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Abstract—With the proliferation of Trusted Execution Envi-
ronments (TEEs) such as Intel SGX, a number of cloud providers
will soon introduce TEE capabilities within their offering (e.g.,
Microsoft Azure). The integration of SGX within the cloud
considerably strengthens the threat model for cloud applications.
However, cloud deployments depend on the ability of the cloud
operator to add and remove application dynamically; this is no
longer possible given the current model to deploy and provision
enclaves that actively involves the application owner. In this
paper, we propose ReplicaTEE, a solution that enables seamless
commissioning and decommissioning of TEE-based applications
in the cloud. ReplicaTEE leverages an SGX-based provisioning
service that interfaces with a Byzantine Fault-Tolerant storage
service to securely orchestrate enclave replication in the cloud,
without the active intervention of the application owner. Namely,
in ReplicaTEE, the application owner entrusts application se-
cret to the provisioning service; the latter handles all enclave
commissioning and decommissioning operations throughout the
application lifetime. We analyze the security of ReplicaTEE and
show that it is secure against attacks by a powerful adversary
that can compromise a large fraction of the cloud infrastructure.
We implement a prototype of ReplicaTEE in a realistic cloud
environment and evaluate its performance. ReplicaTEE moder-
ately increments the TCB by ≈ 800 LoC. Our evaluation shows
that ReplicaTEE does not add significant overhead to existing
SGX-based applications.

Index Terms—TEE, SGX, replication, cloud

I. INTRODUCTION

The cloud has been recently gaining several adopters among

SMEs and large businesses that are mainly interested in

minimizing the costs of deployment, management, and main-

tenance of their computing infrastructure. Cost effectiveness is

realized in the cloud by coupling multi-tenancy with so-called

elastic deployment strategies that ensure unprecedented levels

of scalability at low costs.

With the recent proliferation of Trusted Execution Environ-

ments (TEEs) such as Intel SGX, a number of cloud providers

will soon introduce TEE capabilities within their offering (e.g.,

Microsoft Azure [2]). Using TEEs within the cloud allows

the design of secure applications (e.g, [21], [28], [27]) that

can tolerate malware and system vulnerabilities, as application

secrets are shielded from any privileged code on the same host.

Although the integration of SGX within the cloud consid-

erably strengthens the threat model for cloud applications,
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the current model to deploy and provision an enclave, pre-

vents the cloud operator from adding or removing enclaves

dynamically—thus effectively hampering elasticity. Namely,

elastic deployment assumes that the cloud operator can swiftly

add or remove replicas of an application (be it a VM or

an enclave) depending on factors such as current load or

throughput. Yet, the deployment model of SGX prevents a

cloud provider to dynamically start new enclaves. That is,

SGX enclaves bear no secrets when deployed; secrets are

securely provisioned to the enclave by the application owner

after he attests the application code and makes sure that it

runs untampered in an enclave on an SGX-enabled platform.

In a nutshell, dynamic deployment for TEE-based applications

in the cloud requires the application owner to be online

throughout the whole application lifetime. The only alternative

for an application owner is to entrust the secrets of his

application to the cloud provider. This, however, obviates the

shift to deploy SGX enclaves in the cloud since it exposes all

application secrets to malware that may potentially penetrate

the cloud infrastructure.

Although the community features a number of studies on

SGX security in the cloud [24], [10], [11], no previous work

has addressed the problem of enabling seamless commission-

ing and decommissioning of enclaves in the cloud. Here, there

are a number of challenges to overcome. One the one hand,

such a service should remove the need of an online application

owner. On the other hand, it should warrant owners the same

security provisions of the current provisioning model, where

owners attest and provision secrets to their applications.

Further, the number of running replicas of a given applica-

tions must be controlled, since unrestricted enclave replication

may amplify the effectiveness of forking attacks [10]. In a

forking attack, the adversary runs several instances of an

application and provides them with different state or inputs to

influence their behavior. For example, consider an authentica-

tion service running in SGX enclaves. To mitigate brute-force

attacks, the service may use rate-limiting and, for example,

allow up to 3 password trials per account. An adversary that

manages to compromise the cloud infrastructure could launch

several instances of the service in order to increase the number

of trials per account and brute-force passwords. A service that

automatically provisions enclaves must, therefore, control the

number of running enclaves for a given application at all times,

despite malware that may penetrate the cloud infrastructure.
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In this paper, we propose ReplicaTEE, a solution that en-

ables dynamic enclave commissioning and decommissioning

for TEE-based applications in the cloud. ReplicaTEE leverages

a distributed SGX-based provisioning service that interfaces

with a Byzantine Fault-Tolerant (BFT) storage service to

orchestrate secure and dynamic enclave replication in the

cloud. Namely, in ReplicaTEE, the application owner entrusts

application secrets to the provisioning service and can go

offline. The provisioning service is a distributed service that

runs entirely in SGX enclaves and assists the cloud to add or

remove enclaves of an application on behalf of the application

owner. Application secrets are, therefore, shielded away from

malware that penetrates the cloud, as they are securely trans-

ferred from the application owner to the provisioning service,

onto application enclaves.

