the asset pairs or amounts

involved) of completed or cancelled trades.

2) Trade anonymity: No efficient adversary A should be able

to learn the identities of the maker and taker.

A protocol that achieves trade confidentiality and trade

anonymity against an adversary A is secure against front-

running by A. We now describe how to construct an intent-

based DEX that achieves trade confidentiality and anonymity.9

Record format. Recall from Section V-A that records

representing units of an asset have payloads of the form

(id,�, v, c), where id is the asset identifier, � is the initial

asset supply, v is the asset amount, and c is arbitrary auxiliary

information. In the following, we use records that, in addition

to the mint-or-conserve birth predicate MoC, have an exchange-
or-cancel death predicate EoC. Informally, EoC allows a record

r to be consumed either by exchanging it for v� units of an

asset with birth predicate Φ�
b and identifier id� (id�, Φ�

b and v�

9Throughout, we assume that users interact with index operators via

anonymous channels. (If this is not the case, operators can use network

information to link users across different interactions regardless of any

cryptographic solutions used.).

are specified in c), or by “cancelling” the exchange and instead

sending new records with r’s asset identifier to an address

apk� (also specified in c). The information required for the

exchange includes the asset’s birth predicate in addition to its

identifier, as it enables users to interact with assets that have

birth predicate different from MoC. See the full version for

detailed pseudocode for EoC.

Private intent-based DEXs. We describe an intent-based

DEX that hides all information about an order and the involved

parties:

1) A maker M can publish to the index an intention to trade,

which is a tuple (idA, idB , pkM) to be interpreted as: “I

want to buy assets with identifier idB in exchange for assets

with identifier idA. Please contact me using the encryption

public key pkM if you would like to discuss the terms.”

2) A taker T who is interested in this offer can use pkM to

privately communicate with M and agree on the terms of

the trade (the form of communication is irrelevant). Suppose

that T and M agree that T will give 10 units of asset idB
to M and will receive 5 units of asset idA from M.

3) The taker T creates a new record r with payload

(idB ,�B , 10, c) for auxiliary data c = (idA, 5, apknew), and

with death predicate EoC. Then T sends r (along with the

information necessary to redeem r) to M.

4) If M has a record worth 5 units of asset idA, she can use

T’s message to construct a DPC transaction that consumes r
and produces appropriate new records for M and T, thereby

completing the exchange.

The record r produced by the taker T can be redeemed by

M only via an appropriate record in exchange. If M does not

possess such a record, T can cancel the trade (at any time)

and retrieve his funds by satisfying the “cancel” branch of

the predicate EoC (which requires knowing the secret key

corresponding to apknew).

Note that regardless of whether the trade was successful

or not, this protocol achieves trade anonymity and trade

confidentiality against all parties (including the index operator).

Indeed, the only information revealed in the final transaction

is that some records were consumed and others created; no

information is revealed about M, T, the assets involved in the

trade (idA and idB), or the amounts exchanged.

VI. System implementation

We now summarize our implementation of DPC schemes in

our system named named Zexe (Zero knowledge EXEcution).10

Zexe follows the strategy described in Section IV, and consists

of several Rust libraries: (a) a library for finite field and

elliptic curve arithmetic, adapted from [Bow17b]; (b) a library

for cryptographic building blocks, including zkSNARKs for

constraint systems (using components from [Bow17a]); (c) a

library with constraints for many of these building blocks;

and (d) a library that realizes our DPC construction. Our

codebase, like our construction, is written in terms of abstract

building blocks, which allows to easily switch between different

10The code is available at https://github.com/scipr-lab/zexe.
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instantiations of the building blocks. In the rest of this section

we describe the efficient instantiations used in the experiments

reported in Section VII.

libzexe

constraints for building blocks

zkSNARK
cryptographic building

blocks

algebra

Fig. 6: Stack of libraries comprising Zexe.

Pseudorandom function. Fixing key length and input length

at 256 bits, we instantiate PRF using the Blake2s hash function

[ANW+13]: PRFk(x) := b2s(k‖x) for k, x ∈ {0, 1}256.

Elliptic curves. Our implementation strategy (see Section IV)

involves several elliptic curves: two pairing-friendly curves

EBLS and ECP, and two “plain” curves EEd/BLS and EEd/CP

whose base field respectively matches the prime-order subgroup

of EBLS and ECP. Details about these curves are in Fig. 7;

the parameter used to generate the BLS curve EBLS is x =
3 · 246 · (7 · 13 · 499) + 1 (see Section IV for why).

