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Abstract—Deep neural networks are susceptible to various
inference attacks as they remember information about their
training data. We design white-box inference attacks to perform
a comprehensive privacy analysis of deep learning models. We
measure the privacy leakage through parameters of fully trained
models as well as the parameter updates of models during
training. We design inference algorithms for both centralized and
federated learning, with respect to passive and active inference
attackers, and assuming different adversary prior knowledge.

We evaluate our novel white-box membership inference attacks
against deep learning algorithms to trace their training data
records. We show that a straightforward extension of the known
black-box attacks to the white-box setting (through analyzing the
outputs of activation functions) is ineffective. We therefore design
new algorithms tailored to the white-box setting by exploiting
the privacy vulnerabilities of the stochastic gradient descent
algorithm, which is the algorithm used to train deep neural
networks. We investigate the reasons why deep learning models
may leak information about their training data. We then show
that even well-generalized models are significantly susceptible
to white-box membership inference attacks, by analyzing state-
of-the-art pre-trained and publicly available models for the
CIFAR dataset. We also show how adversarial participants,
in the federated learning setting, can successfully run active
membership inference attacks against other participants, even
when the global model achieves high prediction accuracies.

I. INTRODUCTION

Deep neural networks have shown unprecedented gener-
alization for various learning tasks, from image and speech
recognition to generating realistic-looking data. This success
has led to many applications and services that use deep learn-
ing algorithms on large-dimension (and potentially sensitive)
user data, including user speeches, images, medical records,
financial data, social relationships, and location data points.
In this paper, we are interested in answering the following
critical question: What is the privacy risk of deep learning
algorithms to individuals whose data is used for training deep
neural networks? In other words, how much is the information
leakage of deep learning algorithms about their individual
training data samples?

We define privacy-sensitive leakage of a model, about its
training data, as the information that an adversary can learn
from the model about them, which he is not able to infer from
other models that are trained on other data from the same
distribution. This distinguishes between the information that
we can learn from the model about the data population, and
the information that the model leaks about the particular data

samples which are in its training set. The former indicates
utility gain, and the later reflects privacy loss. We design
inference attacks to quantify such privacy leakage.

Inference attacks on machine learning algorithms fall into
two fundamental and related categories: tracing (a.k.a. mem-
bership inference) attacks, and reconstruction attacks [1]. In
a reconstruction attack, the attacker’s objective is to infer
attributes of the records in the training set [2], [3]. In a
membership inference attack, however, the attacker’s objective
is to infer if a particular individual data record was included in
the training dataset [4], [5], [6]. This is a decisional problem,
and its accuracy directly demonstrates the leakage of the model
about its training data. We thus choose this attack as the basis
for our privacy analysis of deep learning models.

Recent works have studied membership inference attacks
against machine learning models in the black-box setting,
where the attacker can only observe the model predictions [6],
[7]. The results of these works show that the distribution of
the training data as well as the generalizability of the model
significantly contribute to the membership leakage. Particu-
larly, they show that overfitted models are more susceptible to
membership inference attacks than generalized models. Such
black-box attacks, however, might not be effective against deep
neural networks that generalize well (having a large set of
parameters). Additionally, in a variety of real-world settings,
the parameters of deep learning algorithms are visible to the
adversaries, e.g., in a federated learning setting where multiple
data holders collaborate to train a global model by sharing their
parameter updates with each other through an aggregator.

Our contributions. In this paper, we present a comprehensive
framework for the privacy analysis of deep neural networks,
using white-box membership inference attacks. We go beyond
membership inference attacks against fully-trained models.
We take all major scenarios where deep learning is used
for training and fine-tuning or updating models, with one
or multiple collaborative data holders, when attacker only
passively observes the model updates or actively influences
the target model in order to extract more information, and
for attackers with different types of prior knowledge. Despite
differences in knowledge, observation, and actions of the
adversary, their objective is the same: membership inference.

A simple extension of existing black-box membership in-
ference attacks to the white-box setting would be using the
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same attack on all of the activation functions of the model.
Our empirical evaluations show that this will not result in
inference accuracy better than that of a black-box attacker.
This is because the activation functions in the model tend to
generalize much faster compared to the output layer. The early
layers of a trained model extract very simple features that
are not specific to the training data. The activation functions
in the last layers extract complex and abstract features, thus
should contain more information about the model’s training
set. However, this information is more or less the same as
what the output leaks about the training data.

We design white-box inference attacks that exploit the
privacy vulnerabilities of the stochastic gradient descent
(SGD) algorithm. Each data point in the training set in-
fluences many of the model parameters, through the SGD
algorithm, to minimize its contribution to the model’s training
loss. The local gradient of the loss on a target data record,
with respect to a given parameter, indicates how much and
in which direction the parameter needs to be changed to fit
the model to the data record. To minimize the expected loss
of the model, the SGD algorithm repeatedly updates model
parameters in a direction that the gradient of the loss over the
whole training dataset leans to zero. Therefore, each training
data sample will leave a distinguishable footprint on the
gradients of the loss function over the model’s parameters.

We use the gradient vector of the model, over all parameters,
on the target data point, as the main feature for the attack. We
design deep learning attack models with an architecture that
processes extracted (gradient) features from different layers of
the target model separately, and combines their information to
compute the membership probability of a target data point.
We train the attack model for attackers with different types
of background knowledge. Assuming a subset of the training
set is known to the attacker, we can train the attack model
in a supervised manner. However, for the adversary that lacks
this knowledge, we train the attack model in an unsupervised
manner. We train auto-encoders to compute a membership
information embedding for any data. We then use a clustering
algorithm, on the target dataset, to separate members from
non-members based on their membership embedding.

To show the effectiveness of our white-box inference at-
tack, we evaluate the privacy of pre-trained and publicly
available state-of-the-art models on the CIFAR100 dataset.
We had no influence on training these models. Our results
show that the DenseNet model—which is the best model on
CIFAR100 with 82% test accuracy—is not much vulnerable
to black-box attacks (with a 54.5% inference attack accuracy,
where 50% is the baseline for random guess). However, our
white-box membership inference attack obtains a consider-
ably higher accuracy of 74.3%. This shows that even well-
generalized deep models might leak significant amount
of information about their training data, and could be
vulnerable to white-box membership inference attacks.

In federated learning, we show that a curious parameter
server or even a participant can perform alarmingly accurate
membership inference attacks against other participants. For

the DenseNet model on CIFAR100, a local participant can
achieve a membership inference accuracy of 72.2%, even
though it only observes aggregate updates through the pa-
rameter server. Also, the curious central parameter server
can achieve a 79.2% inference accuracy, as it receives the
individual parameter updates from all participants. In federated
learning, the repeated parameter updates of the models over
different epochs on the same underlying training set is a key
factor in boosting the inference attack accuracy.