The provisioning service also controls the number of run-

ning enclaves for a given application, in order to mitigate fork-

ing attacks against victim applications. Yet, a forking attack

against the provisioning service itself, may allow an adversary

to run an arbitrary number of enclaves of a victim application

(and therefore launch a forking attack against the victim). We

prevent forking attacks against the provisioning service by

leveraging a distributed BFT storage service that guarantees

dependable storage despite compromise of a fraction of its

nodes. We design the provisioning service to duly store onto

the storage service any operation regarding commissioning

and decommissioning enclaves so to constantly control the

number of running enclaves for each application. As a re-

sult, ReplicaTEE protects confidentiality of application secrets

against an adversary that can compromise privileged code on

the cloud’s platforms. Forking attacks against applications are

mitigated as long as the number of compromised nodes in the

storage service remains below a tuneable threshold.

We design ReplicaTEE to be compliant with the existing In-

tel SGX SDK. We also implement a prototype of ReplicaTEE

in a realistic cloud environment and evaluate its performance.

Our evaluation shows that ReplicaTEE increments the TCB

by approximately 800 Lines of Code (LoC) and does not add

significant overhead to existing SGX-based applications.

The remainder of this paper is structured as follows. In

Section II, we review Intel SGX and BFT storage solutions that

leverage TEEs. In Section III, we introduce our system and

threat models, we discuss our design goals, and provide a brief

overview of our solution. In Section IV, we provide details of

ReplicaTEE and analyze its security. In Section V, we evaluate

a prototype implementation of ReplicaTEE within a realistic

cloud environment. We review related work in Section VI, and

we conclude the paper in Section VII.

II. PRELIMINARIES

We now briefly review Intel SGX and we outline existing

Byzantine Fault-Tolerant storage protocols that leverage TEEs.

A. Intel SGX

Software Guard Extensions (SGX) is the latest realization

of Trusted Execution Environment by Intel, available on

Skylake and later CPUs. It allows application to run in secure

containers called enclaves with dedicated memory regions that

are secured with on-chip memory encryption. Access to the

encrypted memory is mediated by the hardware, effectively

excluding the OS or any other software from the Trusted

Computing Base (TCB).

Privileged code on the planform can create and add data

to an enclave with instructions ECREATE, EADD, EINIT.

After creation, the enclave code can only be invoked using

a thin interface via instructions EENTER and ERESUME;

enclave code returns by calling EEXIT, which ensures that

any sensitive information is flushed before control is given

back to the OS.

State persistence across reboots is available through seal-
ing, i.e., hardware-managed authenticated and confidential

persistent storage. Enclaves can use instructions EREPORT
and EGETKEY to retrieve an enclave-specific (and platform-

specific) key to encrypt data before writing it on persistent

storage. Keys are uniquely bound to the identity of an enclave

so that no other software including no other enclave can access

them.1 Note that the sealing functionality that offers SGX does

not ensure freshness. That is, a malicious OS may present stale

state information to an enclave, what is commonly referred to

as a rollback attack [29]. This is in part mitigated by the use

of monotonic counters provided by the platform. However,

monotonic counters are apparently slow and the registries

where they are stored wear out with usage [24].

SGX allows a remote party to verify that a piece of code

runs in an enclave on an SGX-enabled platform. This mecha-

nisms, called remote attestation, uses a tailored group signature

scheme [14] scheme that provides platform anonymity, i.e., the

verifier is assured that the enclave runs on an SGX platform

without being able to tell it apart from other SGX platforms.

Remote attestation in SGX is a two-step process. During the

first step, the enclave to be attested proves its identity to a

system enclave present on every platform and called quoting
enclave. The latter has access to the signing key and produces

a publicly verifiable quote that allows the verifier to remotely

attest the enclave. In its current implementation, attestation

involves an Intel service (Intel Attestation Service, IAS) that

mediates communication between quoting enclaves and remote

verifiers. In particular, the IAS only allows registered parties

to issue remote attestation requests. Also, the quote produced

by a quoting enclave is encrypted under the IAS public key,

so that only the IAS can verify a quote. The IAS then signs

a publicly verifiable statement to confirm that the enclave

runs on an SGX platform. As a by-product of the attestation

protocol, the prover and the verifier establish a mutually au-

thenticated Diffie-Hellman key. In particular, the verifier signs

its ephemeral key and the enclave must hold the corresponding

verification key to verify the signature. Also, the quote signed

by the quoting enclave guarantees that the prover’s ephemeral

key belongs to the specific enclave being attested.

1Keys may also be bound to a “sealing authority” in order to allow secure
storage across different versions of the same application.
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B. Byzantine Fault-Tolerant Storage using TEEs

The community features a large number of Byzantine Fault-

Tolerant protocols (BFT) [17], [6], [16] based on state repli-

cation across different nodes, called “replicas”. Some replicas

may be faulty and their failure mode can be either crash or

Byzantine (i.e., deviating arbitrarily from the protocol [22]).