NIZKs. We instantiate the NIZKs used for the NP relation

Re via zero-knowledge succinct non-interactive arguments of

knowledge (zk-SNARKs), which makes our DPC schemes

succinct. Concretely, we rely on the simulation-extractable

zkSNARK of Groth and Maller [GM17], used over the pairing-

friendly elliptic curves EBLS (for proving RBLS and predicates’

satisfiability) and ECP (for proving RCP).

DLP-hard group. Several instantiations of cryptographic

primitives introduced below rely on the hardness of extracting

discrete logarithms in a prime order group. We generate these

groups via a group generator SampleGrp, which on input a

security parameter λ (represented in unary), outputs a tuple

(G, q, g) that describes a group G of prime order q generated by

g. The discrete-log problem is hard in G. In our prototype we

fix G to be the largest prime-order subgroup of either EEd/BLS

or EEd/CP, depending on the context.

Commitments. We instantiate (plain and) trapdoor commit-

ments via Pedersen commitments over G. These commitments

are perfectly hiding, and are computationally binding if the

discrete-log problem is hard in G.

Collision-resistant hashing. We instantiate CRH via a

Pedersen hash function over G. Collision resistance follows

from hardness of the discrete-logarithm problem [MRK03].

VII. System evaluation

In Section VII-A we evaluate individual cryptographic

building blocks. In Section VII-B we evaluate the cost of NP

relations expressed as constraints, as required by the underlying

zkSNARK. In Section VII-C we evaluate the running time of

DPC algorithms. In Section VII-D we evaluate the sizes of

DPC data structures. All reported measurements were taken

on a machine with an Intel Xeon 6136 CPU at 3.0GHz with

252GB of RAM.

A. Cryptographic building blocks
We are interested in two types of costs associated with

a given cryptographic building block: the native execution
cost, which are the running times of certain algorithms on

a CPU; and the constraint cost, which are the numbers of

constraints required to express certain invariants, to be used

by the underlying zkSNARK.

Native execution cost. The zkSNARK dominates native

execution cost, and the costs of all other building blocks are

negligible in comparison. Therefore we separately report only

the running times of the zkSNARK, which in our case is a

protocol due to Groth and Maller [GM17], abbreviated as

GM17. When instantiated over the elliptic curve EBLS, the

GM17 prover takes 25 μs per constraint (with 12 threads),

while the GM17 verifier takes 250n μs + 9.5ms on an input

with n field elements (with 1 thread). When instantiated over

the elliptic curve ECP, the respective prover and verifier costs

are 147 μs per constraint and 1.6nms + 34ms.

Constraint cost. There are three building blocks that together

account for the majority of the cost of NP statements that we

use. These are: (a) the Blake2s PRF, which requires 21792
constraints to map a 64-byte input to a 32-byte output; (b) the

Pedersen collision-resistant hash, which requires 5n constraints

for an input of n bits; and (c) the GM17 verifier, which requires

14n+ 52626 constraints for an n-bit input.

B. The execute NP relation
In many zkSNARK constructions, including the one that we

use, one must express all the relevant checks in the given NP

relation as (rank-1) quadratic constraints over a large prime

field. Our goal is to minimize the number of such constraints

because the prover’s costs grow (quasi)linearly in this number.

In our DPC scheme we use a zkSNARK for the NP relation

Re in Fig. 10. More precisely, for efficiency reasons explained

in Section IV, we split Re into the two NP relations RBLS and

RCP, which we prove via zkSNARKs over the pairing-friendly

curves EBLS and ECP, respectively.

Table III reports the number of constraints that that we use

to express RBLS, as a function of the number of input (m)

and output (n) records, and additionally reports its primary

contributors. Table IV does the same for RCP. These tables

show that for each input record costs are dominated by

verification of a Merkle tree path and the verification of a

(death predicate) proof; while for each output record costs are

dominated by the verification of a (birth predicate) proof. We

also report the cumulative number of constraints when setting

m := 2 and n := 2 because this is a representative instantiation

of m and n that enables useful applications.