As the contributions (i.e., parameter updates) of an adversar-
ial participant can influence the parameters other parties, in the
federated learning setting, the adversary can actively push
SGD to leak even more information about the participants’
data. We design an active attack that performs gradient ascent
on a set of target data points before uploading and updating
the global parameters. This magnifies the presence of data
points in others’ training sets, in the way SGD reacts by
abruptly reducing the gradient on the target data points if
they are members. On the Densenet model, this leads to a
76.7% inference accuracy for an adversarial participant, and
a significant 82.1% accuracy for an active inference attack by
the central server. By isolating a participant during parameter
updates, the central attacker can boost his accuracy to 87.3%.

II. INFERENCE ATTACKS

We use membership inference attacks to measure the in-
formation leakage through deep learning models about their
training data. There are many different scenarios in which data
is used for training models, and there are many different ways
the attacker can observe the deep learning process. In Table I,
we cover the major criteria to categorize the attacks. This
includes attack observations, assumptions about the adversary
knowledge, the target training algorithm, and the mode of the
attack based on the adversary’s actions. In this section, we
discuss different attack scenarios as well as the techniques
we use to exploit deep learning algorithms. We also describe
the architecture of our attack model, and how the adversary
computes the membership probability.

A. Attack Observations: Black-box vs. White-box Inference

The adversary’s observations of the deep learning algorithm
are what constitute the inputs for the inference attack.
Black-box. In this setting, the adversary’s observation is lim-
ited to the output of the model on arbitrary inputs. For any data
point x, the attacker can only obtain f(x;W). The parameters
of the model W and the intermediate steps of the computation
are not accessible to the attacker. This is the setting of machine
learning as a service platforms. Membership inference attacks
against black-box models are already designed, which exploit
the statistical differences between a model’s predictions on its
training set versus unseen data [6].
White-box. In this setting, the attacker obtains the model
f(x;W) including its parameters which are needed for pre-
diction. Thus, for any input x, in addition to its output, the
attacker can compute all the intermediate computations of
the model. That is, the adversary can compute any function
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Criteria Attacks Description

Observation
Black-box The attacker can obtain the prediction vector f(x) on arbitrary input x, but cannot access the model parameters, nor

the intermediate computations of f(x).

x f f(x)

White-box The attacker has access to the full model f(x;W), notably its architecture and parameters W, and any hyper-parameter
that is needed to use the model for predictions. Thus, he can also observe the intermediate computations at hidden layers
hi(x).

x W1 h1(x) W2 h2(x) · · · Wi f(x)

Target
Stand-alone The attacker observes the final target model f , after the training is done (e.g., in a centralized manner) using dataset D.

He might also observe the updated model fΔ after it has been updated (fine-tuned) using a new dataset DΔ.

xD

f

DΔ

fΔ
fine-tune

Federated The attacker could be the central aggregator, who observes individual updates over time and can control the view of the
participants on the global parameters. He could also be any of the participants who can observe the global parameter
updates, and can control his parameter uploads.

x

Aggregator (global parameters W)

D1

f(x;W
{t}
1 )

D2

f(x;W
{t}
2 )

DN

f(x;W
{t}
N )

· · ·

down=W{t}

up=W{t}
i

Mode
Passive The attacker can only observe the genuine computations by the training algorithm and the model.

Active The attacker could be one of the participants in the federated learning, who adversarially modifies his parameter uploads
W

{t}
i , or could be the central aggregator who adversarially modifies the aggregate parameters W{t} which he sends

to the target participant(s).

Knowledge
Supervised The attacker has a data set D′, which contains a subset of the target set D, as well as some data points from the same

underlying distribution as D that are not in D. The attacker trains an inference model h in a supervised manner, by
minimizing the empirical loss function

∑
d∈D′ (1 − �d∈D)h(d) + �d∈D(1 − h(d)), where the inference model h

computes the membership probability of any data point d in the training set of a given target model f , i.e., h(d) =
Pr(d ∈ D; f).

Data Universe

D

D′

D′
∼ Pr(X = x)

∼ Pr(X = x)

Unsupervised The attacker has data points that are sampled from the same underlying distribution as D. However, he does not have
information about whether a data sample has been in the target set D.

TABLE I: Various categories of inference attacks against machine learning models, based on their prior knowledge, observation, mode of
attack, and the training architecture of the target models.
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∥∥ ∂L
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∥∥

Fig. 1: The architecture of our white-box inference attack. Given
target data (x, y), the objective of the attack is to determine its
membership in the training set D of target model f . The attacker
runs the target model f on the target input x, and computes all the
hidden layers hi(x), the model’s output f(x), and the loss function
L(f(x), y;W), in a forward pass. The attacker also computes the
gradient of the loss with respect to the parameters of each layer
∂L

∂Wi
, in a backward pass. These computations, in addition to the one-

hot encoding of the true label y, construct the input features of the
inference attack. The attack model consists of convolutional neural
network (CNN) components and fully connected network (FCN)
components. For attacking federated learning and fine-tuning, the
attacker observes each attack feature T times, and stacks them before
they are passed to the corresponding attack component. For example,
the loss features are composed as L = {L{1}, L{2}, · · · , L{T}}).
The outputs of the CNN and FCN components are appended together,
and this vector is passed to a fully connected encoder. The output
of the encoder, which is a single value, is the attack output. This
represents an embedding of the membership information in a single
value. In the supervised attack setting, this embedding is trained to
be Pr{(x, y) ∈ D}. In the unsupervised setting, a decoder is trained
to reconstruct important features of the attack input (such as the
model’s output uncertainty H(f(x)), and the norm of its gradients∥
∥ ∂L

∂W

∥
∥) from the attack output. This is similar to deep auto-encoders.

All unspecified attack layers are fully connected. The details of the
architecture of the attack is presented in Table XIV in Appendix A.

over W and x given the model. The most straightforward
functions are the outputs of the hidden layers, hi(x) on the
input x. As a simple extension, the attacker can extend black-
box membership inference attacks (which are limited to the
model’s output) to the outputs of all activation functions of
the model. However, this does not necessarily contain all the
useful information for membership inference. Notably, the
model output and activation functions could generalize if the
model is well regularized. Thus, there might not be much
difference, in distribution, between the activation functions of a
model on its training versus unseen data. This can significantly
limit the power of the inference attacks (as we also show in
our evaluations).