Classical BFT protocols require 3f + 1 nodes and O(n2)
communication rounds among these nodes in order to tolerate

up to f Byzantine nodes.

Since agreement in classical BFT is rather expensive, prior

work has attempted to improve performance by leveraging

trusted hardware. Namely, previous work showed how to use

trusted hardware to reduce the number of replicas and/or

communication rounds for BFT protocols [8], [20], [30].

For example, MinBFT [30] is an efficient BFT protocol

that reduces the communication rounds and the number of

replicas used by conventional BFT protocols, by leveraging

functionality from TEEs, such as Intel SGX. As a result, the

number of required replicas is reduced from 3f +1 to 2f +1.

In MinBFT writers send write requests (e.g., using a PUT

interface) to the replicas, which are all expected to execute

the requests in the same order (i.e., maintain a common state).

Readers can read content previously written onto the replica

nodes. The main idea of MinBFT is to rely on the sequential

monotonic counter provided by trusted hardware, in order to

bind each message sent to a unique counter value. This is

ensured by requiring a signature from the local TEE on all

messages sent by the replica; the intuition is that the TEE will

sign messages with a given counter value only once, thereby

preventing replicas from assigning the same counter value to

different messages—commonly referred to as equivocation.

More details about MinBFT can be found in Appendix A.

III. MODEL & OVERVIEW

A. System Model

We consider a scenario where a cloud provider manages a

set of SGX-enabled platforms. Application owners can upload

code to be executed on such platforms. Applications could

either run computation on behalf of their owners such as a

map-reduce service [27], or provide public functionalities such

as an online password-strengthening service [21].

Deployment. In a real-world deployment of ReplicaTEE,

application owners would acquire (e.g., rent) VMs at the cloud

and split the logic of their applications (e.g., by using available

tools [23]) in sensitive code to be run in an enclave and

non-sensitive code that can run inside the VM. Therefore,

each of the cloud platforms would host VMs from different

tenants and each VM would have one or more enclaves.

However, for the sake of simplicity, we assume in this paper

that the entire application code is executed in enclaves. Given

this assumption, each of the cloud platforms hosts multiple

enclaves belonging to different owners.

Dynamic Provisioning. In line with current elastic cloud

settings, we assume that multiple instances of the same ap-

plication enclave may dynamically be started or shut down. In

the following, we use the term application enclave to refer to

an instance of application code running in an enclave, and we

use application to denote the logical entity spanning multiple

enclaves running the same code.

We are agnostic on how the decision to add or remove appli-

cation enclaves for a given application is made. For example,

this decision may be taken by the cloud for reasons such as

load, throughput, or efficient resource utilization. Alternatively,

the application itself may monitor its performance and, when

needed, ask the cloud to add or remove instances.

B. Threat Model

The goal of the adversary that we consider is two-fold. On

the one hand, the adversary is interested to leak the secrets

of the applications. On the other hand, the adversary might

also be interested in deploying a large number of application

enclaves in order to amplify the effect of a forking attack

against a victim application.

The adversary can compromise privileged code on a node

and we denote that node as compromised. Throughout the

paper, we include SGX in the TCB and therefore assume

that the adversary cannot compromise SGX components (e.g.,

system or application enclaves) on the compromised node.

Namely, we do not take into account attacks specific to SGX,

such as the ones that exploit side-channels [12]. Measures

to mitigate attacks against SGX [26], [18] are orthogonal to

ReplicaTEE and could be deployed alongside our solution.

Although we do not consider DoS attacks in this paper, we

assume that the adversary controls the network and as such

controls the scheduling of all transmitted messages.

C. Overview

To the best of our knowledge, there is no mechanism that

enables enclave replication in the cloud in a way that is trans-

parent to the application owner. Clearly, a cloud provider can

autonomously start an arbitrary number of application enclaves

as long as they do not require any secret material. However,

if the enclavesrequires a secret key (e.g., for applications like

Talos [7] or SecureKeeper [13]), the enclave owner must be

involved in the enclave deployment process for attestation and

secret provisioning.

Alternatively, application owners may entrust the secrets of

their applications to the cloud. Nevertheless, this option is in

sharp contrast with the settings of SGX where enclave secrets

are to be hidden from any other software on the host. In other

words, if application owners trust the cloud with handling their

secret data, then SGX becomes unnecessary.

Strawman solution. A strawman solution to the problem that

we consider would be to create a provisioning service that

runs entirely in an SGX enclave and acts on behalf of the

application owner when the cloud must deploy new application

instances. One may have a single provisioning service per

cloud, or a provisioning service serving multiple clouds.

Here, an application owner uploads the code of its ap-

plication to the cloud. At the same time, the owner attests

the provisioning service, call it Enclave Management Service
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(EMS), and transfers to it the hash of the application along

with the application secrets. When a new application instance

needs to be started, the cloud sets up the instance and asks

EMS for attestation and secret provisioning. As a result, the

cloud and EMS can deploy new instances of an application

enclave while the owner is no longer required to be online.