C. DPC algorithms
In Table I we report the running times of algorithms in our

DPC implementation for two input and two output records (i.e.,

m := 2 and n := 2). Note that for Execute and Verify, we

have excluded costs of ledger operations (such as retrieving an

authentication path or scanning for duplicate serial numbers)
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name curve type embedding

degree

size of prime-order

subgroup

size of base

field

size of compressed group elements

(rounded to multiples of 8 bytes)
G1 G2

EEd/BLS twisted Edwards — s r 32 —

EBLS BLS 12 r p 48 96
EEd/CP twisted Edwards — t p 48 —

ECP short Weierstrass 6 p q 104 312

Fig. 7: The elliptic curves EBLS, ECP, EEd/BLS, EEd/CP. See Appendix A for details of the underlying fields.

because these depend on how a ledger is realized, which is

orthogonal to our work. Also, we assume that Execute receives

as inputs the application-specific SNARK proofs checked by the

NP relation. Producing each of these proofs requires invoking

the GM17 prover, over the elliptic curve EBLS, for the relevant

birth or death predicate; we describe the cost of doing so for

representative applications in Section VII-E.

Observe that, as expected, Setup and Execute are the most

costly algorithms as they invoke costly zkSNARK setup and

proving algorithms. To mitigate these costs, Setup and Execute
are executed on 12 threads; everything else is executed on 1
thread. Overall, we learn that Execute takes less 1min, Verify
takes roughly 50ms, and both Setup and Execute use less than

5GB of RAM. These costs are comparable to those of similar

systems such as Zerocash [BCG+14] and Hawk [KMS+16].

D. DPC data structures

Addresses. An address public key in a DPC scheme is a

point on the elliptic curve EEd/BLS, which is 32 bytes when

compressed (see Fig. 7); the corresponding secret key is 64
bytes and consists of a PRF seed (32 bytes) and commitment

randomness (32 bytes).

Transactions. A transaction in a DPC scheme, with two input

and two output records, is 968 bytes. It contains two zkSNARK

proofs: πBLS, over the elliptic curve EBLS, and πCP, over the

curve ECP. Each proof consists of two G1 and one G2 elements

from its respective curve, amounting to 192 bytes for πBLS and

520 for πCP (both in compressed form). In general, a transaction

with m input and n output records is 32m+ 32n+ 840 bytes.

Record contents. We set a record’s payload to be 32 bytes

long; if a predicate needs longer data then it can set the payload

to be the hash of this data, and use non-determinism to access

the data. The foregoing choice means that all contents of a

record add up to 224 bytes, since a record consists of an address

public key (32 bytes), the 32-byte payload, hashes of birth and

death predicates (48 bytes each), a serial number nonce (32
bytes), and commitment randomness (32 bytes).

E. Applications
We do not report total costs for producing transactions for

the applications in Section V because the additional application-

specific costs are negligible compared to the base cost reported

in Table I. This is because all application-specific proofs are

produced over the efficient elliptic curve EBLS, and moreover,

for each application we consider, the heaviest computation

checked by these proofs is the relatively lightweight one of

opening the local data commitment; the remaining costs consist

of a few cheap range and equality checks. Indeed, with two

input and two output records, these applications require fewer

than 35, 000 constraints (compared to over 350, 000 for RBLS

and RCP), and producing the corresponding proofs takes tens

of milliseconds (compared to tens of seconds for the base cost

of DPC.Execute).

Setup 109.62 s
GenAddress 380 μs
Execute 52.5 s
Verify 46ms

TABLE I: Cost of

DPC algorithms for

2 inputs and 2 out-

puts.

2 inputs and 2 outputs 968

m inputs and n outputs
32m+32n+
840

Per input record:

Serial number 32
Per output record:

Commitment 32
Memorandum 32
zkSNARK proof over ECP 520
zkSNARK proof over EBLS 192
Predicate commitment 32
Local data commitment 32
Ledger digest 32

TABLE II: Size of a DPC transaction (in

bytes).

Breakdown of the number of constraints with m input and n output records:

Per input record Total 117699

Enforce validity of:

Merkle tree path 81824
Address key pair 3822
Serial number computation 22301
Record commitment 9752

Per output record Total 15427

Enforce validity of:

Serial number nonce 5417
Record commitment 10010

Other Enforce validity of:

Predicate commitment 21792 · � 3
4 (m + n) + 1

2 �
Local data commitment 7168 · m + 6144 · n

Miscellaneous 7368

Total with 2 inputs and 2 outputs (m = n = 2) 387412

TABLE III: Number of constraints for RBLS.