What we suggest is to exploit the algorithm used to train
deep learning models: the stochastic gradient descent (SGD)
algorithm. Let L(f(x;W), y) be the loss function for the
classification model f . During the training, the SGD algorithm
minimizes the empirical expectation of the loss function over
the training set D:

min
W

E(x,y)∼D

[
L(f(x;W), y)

]
(1)

The SGD algorithm solves this minimization by repeatedly
updating parameters, W, towards reducing the loss on small
randomly selected subsets of D. Thus, for any data record in
the training dataset, the gradient of the loss ∂L

∂W over the data
record is pushed towards zero, after each round of training.
This is exactly what we can exploit to extract information
about a model’s training data.

For a target data record (x, y), the adversary can compute
the loss of the model L(f(x;W), y), and can compute the
gradients of the loss with respect to all parameters ∂L

∂W
using a simple back-propagation algorithm. Given the large
number of parameters used in deep neural networks (millions
of parameters), the vector with such a significantly large
dimension cannot properly generalize over the training data
(which in many cases is an order of magnitude smaller in
size). Therefore, the distribution of the model’s gradients on
members of its training data, versus non-members, is likely
to be distinguishable. This can help the adversary to run
an accurate membership inference attack, even though the
classification model (with respect to its predictions) is well-
generalized.
Inference model. We illustrate the membership inference
attack in Figure 1. The significance of gradient (as well as
activation) computations for a membership inference attack
varies over the layers of a deep neural network. The first layers
tend to contain less information about the specific data points
in the training set, compared to non-member data record from
the same underlying distribution. We can provide the gradients
and activations of each layer as separate inputs to the attacker,
as the attacker might need to design a specific attack for each
layer. This enables the inference attack to split the inference
task across different layers of the model, and then combine
them to determine the membership. This engineering of the
attack model architecture empowers the inference attack, as it
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reduces the capacity of the attack model and helps finding the
optimal attack algorithm with less background data.

The distinct inputs to the attack model are the set of
gradients ∂L

∂W1
, ∂L
∂W2

, · · · , the set of activation vectors for
different layers h1(x), h2(x), · · · , the model output f(x), the
one-hot encoding of the label y, and the loss of the model on
the target data L(f(x;W), y). Each of these are separately
fed into the attack model, and are analyzed separately using
independent components.
Inference attack components. The attack model is composed
of feature extraction components and an encoder component.
To extract features from the output of each layer, plus the
one-hot encoding of the true label and the loss, we use fully
connected network (FCN) submodules with one hidden layer.
We use convolutional neural network (CNN) submodules for
the gradients. When the gradients are computed on fully
connected layers (in the target model), we set the size of the
convolutional kernel to the input size of the fully connected
layer, to capture the correlation of the gradients in each
activation function. We reshape the output of each submodule
component into a flat vector, and then concatenate the output
of all components. We combine the outputs of all attack
feature extraction components using a fully connected encoder
component with multiple hidden layers. The output of the
encoder is a single score, which is the output of the attack.
This score (in the supervised attack raining) predicts the
membership probability of the input data.

B. Inference Target: Stand-alone vs. Federated Learning

There are two major types of training algorithms for deep
learning, depending on whether the training data is available
all in one place (i.e., stand-alone centralized training), or it
is distributed among multiple parties who do not trust each
other (i.e., federated learning) [8]. In both cases, the attacker
could be the entity who obtains the final trained model. In
addition to such attack setting, the attacker might observe an
updated version of the model after fine-tuning, for instance,
which is very common in deep learning. Besides, in the
case of federated learning, the attacker can be an entity who
participates in the training. The settings of fine-tunning and
federated learning are depicted in Table I.
Stand-alone fine-tunning. A model f is trained on dataset
D. At a later stage it is updated to fΔ after being fine-tuned
using a new dataset DΔ. If the attacker observes the final
outcome, we want to measure the information leakage of the
final model fΔ about the whole training set D∪DΔ. However,
given that two versions of the model exist (before and after
fine-tuning), we are also interested in measuring the extra
information that could be learned about the training data, from
the two model snapshots. The attacker might also be interested
only in recovering information about the new set DΔ. This is
very relevant in numerous cases where the original model is
trained using some unlabeled (and perhaps public) data, and
then it is fine-tunned using sensitive private labeled data.

The model for inference attacks against fine-tunned models
is a special case of our membership inference model for at-

tacking federated learning. In both cases, the attacker observes
multiple versions of the target model.
Federated learning. In this setting, N participants, who have
different training sets Di, agree on a single deep learning task
and model architecture to train a global model. A central server
keeps the latest version of the parameters W for the global
model. Each participant has a local model, hence a local set
of parameters Wi. In each epoch of training, each participant
downloads the global parameters, updates them locally using
SGD algorithm on their local training data, and uploads them
back to the server. The parameter server computes the average
value for each parameter using the uploaded parameters by
all participants. This collaborative training continues until the
global model converges.

There are two possibilities for the position of the attacker
in federated learning: The adversary can be the centralized pa-
rameter server, or one of the participants. A curious parameter
server can receive updates from each individual participant
over time W

{t}
i , and use them to infer information about

the training set of each participant. A malicious parameter
server can also control the view of each participant on the
global model, and can act actively to extract more information
about the training set of a participant (as we discuss under
active attacks). Alternatively, the adversary can be one of
the participants. An adversarial participant can only observe
the global parameters over time W {t}, and craft his own
adversarial parameter updates W

{t}
i to gain more information

about the union of the training data of all other participants.
In either of these cases, the adversary observes multiple

versions of the target model over time. The adversary can try
to run an independent membership inference attack on each of
these models, and then combine their results. This, however,
might not capture the dependencies between parameter values
over time, which can leak information about the training data.
Instead, in our design we make use of a single inference model,
where each attack component (e.g., components for gradients
of layer i) processes all of its corresponding inputs over the
observed models at once. This is illustrated in Figure 1. For
example, for the attack component that analyzes the loss value
L, the input dimension can be 1×T , if the adversary observes
T versions of the target model over time. The output of the
attack component is also T times larger than the case of
attacking a stand-alone model. These correlated outputs, of all
attack components, are processed all at once by the inference
model.

C. Attack Mode: Passive vs. Active Inference Attack

The inference attacks are mostly passive, where the ad-
versary makes observations without modifying the learning
process. This is the case notably for attacking models after
the training is over, e.g., the stand-alone setting.
Active attacks. The adversary, who is participating in the
training process, can actively influence the target model in
order to extract more information about its training set. This
could be the case notably for running inference attacks against
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federated learning. In this setting, the central parameter server
or a curious participant can craft adversarial parameter up-
dates for a follow-up inference attack. The inference model
architecture will be the same for passive and active attacks.