Further, application secrets are shielded from the cloud (and

from malware that penetrates the cloud) since secrets are

securely transferred from the application owner, to EMS

(which runs in an enclave) to the target application (which

runs in an enclave). However, this strawman solution suffers

from the following shortcomings.

Highly availability.

EMS must be highly available because no new

application instances can be started when EMS is

down, and fast commissioning and decommissioning

of enclaves is key to the elastic operations of the

cloud provider.

Forking attacks.

EMS should not allow for unrestricted deployment

of instances. For example, an adversary may com-

promise the cloud and deploy a large number of

instances of a victim application in order to mount

a forking attack. The provisioning service must,

therefore, control at all times the number of deployed

instances of a given application; if this number

reaches a given threshold, no further deployment

requests should be served.2 Controlling the number

of running application enclaves requires EMS to keep

state. Otherwise, a forking attack against EMS itself,

would allow the adversary to launch an arbitrary

number of application instances to, in turn, mount a

forking attack against the victim application. We note

that monotonic counters available to SGX enclaves3

may be suitable for centralized applications to keep

state. Monotonic counters, however, are not suited to

keep state of an application (like EMS) distributed

across different hosts. Similarly, ROTE [24] is a

distributed solution to keep state of single-enclave

applications and cannot be used when state must

be synchronized across enclaves. The challenge is,

therefore, how to keep a consistent state across all

of the EMS enclaves.

Small TCB.

The only effective and workable way to securely

maintain state for an application that spans multiple

instances, while assuming a potentially malicious

OS, would be to leverage a reliable consensus mecha-

nism. One option would be to fit the consensus logic

within EMS. However, this design choice leads to

a large code-base which, in turn, becomes a large

2The threshold may be set by the application owner as part of the
deployment policy that usually allows owners to decide parameters such as
maximum load per instance, geographical deployment restrictions, etc.

3https://software.intel.com/en-us/sgx-sdk-dev-reference-sgx-create-
monotonic-counter

attack surface. That is, a large footprint of the enclave

code that implements EMS, essentially weakens the

assumption that enclaves cannot be compromised.

We tackle the above challenges as follows. We design

ReplicaTEE as a two-tiered approach. At the first tier, EMS

(i) acts on behalf of application owners and supports the cloud

in commissioning and decommissioning application enclaves,

and (ii) mitigates forking attacks against application enclaves

by controlling the number of running enclaves for a given

application. EMS is a distributed SGX-based service that

leverages a master-slave approach to ensure high availability.

Master-slave is arguably the simplest distributed architecture

and its small code-base allow us to fit its entire logic within an

enclave. Master and slaves exchange beacons to monitor one

another; in case the master fails, one of the slaves becomes

the new master.

At the second tier, a BFT Storage Service (BSS) provides

EMS with reliable storage and allows to prevent forking

attacks against EMS itself (which, in turn, may lead to forking

attacks against applications). We opt to separate EMS from the

consensus logic and create BSS as a dedicated service in order

to keep EMS code-base small. Yet, the consensus logic is com-

plex and fitting it entirely in an enclave may open the door to

exploits. A better option is to design consensus that leverages

the isolated execution feature made available by SGX while,

at the same time, keeps the enclave code at bare minimum.

When instantiating the consensus service, we therefore resort

to TEE-based consensus protocols like MinBFT [30] that can

tolerate up to n−1
2 out of n faulty nodes but still have a very

small TCB (≈ 250 LoC).4 Nevertheless, as the consensus

logic is now split between enclave and non-enclave code, we

must account for an attacker that compromises the part of the

logic running outside of SGX. In other words, the nodes of

the consensus service may now become Byzantine. We show

that by carefully designing the interaction between EMS and

BSS, a master-slave application like EMS can be shielded from

forking attacks.

A note on enclave termination. The above overview covers

enclave provisioning. However, controlling the number of

running enclaves for an application, requires EMS to also

be aware of the enclaves that terminate. We note that, given

our threat model, there is no means for EMS to tell if

an application enclave has been stopped by C. We tackle

this issue by implementing a lease-based approach. When

provisioned, enclaves receive an end-of-lease timestamp and

should stop running if that time is reached and EMS has

not renewed the lease. In other words, we do not rely on

the cloud to terminate enclaves. The length of a lease is a

tunable parameter and represents a trade-off between security

and overhead due to lease renewal.

4Traditional consensus protocols that do not leverage TEEs can only tolerate
n−1
3

out of n faulty nodes.
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IV. PROTOCOL SPECIFICATION

We start by outlining the process of remote proxied attesta-

tion which constitutes an essential building block that will be

used in our solution.