Breakdown of the number of constraints with m input and n output records:

Per input record Total 87569

Enforce validity of:

Death predicate ver. key 45827
Death predicate proof 41742

Per output record Total 87569

Enforce validity of:

Birth predicate ver. key 45827
Birth predicate proof 41742

Other Enforce validity of:

Predicate commitment 21792 · � 3
4 (m + n) + 1

2 �
Miscellaneous 1780

Total with 2 inputs and 2 outputs (m = n = 2) 439224

TABLE IV: Number of constraints for RCP.
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Appendix A

Details of elliptic curves used in Zexe

In Fig. 8 we report details of the base fields and prime orders

of the elliptic curves EEd/BLS, EBLS, EEd/CP and ECP.

Appendix B

Construction of decentralized private computation

schemes

We describe our construction of a DPC scheme. In Sec-

tion B-A we introduce the building blocks that we use, and in

Section B-B we describe each algorithm in the scheme. The

security proof is provided in the full version.

A. Building blocks

CRHs. A collision-resistant hash function CRH = (Setup,
Eval) works as follows.

• Setup: on input a security parameter, CRH.Setup samples

public parameters ppCRH.

• Hashing: on input public parameters ppCRH and message m,

CRH.Eval outputs a short hash h of m.

Given public parameters ppCRH ← CRH.Setup(1λ), it is

computationally infeasible to find distinct inputs x and y such

that CRH.Eval(ppCRH, x) = CRH.Eval(ppCRH, y).

PRFs. A pseudorandom function family PRF =
{PRFx : {0, 1}∗ → {0, 1}O(|x|)}x, where x denotes the seed,

is computationally indistinguishable from a random function

family to anyone who does not know the x.

Commitments. A commitment scheme CM = (Setup,
Commit) enables a party to generate a (perfectly) hiding and

(computationally) binding commitment to a given message.

• Setup: on input a security parameter, CM.Setup samples

public parameters ppCM.

• Commitment: on input public parameters ppCM, message m,

and randomness rcm, CM.Commit outputs a commitment

cm to m.

We also use a trapdoor commitment scheme TCM = (Setup,
Commit), with the same syntax as above. Auxiliary algorithms

(beyond those in CM) enable producing a trapdoor and using

it to open a commitment, originally to an empty string, to an

arbitrary message. These algorithms are used only in the proof

of security, and so we introduce them there.

NIZKs. Non-interactive zero knowledge arguments of knowl-

edge enable a party, known as the prover, to convince another

party, known as the verifier, about knowledge of the witness

for an NP statement without revealing any information about

the witness (besides what is already implied by the statement

being true). This primitive is a tuple NIZK = (Setup,Prove,
Verify) with the following syntax.

• Setup: on input a security parameter and the specification

of an NP relation R, NIZK.Setup outputs a set of public

parameters ppNIZK.

• Proving: on input ppNIZK and an instance-witness pair

(�,�) ∈ R, NIZK.Prove outputs a proof π.

• Verifying: on input ppNIZK, instance �, and proof π,

NIZK.Verify outputs a decision bit.

Completeness states that honestly generated proofs make the

verifier accept; (computational) proof of knowledge states that

if the verifier accepts a proof for an instance then the prover

“knows” a witness for it; and perfect zero knowledge states that

honestly generated proofs can be perfectly simulated, when

given a trapdoor to the public parameters. In fact, we require

a strong form of (computational) proof of knowledge known

as simulation-extractability, which states that proofs continue

to be proofs of knowledge even when the adversary has seen

prior simulated proofs. For more details, see [Sah99; DDO+01;

Gro06].

Remark B.1. If NIZK is additionally succinct (i.e., it is

a simulation-extractable zkSNARK) then the DPC scheme

constructed in this section is also succinct. This is the case in

our implementation; see Section VI.

B. Algorithms
Pseudocode for our construction of a DPC scheme is in

Fig. 9. The construction involves invoking zero knowledge

proofs for the NP relation Re described in Fig. 10. The text

below is a summary of the construction.