The active attacker can exploit the SGD algorithm to run the
active attack. The insight we use to design our attack is that
the SGD algorithm forcefully decreases the gradient of the loss
on the training data, with the hope that this generalizes to the
test data as well. The amount of the changes depends on the
contribution of a data point in the loss. So, if a training data
point leads to a large loss, the SGD algorithm will influence
some parameters to adapt themselves towards reducing the loss
on this point. If the data point is not seen by the model during
training, the changes in the gradient on this point is gradual
throughout the training. This is what we exploit in our active
membership inference attack.

Let x be a data record, which is targeted by the adversary
to determine its membership. Let us assume the adversary is
one of the participants. The attacker runs a gradient ascent on
x, and updates its local model parameters in the direction of
increasing the loss on x. This can simply be done by adding
the gradient to the parameters,

W ← W + γ
∂Lx

∂W
, (2)

where γ is the adversarial update rate. The adversary then
uploads the adversarially computed parameters to the central
server, who will aggregate them with the parameter updates
from other participants. The adversary can run this attack on
a batch of target data points all at the same time.

If the target record x is in the training set of a participant,
its local SGD algorithm abruptly reduces the gradient of the
loss on x. This can be detected by the inference model, and
be used to distinguish members from non-members. Repeated
active attacks, which happens in federated learning, lead to
high confidence inference attacks.

D. Prior Knowledge: Supervised vs. Unsupervised Inference

To construct his inference attack model, the adversary needs
to find the meaningful mapping between the model’s behavior
on a data point and its membership in the training set. The
most straightforward way of learning such relationship is
through some known members of the training data, and some
data points from the same distribution which are not in the
training data set. This is illustrated in Table I. The adversary
has a dataset D′ that overlaps with the target dataset D. Given
this dataset, he can train the attack model in a supervised way,
and use it to attack the rest of the training dataset.

Let h be the inference attack model. In the supervised
setting, we minimize the (mean square) loss of the attacker
for predicting the membership of the data points in its training
set D′:

∑

d∈D′∩D

(h(d)− 1)2 +
∑

d∈D′\D
(h(d))2 (3)

If the adversary does not have known samples from the
target training set, there are two possibilities for training

the inference attack models: supervised training on shadow
models [6], and unsupervised training on the target model.
Shadow models are models with the same architecture as the
target model. The training data records for the shadow models
are generated from the same distribution as the target training
data, but do not have a known overlap with the target training
set. The attacker trains the attack model on the shadow models.
As the behavior of the shadow models on their training data is
more or less similar to the behavior of the target model on its
training data, the attack models trained on the shadow models
are empirically shown to be effective.

The attack output for (shadow) supervised training setting
is the probability of membership.

h(d) = Pr(d ∈ D; f) (4)

Unsupervised training of inference models. We introduce
an alternative approach to shadow training, which is unsuper-
vised training of the attack model on the target model. The
assumption for this attack is that the attacker has access to a
dataset D′ which partially overlaps with the target training set
D, however, the adversary does not know which data points
are in D′ ∩D.

Our objective is to find a score for each data point that rep-
resents its embedding in a space, which helps us easily separat-
ing members from non-members (using clustering algorithms).
The attack’s output should compute such representations. We
make use of an encoder-decoder architecture to achieve this.
This is very similar to the auto-encoders for unsupervised deep
learning. As shown in Figure 1, the output of the attack is fed
into a decoder. The decoder is a fully connected network with
one hidden layer.

The objective of the decoder is to reconstruct some key
features of the attack input which are important for member-
ship inference. These include the loss value L, whether the
target model has predicted the correct label �y=argmax f(x),
the confidence of the model on the correct label f(x)y , the
prediction uncertainty (entropy) of the model H(f(x)), and the
norm of the gradients

∥∥ ∂L
∂W

∥∥. As previous work [6] as well
as our empirical results show, these features are strong signals
for distinguishing members from non-members. The encoder-
decoder architecture maximizes the information that the attack
output contains about these features. Thus, it generates a
membership embedding for each data point. Note that after
training the attack model, the decoder plays no role in the
membership inference attack.

The attack in the unsupervised setting is a batch attack,
where the adversary attacks a large set of data records (disjoint
from his background knowledge). We will use the encoder to
for each target data record, and we compute the embedding
value (output of the encoder model). Next, we use a clustering
algorithm (e.g., we use the spectral clustering method) to
cluster each input of the target model in two clusters. Note
that the outcome of the clustering algorithm is a threshold, as
the attack output is a single number. We predict the cluster
with the larger gradient norm as non-members.
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III. EXPERIMENTAL SETUP

We implemented our attacks using Pytorch.1 We trained all
of the models on a PC equipped with four Titan X GPU each
with 12 GB of memory.

A. Datasets

We used three datasets in our experiments: a standard image
recognition benchmark dataset, CIFAR100, and two datasets
Purchase100 and Texas100 [6].
CIFAR100. This is a popular benchmark dataset used to
evaluate image recognition algorithms [9]. It contains 60, 000
color (RGB) images, each 32 × 32 pixels. The images are
clustered into 100 classes based on objects in the images.
Purchase100. The Purchase100 dataset contains the shop-
ping records of several thousand online customers, extracted
during Kaggle’s “acquire valued shopper” challenge.2 The
challenge was designed to identify offers that would attract
new shoppers. We used the processed and simplified version
of this dataset (courtesy of the authors of [6]). Each record
in the dataset is the shopping history of a single user. The
dataset contains 600 different products, and each user has a
binary record which indicates whether she has bought each of
the products (a total of 197, 324 data records). The records
are clustered into 100 classes based on the similarity of the
purchases, and our objective is to identify the class of each
user’s purchases.
Texas100. This dataset includes hospital discharge data
records released by the Texas Department of State Health
Services 3. The records contain generic information about the
patients (gender, age, and race), external causes of injury (e.g.,
drug misuse), the diagnosis, and patient procedures. Similar to
Purchase100, we obtained the processed dataset (Courtesy of
the authors [6]), which contains 67, 330 records and 6, 170
binary features.

B. Target Models

We investigate our attack model on the previously
mentioned three datasets, Texas100, Purchase100 and CI-
FAR100. For the CIFAR100 dataset we used Alexnet [10],
ResNet [11], DenseNet [12] models. We used SGD opti-
mizer [13] to train the CIFAR100 models with learning rates
of 0.01, 0.001, 0.0001 for epochs 0− 50, 50− 100, 100− 300
accordingly. We used l2 regularization with weight of 0.0005.