A. Remote Attestation by Unregistered Verifiers

As mentioned in Section II, the Intel Attestation Service

(IAS) controls that remote attestation is not abused by verifiers

and, in particular, that SGX platforms are not tracked—which

constitutes one of the main goals of the signature scheme

underlying SGX attestation [14]. Nevertheless, involving IAS

as an intermediary in each remote attestation protocol limits

the adoption of this mechanism, especially by parties who are

not registered with IAS. This limitation becomes especially

relevant if the enclave runs a public service like a mail server.

Indeed, it is rather unrealistic to assume that all users interested

in setting up a mail account are registered to IAS; yet, users

may want to attest the mail server and ensure it runs in an

enclave on an SGX-enabled platform.

In order to overcome this limitation and enable remote attes-

tation with unregistered verifiers, we utilize a proxy registered

to IAS. The proxy can be deployed by the cloud provider or

by a third-party. Our proxied attestation protocol is depicted in

Figure 1. There, we only provide an overview of the protocol;

detailed message contents refer to the ones defined in the

Intel SGX SDK Developer Reference [4]. Attestation via our

proxy comes in two flavors, depending on whether the prover

enclave “knows” (i.e., holds the public key of) the remote

verifier. If the verifier is known to the prover, the proxy simply

relays messages between prover and verifier; when the prover

outputs and encrypted quote, the proxy (registered to IAS)

forwards the ciphertext to IAS in order to get back the cleartext

and provides the latter to the verifier. In case the verifier is

unknown to the prover, the proxy also signs the ephemeral

DH key chosen by the verifier. Therefore, the prover enclave

must embed the public key of the proxy.5

Our proxied attestation protocol allows any party to re-

motely attest an enclave and to establish an unilaterally or

mutually authenticated DH key—depending on whether the

identity of the verifier is known to the prover.

Note that our protocol is compliant with the standard

attestation protocol that leverages the SDK provided by Intel

for SGX and only requires the enclave developer to include

the public key of the proxy, in cases where attestation requests

are expected from unknown verifiers. Also, note that a mali-

cious proxy trying to man-in-the-middle the key establishment

between the prover and the verifier may be easily detected by

the latter. This is because the ephemeral key of the prover is

authenticated by the quoting enclave.

B. ReplicaTEE Protocol Details

Setup. Recall that ReplicaTEE is made of two service: an en-

clave provisioning service named EMS and a BFT storage ser-

5Remote attestation using the standard SDK requires the ephemeral DH
key of the prover to be signed and it also requires that the prover has the
corresponding public key.

EML: Veri er
EnclaveV EnclaveP

IAS AttestationProxy

Request(PKSPID)

KP
DH

KV
DH,SigV(KV

DH)

derive KDH

QUOTE[MRENCLAVE,meta,Sigsgx]

PKV

resIAS=Verify(QUOTE)

Verify(MRENCLAVE,
 meta, resIAS)

resIAS

SAPP

APP: Prover

SAPP

derive KDH

secret
provisioned

Fig. 1. Proxied attestation protocol. The DH ephemeral key of the verifier
(KDH

V ) is signed either by the verifier itself (as shown in the figure) or by
the proxy. In the former case, the enclave must have the public key of the
verifier. If the ephemeral key is signed by the proxy, the enclave must have
the public key of the proxy.

vice named BSS. We assume that BSS is setup initially by the

provider conforming to the setup procedure of MinBFT [30].

The setup of EMS unfolds as follows. The cloud provider C
(or a third party) starts N enclaves, each running an instance of

EMS. The enclaves must attest each other and agree on a group

key for secure group communication. For this task, we require

each EMS enclave to be aware of the identity of its peers (in

order to attest them) and of the number N of enclaves that

form EMS. We denote by kEMS the established group key. Note

that attestation enables authenticated key exchange. That is,

SGX attestation ensures that only an instance of EMS enclave

running in an SGX environment can participate in the key

agreement protocol. Once EMS has been set up, the enclaves

jointly generate a key-pair for a signature scheme and publish

the verification key. Application owners must embed this key

in their applications, in order to enable application enclaves

to verify the legitimacy of the messages received from EMS

during attestation.

EMS enclaves are organized in a Master-Slave approach.

By default, the master enclave is the enclave that has the

largest enclave identifier. During normal operation, the master

is in charge of carrying out the main operations in EMS while

slaves simply assume a passive role.

The master EMS implements a variant of the so-called

“node guarding” protocol to keep track of the availability of

the slaves; this essentially consists of the master exchanging

alive messages with the slaves at regular intervals. The master

enclave periodically sends a beacon request to the slaves to

transmit information about their current state (e.g., stopped,

active). If a slave does not respond to the request of the master

within a certain timeout, the master considers the slave to be

crashed and relays this information to the remaining slaves.

On the other hand, the slaves also use this protocol to monitor

availability of the master; if a request from the master is not

received after a certain timeout, the slaves assume that the

master itself has failed. In this case, the slave with the highest

identifier from the set of active slaves, assumes the role of
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a master and starts issuing the beacon requests. This process

ensures a continuous operation of EMS in spite of potential

crash failures. Needless to mention, this entire lightweight

protocol runs within the enclaves of EMS nodes. Further, if

one of the EMS nodes crashes, it can be restarted and it can

recover its state (e.g., kEMS, EMS node endpoints, etc.) from

the BSS storage service.