System setup. DPC.Setup is a wrapper around the setup algo-

rithms of cryptographic building blocks. It invokes CM.Setup,

TCM.Setup, CRH.Setup, and NIZK.Setup to obtain (plain and

trapdoor) commitment public parameters ppCM and ppTCM,

CRH public parameters ppCRH, and NIZK public parameters for

the NP relation Re (see Fig. 10). It then outputs pp := (ppCM,
ppTCM, ppCRH, ppe).

Address creation. DPC.GenAddress constructs an address

key pair as follows. The address secret key ask = (skPRF, rpk)
consists of a seed skPRF for the pseudorandom function PRF
and commitment randomness rpk. The address public key apk
is a hiding commitment to skPRF with randomness rpk.

Execution. DPC.Execute produces a transaction attesting

that some old records [ri]
m
1 were consumed and some new

records [rj ]
n
1 were created, and that their death and birth

predicates were satisfied. First, DPC.Execute computes a ledger

membership witness and serial number for every old record.

Then, DPC.Execute invokes the following auxiliary function

to create record commitments for the new records.

DPC.ConstructRecord(pp, apk, payload,Φb,Φd, ρ) → (r, cm)
1) Sample new commitment randomness r.

2) Assemble new record commitment contents: m := (apk‖payload‖Φb‖Φd‖ρ).
3) Construct new record commitment: cm ← TCM.Commit(ppTCM,m; r).
4) Assemble new record

r :=

(
address public key apk payload payload comm. rand. r

serial number nonce ρ predicates (Φb,Φd) commitment cm

)
.

5) Output (r, cm).

Information about all records, secret addresses of old records,

the desired transaction memorandum memo, and desired

auxiliary predicate input aux are collected into the local data

ldata (see Fig. 10).

Finally, DPC.Execute produces a proof that all records are

well-formed and that several conditions hold.

• Old records are properly consumed, namely, for every old

record ri ∈ [ri]
m
1 :
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prime value size in bits 2-adicity

s 0x4aad957a68b2955982d1347970dec005293a3afc43c8afeb95aee9ac33fd9ff 251 1

r 0x12ab655e9a2ca55660b44d1e5c37b00159aa76fed00000010a11800000000001 253 47

t 0x35c748c2f8a21d58c760b80d94292763445b3e601ea271e1
d75fe7d6eeb84234066d10f5d893814103486497d95295

374 2

p 0x1ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1
ef3622fba094800170b5d44300000008508c00000000001

377 46

q 0x3848c4d2263babf8941fe959283d8f526663bc5d176b746a
f0266a7223ee72023d07830c728d80f9d78bab3596c8617c57
9252a3fb77c79c13201ad533049cfe6a399c2f764a12c4024b
ee135c065f4d26b7545d85c16dfd424adace79b57b942ae9

782 3

Fig. 8: The elliptic curves EBLS, ECP, EEd/BLS, EEd/CP.

– (if ri is not dummy) ri exists, demonstrated by checking

a ledger membership witness for ri’s commitment;

– ri has not been consumed, demonstrated by publishing

ri’s serial number sni;
– ri’s death predicate Φd,i is satisfied, demonstrated by

checking that Φd,i(i‖ldata) = 1.

• New records are property created, namely, for every new

record rj ∈ [rj ]
n
1 :

– rj’s serial number is unique, achieved by generating the

nonce ρj as CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm);
– rj’s birth predicate Φb,j is satisfied, demonstrated by

checking that Φb,j(j‖ldata) = 1.

The serial number sn of a record r relative to an address secret

key ask = (skPRF, rpk) is derived by evaluating PRF at r’s
serial number nonce ρ with seed skPRF. This ensures that sn is

pseudorandom even to a party that knows all of r but not ask
(e.g., to a party that created the record for some other party).

Note that each predicate receives its own position as input so

that it knows to which record in the local data it belongs.
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DPC.Setup
Input: security parameter 1

λ

Output: public parameters pp

1) Generate commitment parameters:
ppCM ← CM.Setup(1

λ
), ppTCM ← TCM.Setup(1

λ
).

2) Generate CRH parameters: ppCRH ← CRH.Setup(1
λ
).

3) Generate NIZK parameters for Re (see Figure 10):

ppe ← NIZK.Setup(1
λ
,Re).

4) Output pp := (ppCM, ppTCM, ppCRH, ppe).

DPC.GenAddress
Input: public parameters pp
Output: address key pair (apk, ask)

1) Sample secret key skPRF for pseudorandom function PRF.

2) Sample randomness rpk for commitment scheme CM.