For the Texas100 and Purchase100 datasets, we used fully
connected models. For Purchase100, we used a model with
layer sizes of 600, 1024, 512, 256, 128, 100 (where 100 is the
output layer), and for Texas100, we used layers with size
1024, 512, 256, 128, 100 (where 100 is the output layer). We
used Adam [13] optimizer with the learning rate of 0.001
for learning of these models. We trained each model for 100
epochs across all of our experiments. We selected the model
with the best testing accuracy across all the 100 epochs.

1https://pytorch.org/
2https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
3https://www.dshs.texas.gov/thcic/hospitals/Inpatientpudf.shtm

C. Pre-trained Models
To demonstrate that our attacks are not limited to our

training algorithm, we used publicly available pre-trained
CIFAR100 models4. All of these models are tuned to get the
best testing accuracy using different regularization techniques.

D. Federated Learning
We performed the training for all of the federated learning

experiments. Specifically, we used the averaging aggregation
method for the federated scenario [8]. Each training party
sends the parameter updates after every epoch of training to
the central model, and the central server averages the models’
updates from the parties and sends the updated model to all
parties. In our experiments, we use the same training dataset
size for all parties, and each party’s training data is selected
uniformly at random from our available datasets.

E. Attack Models
Table XIV in Appendix A, presents the details of our

attack model architecture. As can be seen, we used ReLU
activation functions, and we initialized the weights using a
normal distribution with mean 0 and standard deviation of
0.01. The bias values of all layers are initialized with 0. The
batch size of all experiments is 64. To train the attack model
we use the Adam optimizer with a learning rate of 0.0001. We
train attack models for 100 epochs and pick the model with
the highest testing accuracy, across all the 100 epochs.

Tables II and XI present the dataset sizes used for training
the target and attack models. In the supervised setting for
training the attack models, we assume the attacker has access
to a fraction of the training set and some non-member samples.
In this case, to balance the training, we select half of each
batch to include member instances and the other half non-
member instances from the attacker’s background knowledge.
Creating the batches in this fashion will prevent the attack
model from a bias towards member or non-member instances.

F. Evaluation Metrics

Attack accuracy The attacker’s output has two classes “Mem-
ber” and “Non-member”. Attack accuracy is the fraction of
the correct membership predictions (predicting members as
member and non-members as non-member) for unknown data
points. The size of the set of member and non-member samples
that we use for evaluating the attack are the same.
True/False positive For a more detailed evaluation of attack
performance, we also measure the true positive and false
positive rates of the attacker. Positive is associated with the
attacker outputting “member”.
Prediction uncertainty For a classification model, we com-
pute its prediction uncertainty using the normalized entropy
of its prediction vector for a given input.

H =
1

log(K)

K∑

i=1

pi log(pi) (5)

4We make use of ResNet, DenseNet, and Alexnet pre-trained models,
provided in https://github.com/bearpaw/pytorch-classification
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TABLE II: Size of datasets used for training and testing the target
classification model and the membership inference model

Target Model Inference Attack Model

Datasets Training Test
Training Training Test Test

Members Non-members Members Non-members

CIFAR100 50,000 10,000 25,000 5,000 5,000 5,000

Texas100 10,000 70,000 5,000 10,000 10,000 10,000

Puchase100 20,000 50,000 10,000 10,000 10,000 10,000

where K is the number of all classes and pi is the prediction
probability for the ith class. We compute the probabilities
using a softmax function as pi =

eh(d)(i)

∑K
k=1 eh(d)(k) .

IV. EXPERIMENTS

We start by presenting our results for the stand-alone
scenario, followed by our results for the federated learning
scenario.

A. Stand-Alone Setting: Attacking Fully-Trained Models

We investigate the case where the attacker has access to the
fully-trained target model, in the white-box setting. Therefore,
the attacker can leverage the outputs and the gradients of the
hidden layers of the target model to perform the attack. We
have used pre-trained CIFAR100 models, and have trained
other target models and the attack models using the dataset
sizes which are presented in Table II.
Impact of the outputs of different layers: To understand
and demonstrate the impact of different layers’ outputs, we
perform the attack separately using the outputs of individual
layers. We use a pre-trained Alexnet model as the target model,
where the model is composed of five convolutional layers and
a fully connected layer at the end. Table III shows the accuracy
of the attack using the output of each of the last three layers.
As the table shows, using the last layers results in the highest
attack accuracy, i.e., among the layer outputs, the last layer
(model output) leaks the most membership information
about the training data.The reason behind this is twofold. By
proceeding to the later layers, the capacity of the parameters
ramps up, which leads the target model to store unnecessary
information about the training dataset, and therefore leak more
information. Moreover, the first layers extract simple features
from the input, thus generalize much better compared to the
last layers, which are responsible for complex task of finding
the relationship between abstract features and the classes. We
did not achieve significant accuracy gain by combining the
outputs from multiple layers; this is because the leakage from
the last layer (which is equivalent to a black-box inference
attack) already contains the membership information that leaks
from the output of the previous layers.
Impact of gradients: In Section II-A, we discussed why
gradients should leak information about the training dataset. In
Table VIII, we compare the accuracy of the membership attack
when the attacker uses the gradients versus layer outputs,
for different dataset and models. Overall, the results show

that gradients leak significantly more membership information
about the training set, compared to the layer outputs.

We compare the result of the attack on pre-trained
CIFAR100-ResNet and CIFAR100-DenseNet models, where
both are designed for the same image recognition task, both
are trained on the same dataset, and both have similar gener-
alization error. The results show that these two models have
various degrees of membership leakage; this suggests that the
generalization error is not the right metric to quantify
privacy leakage in the white-box setting. The large capacity
of the model which enables it to learn complex tasks and
generalize well, leads to also memorizing more information
about the training data. The total number of the parameters
in pre-trained Densenet model is 25.62M , whereas this is only
1.7M parameters for ResNet.

We also investigated the impact of gradients of different
layers on attack accuracy. The results are shown in Table IV
show that the gradient of the later layers leak more
membership information. This is similar to our findings for
layer outputs: the last layer generalizes the least among all the
layers in the model, and is the most dependent layer to the
training set. By combining the gradients of all layers, we are
able to only slightly increase the attack accuracy.

Finally, Table V shows the attack accuracy when we com-
bine the output layer and gradients of different layers. We see
that the gradients from the last layer leak the most membership
information.

Impact of the training size: Table VI shows attack accuracy
for various sizes of the attacker’s training data. The models
are tested on the same set of test instances, across all these
scenarios. As expected, increasing the size of the attacker’s
training dataset improves the accuracy of the membership
inference attack.