Notation. We denote an application and its binary by α and bα,

respectively. Also, pα denotes the deployment policy defined

by the application owner. In this paper, we assume the owner

simply sets an upper bound to the number of enclaves that

can run simultaneously. However, ReplicaTEE can be easily

extended to account for more complex deployment policies.

EMS assigns identifiers to applications and enclaves. An

identifier for an enclave of application α looks like eid =
α||mrα||hα, where mrα is the MRENCLAVE of the appli-

cation, and hα corresponds to the hash of the key established

between EMS and the enclave during attestation.

In order to keep track of applications and enclaves, EMS

leverages the storage functionality offered by BSS. For each

application α, EMS keeps track of the following metadata:

1) pα: Upper bound to number of running enclaves.

2) mrα: MRENCLAVE.

3) kα: Application secret key.

4) encα: A list of tuples (eid, key, st, eol) where eid is an

enclave identifier, key is the key established between

EMS and the enclave during attestation, st is a status

variable, and eol is the current end-of-lease timestamp

for that enclave. Variable st can take values in {att,

run, tbd, tbs, sus}. An enclave has status “attested” (att)

after being attested by EMS. The status is changed to

“running” (run) when the enclave is provisioned with the

application secret key. The enclave status is set to “to

be deleted” (tbd) or “to be suspended” (tbs) when the

cloud requests the enclave to be deleted or suspended,

respectively. Finally the status is set to “suspended” (sus)

when the enclave has been suspended.

EMS exports the identifiers of applications and enclaves

to the cloud C in order to efficiently manage enclaves for a

given application. Note that application and enclave identifiers

do not bear any sensitive information apart from the number

of enclaves running for a given application—an information

already available to the cloud.

We assume that the integrity and the confidentiality of data

written/read to BSS (via PUT/GET) are protected by means

of an authenticated encryption scheme. The key material for

authenticated encryption is derived from the key shared by

all EMS enclaves, namely kEMS, by using a suitable key-

derivation function.

We use application identifiers as the keys to the storage

service and for each application we store a “flat” database

to keep information of that application and its enclaves. In

order to ease exposition, we slightly overload the PUT/GET

interface as follows. We write GET(α; attr) to fetch only

the value of attribute attr for application α. Similarly,

Algorithm 1 Attestation of the EMS Service and Initial

Upload of Code

1: [APPLICATION OWNER]

2: function ATTEST-UPLOAD

3: k ← PROXIEDATTESTATION(eEMS, mrEMS)
4: if k ==⊥ then
5: return -1

6: end if
7: SEND 〈pα, mrα, kα〉 to eEMS

8: SEND 〈pα, bα〉 to C
9: end function

10: [EMS ]

11: function INITIALIZE(α, pα, mrα, kα)

12: PUT(α; pα, mrα, kα, ⊥)

13: end function

PUT(α; attr := value) sets attr to value, leaving all

other attributes at the same key unchanged. We also write

GET(α; encα : eid) to fetch only the enclave information

related to eid (i.e., key, st, eol) from the list encα. Also,

PUT(α; encα : 〈eid′, key′, st′, eol′〉) writes to the list of

enclaves encα of application α; if encα already has a tuple

with eid == eid′, this operation only updates the remaining

fields to key′, st′, and eol′, respectively. If encα has no tuple

with eid == eid′, then a new tuple 〈eid′, key′, state′, eol′〉
is appended. We stress that this notation is only to improve

the readability of our pseudocode. In reality, we always read

and write the whole data associated to a given key.

Attestation of EMS Service and Initial Upload of Code.
Algorithm 1 lists the main steps carried out when an appli-

cation owner wants to upload his application to the cloud.

Before the application owner can entrust the management of

his application to EMS, he must verify the identity of the

EMS enclave and establish a secure channel. This is captured

by the function PROXIEDATTESTATION(eEMS, mrEMS) that

takes as input the endpoint of the enclave to be attested and

the expected MRENCLAVE. The function returns the key

established with the prover enclave, if attestation is successful;

otherwise it signals an error by returning ⊥.

Once the application owner has established a secure channel

with EMS, he uploads pα, mrα, kα to EMS and pα, bα to C.

EMS writes pα, mrα, kα, ⊥ to BSS while the cloud stores

pα, bα. Both EMS and C send an acknowledgement message

to the application owner.