3) Set address public key
apk := CM.Commit(ppCM, skPRF; rpk).

4) Set address secret key ask := (skPRF, rpk).
5) Output (apk, ask).

DPC.Execute
L

Input:
• public parameters pp

• old

{
records [ri]

m
1

address secret keys [aski]
m
1

• new

⎧⎪⎪⎨
⎪⎪⎩

address public keys [apkj ]
n
1

record payloads [payloadj ]
n
1

record birth predicates [Φb,j ]
n
1

record death predicates [Φd,j ]
n
1

• auxiliary predicate input aux
• transaction memorandum memo
Output: new records [rj ]

n
1 and transaction tx

1) For each i ∈ {1, . . . ,m}, process the i-th old record as follows:

a) Parse old record ri as

(
address public key apki payload payloadi comm. rand. ri

serial number nonce ρi predicates (Φb,i,Φd,i) commitment cmi

)
.

b) If payloadi.isDummy = 1, set ledger membership witness �L,i := ⊥.

If payloadi.isDummy = 0, compute ledger membership witness for commitment: �L,i ← L.Prove(cmi).
c) Parse address secret key aski as (skPRF,i, rpk,i).
d) Compute serial number: sni ← PRFskPRF,i

(ρi).

2) For each j ∈ {1, . . . , n}, construct the j-th new record as follows:

a) Compute serial number nonce: ρj := CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm).
b) Construct new record: (rj , cmj) ← DPC.ConstructRecord(ppTCM, apkj , payloadj ,Φb,j ,Φd,j , ρj).

3) Retrieve current ledger digest: stL ← L.Digest.
4) Construct instance �e for Re: �e := (stL, [sni]

m
1 , [cmj ]

n
1 ,memo).

5) Construct witness �e for Re: �e := ([ri]
m
1 , [�L,i]

m
1 , [aski]

m
1 , [rj ]

n
1 , aux).

6) Generate proof for Re: πe ← NIZK.Prove(ppe,�e,�e).
7) Construct transaction: tx := ([sni]

m
1 , [cmj ]

n
1 ,memo, �), where � := (stL, πe).

8) Output ([rj ]
n
1 , tx).

DPC.Verify
L

Input: public parameters pp and transaction tx
Output: decision bit b

1) Parse tx as ([sni]
m
1 , [cmj ]

n
1 ,memo, �) and � as (stL, πe).

2) Check that there are no duplicate serial numbers
a) within the transaction tx: sni �= snj for every distinct i, j ∈ {1, . . . ,m};

b) on the ledger: L.Contains(sni) = 0 for every i ∈ {1, . . . ,m}.

3) Check that the ledger state is valid: L.ValidateDigest(stL) = 1.

4) Construct instance for the relation Re: �e := (stL, [sni]
m
1 , [cmj ]

n
1 ,memo).

5) Check proof for the relation Re: NIZK.Verify(ppe,�e, πe) = 1.

Fig. 9: Construction of a DPC scheme.
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�e =

⎛
⎜⎜⎝

ledger digest stL
old record serial numbers [sni]

m
1

new record commitments [cmj ]
n
1

transaction memorandum memo

⎞
⎟⎟⎠ and �e =
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old records [ri]
m
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old record membership witnesses [�L,i]
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old address secret keys [aski]
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new records [rj ]
n
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auxiliary predicate input aux

⎞
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where

• for each i ∈ {1, . . . ,m}, ri = (apki, payloadi,Φb,i,Φd,i, ρi, ri, cmi);
• for each j ∈ {1, . . . , n}, rj = (apkj , payloadj ,Φb,j ,Φd,j , ρj , rj , cmj).
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n
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1 [payloadj ]
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1 aux
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Then, a witness �e is valid for an instance �e if the following conditions hold:

1) For each i ∈ {i, . . . ,m}:

• If ri is not dummy, �L,i proves that the commitment cmi is in a ledger with digest stL: L.Verify(stL, cmi,�L,i) = 1.

• The address public key apki and secret key aski form a valid key pair:
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• The new record commitment cmj is valid: cmj = TCM.Commit(ppTCM, apkj‖payloadj‖Φb,j‖Φd,j‖ρj ; rj).
• The birth predicate Φb,j is satisfied by local data: Φb,j(j‖ldata) = 1.

Fig. 10: The execute NP relation Re.
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