Impact of the gradient norm: In this experiment, we
demonstrate that the norm of the model’s gradients is highly
correlated with the accuracy of membership inference, as it
behaves differently for member and non-member instances.
Figure 3 plots the last-layer gradient norms over consecutive
training epochs for member and non-member instances (for
the Purchase100 dataset). As can be seen, during training, the
gradient norms of the member instances decrease over training
epochs, which is not the case for non-member instances.

Figure 4 shows the distribution of last-layer gradient norms
for members and non-members on three various pretrained
architectures on CIFAR100. Comparing the figures with Ta-
ble VIII, we see that a model leaks more membership infor-
mation when the distribution of the gradient norm is more
distinct for member and non-member instances. For instance,
we can see that ResNet and DenseNet both have relatively
similar generalization errors, but the gradient norm distribution
of members and non-members is more distinguishable for
DenseNet (Figure 4b) compared to ResNet (Figure 4c). We
see that the attack accuracy in DenseNet is much higher than
ResNet.

Also, we show that the accuracy of our inference attack is
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TABLE III: Attack accuracy using the outputs of individual activa-
tion layers. Pre-trained Alexnet on CIFAR100, stand-alone setting.

Output Layer Attack Accuracy

Last layer (prediction vector) 74.6% (black-box)

Second to last 74.1%

Third to last 72.9%

Last three layers, combined 74.6%
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Fig. 2: Attack accuracy is different for different output classes (pre-
trained CIFAR100-Alextnet model in the stand-alone scenario).

higher for classification output classes (of the target model)
with a larger difference in member/non-member gradient
norms. Figure 2a plots the average of last layer’s gradient
norms for different output classes for member and non-
member instances; we see that the difference of gradient norms
between members and non-members varies across different
classes. Figure 2b shows the receiver operating characteristic
(ROC) curve of the inference attack for three output classes
with small, medium, and large differences of gradient norm
between members and non-members (averaged over many
samples). As can be seen, the larger the difference of gradient
norm between members and non-members, the higher the
accuracy of the membership inference attack.

TABLE IV: Attack accuracy when we apply the attack using
parameter gradients of different layers. (CIFAR100 dataset with
Alexnet architecture, stand-alone scenario)

Gradient w.r.t. Attack Accuracy

Last layer parameters 75.1%

Second to last layer parameters 74.6%

Third to last layer parameters 73.5%

Forth to last layer parameters 72.6%

Parameters of last four layers, combined 75.15%

TABLE V: Attack accuracy using different combinations of layer
gradients and outputs. (CIFAR100 dataset with Alexnet architecture,
stand-alone scenario)

Gradients w.r.t. Output Layers Attack Test Accuracy

Last Layer - 75.10%

Last layer Last layer 75.11%

Last Layer All Layer 75.12%

All Layer All Layer 75.18%

TABLE VI: Attack accuracy for various sizes of the attacker’s
training dataset. The size of the target model’s training dataset is
50,000. (The CIFAR100 dataset with Alexnet, stand-alone scenario)

Members Sizes Non-members Sizes Attack Accuracy

10,000 2,000 73.2%

15,000 2,000 73.7%

15,000 5,000 74.8%

25,000 5,000 75.1%

TABLE VII: Accuracy of our unsupervised attack compared to the
Shadow models approach [6] for the white-box scenario.

Dataset Arch
(Unsupervised) (Shadow Models)

Attack Accuracy Attack Accuracy

CIFAR100 Alexnet 75.0% 70.5%

CIFAR100 DenseNet 71.2% 64.2%

CIFAR100 ResNet 63.1% 60.9%

Texas100 Fully Connected 66.3% 65.3%

Purchase100 Fully Connected 71.0% 68.2%

Impact of prediction uncertainty: Previous work [6] claims
that the prediction vector’s uncertainty is an important factor
in privacy leakage. We validate this claim by evaluating the
attack for different classes in CIFAR100-Alexnet with different
prediction uncertainties. Specifically, we selected three classes
with small, medium, and high differences of prediction uncer-
tainties, where the attack accuracies are shown in Figure 6 for
these classes. Similar to the differences in gradient norms, the
classes with higher prediction uncertainty values leak more
membership information.

B. Stand-Alone Setting: Unsupervised Attacks

We also implement our attacks in an unsupervised scenario,
in which the attacker has data points sampled from the same
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TABLE VIII: The attack accuracy for different datasets and different target architectures using layer outputs versus gradients. This is the
result of analyzing the stand-alone scenario, where the CIFAR100 models are all obtained from pre-trained online repositories.

Target Model Attack Accuracy

Dataset Architecture Train Accuracy Test Accuracy Black-box White-box (Outputs) White-box (Gradients)

CIFAR100 Alexnet 99% 44% 74.2% 74.6% 75.1%

CIFAR100 ResNet 89% 73% 62.2% 62.2% 64.3%

CIFAR100 DenseNet 100% 82% 67.7% 67.7% 74.3%

Texas100 Fully Connected 81.6% 52% 63.0% 63.3% 68.3%

Purchase100 Fully Connected 100% 80% 67.6% 67.6% 73.4%

TABLE IX: Attack accuracy on fine-tuned models. D is the initial training set, DΔ is the new dataset used for fine-tuning, and D̄ is the
set of non-members (which is disjoint with D and DΔ).

Dataset Architecture Train Acc. Test Acc. Distinguish D from DΔ Distinguish D from D̄ Distinguish DΔ from D̄

CIFAR100 Alexnet 100.0% 39.8% 62.1% 75.4% 71.3%

CIFAR100 DenseNet 100.0% 64.3% 63.3% 74.6% 71.5%

Texas100 Fully Connected 95.2% 48.6% 58.4% 68.4% 67.2%

Purchase100 Fully Connected 100.0% 77.5% 64.4% 73.8% 71.2%

0 20 40 60 80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Training epoch

G
ra

di
en

t
no

rm

Member instances
Non-member instances

Fig. 3: Gradient norms of the last layer during learning epochs for
member and non-member instances (for Purchase100).

underlying distribution, but he does not know their member
and non-member labels. In this case, the attacker classifies the
tested records into two clusters as described in Section II-D.

We implemented our attack and compared its performance
to Shadow models of Shokri et al. [6] introduced earlier. We
train our unsupervised models on various datasets based on the
training and test dataset sizes in Table II. We train a single
Shadow model on each of Texas100 and Purchase100 datasets
using training sizes according to Table II. The training sets of
the Shadow models do no overlap with the training sets of
the target models. For the CIFAR100 dataset, however, our
Shadow model uses a training dataset that overlaps with the
target model’s dataset, as we do not have enough instances
(we train each model with 50,000 instances out of the total
60,000 available records).