From this moment on, the application owner goes offline,

while EMS cooperates with C in order to increase or decrease

the number of enclaves allocated to that application. C can,

at any time, issue requests to EMS to deploy or remove an

enclave. Similarly, C can ask to suspend a running enclave or

resume a previously suspended enclave. EMS writes requests

to storage in order to serialize them. Then, EMS periodically

reads from BSS in order to identify pending requests and

dispatch them.
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Algorithm 2 Deployment Request

1: function PROVISION REQUEST(α, e)

2: mrα ← GET(α; mrα)

3: kα,EMS ← PROXIEDATTESTATION(e, mrα)
4: if kα,EMS ==⊥ then
5: return -1

6: end if
7: hα ← H(kα,EMS)
8: eid ← α||mrα||hα

9: PUT(α; encα : 〈eid, kα,EMS, att, ⊥〉)
10: SEND(ack, α, e, eid) to C
11: end function

Algorithm 3 Termination Request

1: function TERMINATE REQUEST(eid)

2: Parse eid as α||mrα||hα

3: 〈key, st, eol〉 ← GET(α; eid)
4: if st == run then
5: PUT(α; encα : 〈eid, key, tbd, eol〉)
6: end if
7: SEND(ack, tbd, eid) to C
8: end function

Deployment Request. At this stage, the cloud provider creates

a new enclave e on an SGX platform and loads the code bα.

It then contacts the EMS enclave that is acting as master to

trigger the attestation and provisioning of the enclave. The

pseudocode of the steps carried out is provided in Algorithm 2.

Upon receiving a request, EMS enclave attests the application

enclave (line 3) and assigns it an identifier made of the appli-

cation identifier, the enclave identity, and the hash of the key

established with that enclave during attestation (line 8). Next,

EMS enclave writes to storage tuple 〈eid, kα,EMS, att, ⊥〉 to

reflect the fact that enclave eid was attested and it is ready for

provisioning. Finally, EMS enclave acknowledges to C the end

of the operation. If C does not receive an acknowledgement

within a given timeout, then C may infer that the EMS enclave

handling the request has crashed and that the request should

be issued to another EMS enclave.

Termination/Suspension/Resumption Requests. The pseu-

docode to terminate, suspend or resume an enclave is provided

in Algorithms 3, 4 and 5, respectively. Requests are invoked

by C providing the enclave identifier eid as an argument.

The EMS enclave handling the request extracts the appli-

cation identifier from eid and fetches from BSS attributes

key, st, eol of enclave eid. For enclave termination, the EMS

enclave checks that st is “run” and sets it to “tbd” (i.e., to

be deleted). For enclave suspension, the EMS enclave checks

that st is “run” and sets it to “tbs” (i.e., to be suspended). For

enclave resumption, the EMS enclave checks that st is “sus”

and sets it to tbr (i.e., to be run).

For termination and suspension of an enclave, EMS only

takes note of the request by setting the status variable of that

specific enclave; the operation is actually completed at the

Algorithm 4 Suspension Request

1: function SUSPENSION REQUEST(eid)

2: Parse eid as α||mrα||hα

3: 〈key, st, eol〉 ← GET(α; eid)
4: if st == run then
5: PUT(α; encα : 〈eid, key, tbs, eol〉)
6: end if
7: SEND(ack, tbs, eid) to C
8: end function

Algorithm 5 Resumption Request

1: function RESUMPTION REQUEST(eid)

2: Parse eid as α||mrα||hα

3: 〈key, st, eol〉 ← GET(α; eid)
4: if st == sus then
5: PUT(α; encα : 〈eid, key, tbr, eol〉)
6: end if
7: SEND(ack, tbr, eid) to C
8: end function

beginning of the next lease. This is because, as we argued

above, there is no guarantee that the cloud is effectively

terminating or suspending the enclave at the time of the

request. However, the enclave will stop working at the end

of the current lease.

For enclave resumption, once again EMS persists the request

to storage by setting the status variable of that specific enclave;

the enclave will be resumed by the main routine of EMS that

dispatches provisioning and resumption requests persisted to

storage (see next).

Enclave Provisioning/Resuming. The pseudocode to dispatch

requests to provision or resume enclaves is shown in Algo-

rithm 6. This code is periodically executed by the EMS enclave

acting as master. Function FINDNEXT(encα) on line 3 takes as

input the list of tuples storing information about the enclaves

of application α and returns the first tuple 〈eid, key, st, eol〉
such that the status variable st is either “att” or “tbr”. Status

“att” means that the enclave has been attested and it is ready

to be provisioned with the application secret key. Status “tbr”

reflects a suspended enclave that must be resumed. Before

dispatching the request for eid, the EMS enclave checks that

the number of running enclaves is below the upper bound set

by application owner and that provisiong/resuming eid does

not violate the owner’s constraints. Counting is carried out

by function COUNTRUNNING(encα) on line 5. An enclave is

considered as running if its status variable is set to “running,

“to be suspended”, or “to be deleted”. Next, EMS enclave

either provisions eid with the application secret key and the

current end-of-lease timestamp, or it sends to eid a “resume”

directive with the current end-of-lease timestamp. EMS writes

to BSS that the enclave has been served and notifies C.