After the training, we use the Spectral clustering algo-
rithm [14] to divide the input samples into two clusters. As
shown earlier (Figure 4), the member instances have smaller

gradient norm values. Therefore, we assign the member label
to the cluster with a smaller average gradient norm, and the
non-member label to the other cluster.

Table VII compares the accuracy of our unsupervised attack
with shadow training [6] on various datasets and architectures.
We see that our approach offers a noticeably higher accuracy.

The intuition behind our attack working is that the encoded
values of our unsupervised algorithm present different distri-
butions for member and non-member samples. This can be
seen in Figure 5 for various datasets and architectures.

C. Stand-Alone Setting: Attacking Fine-Tuned Models

We investigate privacy leakage of fine-tuned target models.
In this scenario, the victim trains a model with dataset D, then
he uses a dataset DΔ to fine-tune the trained model to improve
its performance. Hence, the attacker has two snapshots of the
trained model, one using only D, and one for the same model
which is fine-tuned using DΔ. We assume the attacker has
access to both of the trained models (before and after fine-
tuning). We are interested in applying the membership infer-
ence attack in this scenario, where the goal of the adversary is
to distinguish between the members of D, DΔ, and D̄, which
is a set of non-members.

We use the same training dataset as in the previous experi-
ments (Table II); we used 60% of the train dataset as D and the
rest for DΔ. Table IX shows the train, test, and attack accuracy
for different scenarios. As can be seen, the attacker is able to
distinguish between members (in D or DΔ) and non-members
(D̄) with accuracies similar to previous settings. Additionally,
the attacker can also distinguish between the members of D
and DΔ with reasonably high accuracies.

D. Federated Learning Settings: Passive Inference Attacks

Table XI shows the dataset sizes used in our federated
attack experiments. For the CIFAR100 experiment with a
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Fig. 4: The distribution of gradient norms for member and non-member instances of different pretrained models.

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

Encoded value

Fr
ac

tio
n

Non-member
Member

(a) DenseNet-CIFAR100

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

Encoded value

Fr
ac

tio
n

Non-member
Member

(b) ResNet-CIFAR100

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

Encoded value
Fr

ac
tio

n

Non-member
Member

(c) AlexNet-CIFAR100

Fig. 5: The distribution of the encoded values (i.e., the attack output) for the member and non-member instances of our
unsupervised algorithm are distinguishable. This is the intuition behind the high accuracy of our unsupervised attack.
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Fig. 6: Attack’s ROC for three different classes of data with
large, medium, and small prediction uncertainty values (pre-trained
CIFAR100-Alextnet model in the stand-alone scenario).

local attacker, each participant uses 30,000 instances to train,
which overlaps between various participants due to non-
sufficient number of instances. For all the other experiments,
the participants use non-overlapping datasets. In the following,

we present the attack in various settings.
The Passive Global Attacker: In this scenario, the attacker
(the parameter aggregator) has access to the target model’s
parameters over multiple training epochs (see Section II-B).
Thus, he can passively collect all the parameter updates
from all of the participants, at each epoch, and can perform
the membership inference attack against each of the target
participants, separately.

Due to our limited GPU resources, our attack observes each
target participant during only five (non-consecutive) training
epochs. Table XII shows the accuracy of our attack when
it uses different sets of training epochs (for the CIFAR100
dataset with Alexnet). We see that using later epochs, sub-
stantially increases the attack accuracy. Intuitively, this is
because the earlier training epochs contain information of the
generic features of the dataset, which do not leak significant
membership information, however, the later epochs contain
more membership information as the model starts to learn the
outliers in such epochs [15].

Table X presents the results of this attack on different
datasets. For the Purchase100 and Texas100 datasets we use
the [40, 60, 80, 90, 100] training epochs, and for the CIFAR100
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TABLE X: Attack accuracy in the federated learning setting. There are 4 participants. A global attacker is the central parameter aggregator,
and the local attacker is one of the participants. The global attacker performs the inference against each individual participant, and we report
the average attack accuracy. The local attacker performs the inference against all other participants. The passive attacker follows the protocol
and only observes the updates. The active attacker changes its updates, or (in the case of a global attack) isolates one participant by not
passing the updates of other participants to it, in order to increase the information leakage.

Target Model Global Attacker (the parameter aggregator) Local Attacker (a participant)

Passive Active Passive Active

Dataset Architecture Gradient Ascent Isolating Isolating Gradient Ascent Gradient Ascent

CIFAR100 Alexnet 85.1% 88.2% 89.0% 92.1% 73.1% 76.3%

CIFAR100 DenseNet 79.2% 82.1% 84.3% 87.3% 72.2% 76.7%

Texas100 Fully Connected 66.4% 69.5% 69.3% 71.7% 62.4% 66.4%

Purchase100 Fully Connected 72.4% 75.4% 75.3% 82.5% 65.8% 69.8%
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Fig. 7: The impact of the global active gradient ascent attack on the target model’s training process. Figures show the gradient
norms of various instances (Purchase100 dataset) during the training phase, while the target instances are under attack.

TABLE XI: Dataset sizes in the federated learning experiments

Parties’ Datasets Inference Attack Model

Datasets Training Test
Training Training Test Test

Members Non-members Members Non-members

CIFAR100 30,000 10,000 15,000 5,000 5,000 5,000

Texas100 8,000 70,000 4,000 4,000 4,000 4,000

Puchase100 10,000 50,000 5,000 5,000 5,000 5,000

TABLE XII: The accuracy of the passive global attacker in the
federated setting when the attacker uses various training epochs.
(CIFAR100-Alexnet)

Observed Epochs Attack Accuracy

5, 10, 15, 20, 25 57.4%

10, 20, 30, 40, 50 76.5%

50, 100, 150, 200, 250 79.5%

100, 150, 200, 250, 300 85.1%

TABLE XIII: The accuracy of the passive local attacker for different
numbers of participants. (CIFAR100-Alexnet)

Number of Participants Attack Accuracy

2 89.0%

3 78.1%

4 76.7%

5 67.2%

dataset we use epochs [100, 150, 200, 250, 300]. When the
attacker has access to several training epochs in the CIFAR100
target models, he achieves a high membership attack accuracy.
In Texas100 and Purchase100 datasets, however, the accuracy
of the attack decreases compare to the stand-alone setting.
This is due to the fact that averaging in the federated learning
scenarios will reduce the impact of each individual party.

The Passive Local Attacker: A local attacker cannot observe
the model updates of the participants; he can only observe the
aggregate model parameters. We use the same attack model
architecture as that of the global attack. In our experiments,
there are four participants (including the local attacker). The
goal of the attacker is to learn if a target input has been a
member of the training data of any other participants. Table X
shows the accuracy of our attack on various datasets. As
expected, a local attack has a lower accuracy compared to the
global attack; this is because the local attacker observes the
aggregate model parameters of all participants, which limits
the extent of membership leakage. The accuracy of the local
attacker degrades for larger numbers of participants. This is
shown in Table XIII for the CIFAR100 on Alexnet model.

E. Federated Learning Settings: Active Inference Attacks

Table X shows the results of attacks on federated learning.
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The Gradient Ascent Attacker: In this scenario, the attacker
adversarially manipulates the learning process to improve the
membership inference accuracy. The active attack is described
in Section II-C. We evaluate the attack accuracy on predicting
the membership of 100 randomly sampled member instances,
from the target model, and 100 non-member instances. For
all such target instances (whose membership is unknown to
the attacker), the attacker updates their data features towards
ascending the gradients of the global model (in case of the
global attack) or the local model (in the case of a local attack).

Figure 7 compares the last-layer gradient norm of the target
model for different data points. As Figure 7a shows, when
the attacker ascends on the gradients of the target instances,
the gradient norm of the target members will be very similar
to that of non-target member instances in various training
epochs. On the other hand, this is not true for the non-member
instances as shown in Figure 7b.

Intuitively, this is because applying the gradient ascent
algorithm on a member instance will trigger the target model
to try to minimize its loss by descending in the direction
of the model’s gradient for those instances (and therefore
nullify the effect of the attacker’s ascent). For target non-
member instances, however, the model will not explicitly
change their gradient, as they do not influence the training
loss function. The attacker repeats gradient ascend algorithm
for each epoch of the training, therefore, the gradient of the
model will keep increasing on such non-member instances.
Figure 7c depicts the resulted distinction between the gradient
norm of the member and non-member target instances. The
active gradient ascend attacker forces the target model to
behave drastically different between target member and target
non-member instances which makes the membership inference
attack easier. As a result, compared to the passive global
attacker we see that the active attack can noticeably gain higher
accuracy. In the local case, the accuracy is lower than the
global attack due to the observation of aggregated parameters
from multiple participants.

The Isolating Attacker: The parameter aggregation in the
federated learning scenario negatively influences the accuracy
of the membership inference attacks. An active global attacker
can overcome this problem by isolating a target participant,
and creating a local view of the network for it. In this
scenario, the attacker does not send the aggregate parameters
of all parties to the target party. Instead, the attacker isolates
the target participant and segregates the target participant’s
learning process.

When the attacker isolates the target participant, then the
target participant’s model does not get aggregated with the
parameters of other parties. As a result, it stores more infor-
mation about its training dataset in the model. Thus, simply
isolating the training of a target model significantly increases
the attack accuracy. We can apply the isolating method to
the gradient ascent attacker and further improve the attacker
accuracy. See Table X for all the results.

V. RELATED WORK

Investigating different inference attacks on deep neural
networks is an active area of research.

A. Membership Inference Attacks

Multiple research papers have studied membership inference
attacks in a black-box setting [6], [16], [7]. Homer et al. [4]
performed one of the first membership inference attacks on
genomic data. Shokri et al. [6] showed that an ML model’s
output has distinguishable properties about its training data,
which could be exploited by the adversary’s inference model.
They introduced shadow models that mimic the behavior of
the target model, which are used by the attacker to train
the attack model. Salem et al. [17] extended the attacks of
Shokri et al. [6] and showed empirically that it is possible
to use a single shadow model (instead of several shadow
models used in [6]) to perform the same attack. They further
demonstrated that even if the attacker does not have access
to the target model’s training data, she can use statistical
properties of outputs (e.g., entropy) to perform membership in-
ference. Yeom et al. [7] demonstrated the relationship between
overfitting and membership inference attacks. Hayes et al. [18]
used generative adversarial networks to perform membership
attacks on generative models.

Melis et al. [19] developed a new set of membership
inference attacks for the collaborative learning. The attack
assumes that the participants update the central server after
each mini-batch, as opposed to updating after each training
epoch [20], [21]. Also, the proposed membership inference
attack is designed exclusively for models that use explicit
word embeddings (which reveal the set of words used in the
training sentences in a mini-batch) with very small training
mini-batches.

In this paper, we evaluate standard learning mechanisms
for deep learning and standard target models for various
architectures. We showed that our attacks work even if we
use pre-trained, state-of-the-art target models.

Differential privacy [22], [23] has been used as a strong
defense mechanism against inference attacks in the context of
machine learning [24], [25], [26], [27]. Several works [28],
[29], [30] have shown that by using adversarial training, one
can find a better trade-off between privacy and model accuracy.
However, the focus of this line of work is on the membership
inference attack in the black-box setting.

B. Other Inference Attacks

An attacker with additional information about the training
data distribution can perform various types of inference at-
tacks. Input inference [31], attribute inference [32], parameter
inference [33], [34], and side-channel attacks [35] are several
examples of such attacks. Ateniese et al. [36] show that an
adversary with access to the parameters of machine learning
models such as Support Vector Machines (SVM) or Hidden
Markov Models (HMM) [37] can extract valuable information
about the training data (e.g., the accent of the speakers in
speech recognition models).
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VI. CONCLUSIONS

We designed and evaluated novel white-box membership
inference attacks against neural network models by exploiting
the privacy vulnerabilities of the stochastic gradient descent
algorithm. We demonstrated our attacks in the stand-alone and
federated settings, with respect to passive and active inference
attackers, and assuming different adversary prior knowledge.
We showed that even well-generalized models are significantly
susceptible to such white-box membership inference attacks.
Our work did not investigate theoretical bounds on the privacy
leakage of deep learning in the white-box setting, which would
remain as a topic of future research.
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APPENDIX A
ARCHITECTURE OF THE ATTACK MODEL

TABLE XIV: Attack model layer sizes

Name Layers Details

Output Component 2 Fully Connected Layers

Sizes: 128, 64

Activation: ReLU

Dropout: 0.2

Label Component 2 Fully Connected Layers

Sizes: 128, 64

Activation: ReLU

Dropout: 0.2

Loss Component 2 Fully Connected Layers

Sizes: 128, 64

Activation: ReLU

Dropout: 0.2

Gradient Component

Convolutional Layer

Kernels: 1000

Kernel size: 1× Next layer

Stride:1

Dropout: 0.2

2 Fully Connected Layers

Sizes: 128, 64

Activation: ReLU

Dropout: 0.2

Encoder Component 4 Fully Connected Layers

Sizes: 256, 128, 64, 1

Activation: ReLU

Dropout: 0.2

Decoder Component 2 Fully Connected Layers

Sizes: 64, 4

Activation: ReLU

Dropout: 0.2
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