From this moment on, the application enclave runs as

expected, e.g., executing computation on behalf of the ap-

plication owner or serving requests from clients. However,
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Algorithm 6 Dispatch

1: function RUN(α)

2: 〈pα, mrα, kα, encα〉 ← GET(α)

3: 〈eid, key, st, eol〉 ← FINDNEXT(encα)
4: if eid! =⊥ then
5: if COUNTRUNNING(encα) < pα then
6: if st == att then
7: SEND(kα, eol) to eid
8: else � st == tbr

9: SEND(resume, eol) to eid
10: PUT(α; 〈eid, key, run, eol〉)
11: end if
12: SEND(ack, run, eid) to C
13: end if
14: end if
15: end function

Algorithm 7 Lease Renewal

1: function RENEW(α)

2: 〈pα, mrα, kα, encα〉 ← GET(α)

3: for 〈eid, key, st, eol〉 in encα do
4: if st == tbs then
5: PUT(α; 〈eid, key, sus, eol〉)
6: else if st == tbd then
7: DELETE(encα, eid)
8: else if st == run && eol < eol′ then
9: SEND(renew, eol′) to eid

10: PUT(α; encα : 〈eid, key, run, eol′〉)
11: end if
12: end for
13: end function

we require the application to halt its execution if the current

time has passed the current end-of-lease timestamp received

by EMS. A secure source of time is currently available on all

SGX platforms via the sgx_get_trusted_time() API.

Lease Renewal. The pseudocode shown in Algorithm 7 is run

by the EMS enclave acting as master when the current end-of-

lease timestamp is approaching. At this stage, the EMS enclave

scans through the list of enclaves belonging to application

α and checks their status in order to determine whether the

application must be suspended (line 4-5), deleted (lines 6-7),

or whether its lease must be renewed. In the latter case, the

application enclave receives the new end-of-lease timestamp

eol′ with a “renew” directive. Regardless of the operation,

the EMS enclave pushes the changes to BSS in order to

persist the fact that the request was handled. Note that function

DELETE(encα, eid) on line 7 removes from encα the tuple

referring to eid and writes the updated list of tuples to storage.

C. Dealing with Application Shared State

Recall that some applications need to keep state to ensure

its correct operation. Indeed, in a model where the cloud

runs applications that span several enclaves, a shared stor-

age service might be required. This is because the sealing

functionality of SGX is designed only to keep local state

and does not allow state to be shared across enclaves. In this

case, newly provisioned enclaves should maintain a consistent

view of such a state—otherwise the security of the overall

service might be at risk. For example, in S-NFV [28], the

adversary could run two separated instances of the application

and route state updates only to one instance, while exclusively

pushing traffic flows to either instances. Hence, the outcome

of processing a given flow may be different and dependant on

whether it is carried out by one instance or the other. Similarly,

password-strengthening services like Safekeeper [21] rely on

rate-limiting to keep passwords secret. Having access to mul-

tiple isolated application instances, allows the adversary to

infringe the restriction imposed by the rate-limiting policy.
ReplicaTEE’s BSS can be used by such applications to

share consistent state among their enclaves. Namely, whenever

needed, authorized applications in ReplicaTEE can read/write

their latest state from/to the storage service using the offered

PUT/GET interface. That is, our storage service acts as

consistent storage medium for various application enclaves

to synchronize on their latest application state. For exam-

ple, an enclave providing password strengthening service can

continuously write the number of trials attempted on the

storage service. This allows to enforce rate-limiting across all

application enclaves running the same service. In Section V

we complement the evaluation of ReplicaTEE by assessing the

overhead of using a BFT storage service for applications that

span across several enclaves.

D. Security Analysis
As mentioned in Section III-B, the adversary’s goal is to

leak secrets of victim applications or launch an arbitrary

number of application enclaves in order to mount a forking

attack against that application.

Application secrets. We note that application secrets (e.g., a

secret key) are transferred from the owner to EMS and finally

to the application enclave.
Before transferring the secret to EMS, the application owner

must attest the EMS enclave and establish a secure channel

with it. This is done by leveraging the proxied attestation

protocol of Section IV-A. At this time, the EMS enclave

cannot attest the application owner (since the two parties

may have not had any previous interaction). Therefore, EMS

accepts application metadata (i.e., the application secret key,

the policy, etc.) from any party. Nevertheless we assume

the cloud to authenticate application owners and that only

authenticated application owners can contact EMS. This is

a reasonable assumption since the cloud must authenticate

application owners in order to bill them.
Once the application owner has securely uploaded the

application secret key to EMS, the security provisions of SGX

guarantee the confidentiality of that key while it is stored in

the memory of the EMS enclave. If written to storage, the

key is encrypted and authenticated with keys that are only

available to EMS. Finally, EMS securely delivers the key to

the application enclave after attesting its code and establishing
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a secure channel. Here again, attestation may use the proxied

protocol of Section IV-A. We assume an application enclave to

hold the public key of EMS so that the former can authenticate

the latter.— in other words, the application enclaves only

accepts provisioning from EMS.

We therefore conclude that ReplicaTEE keeps confidential-

ity of application secrets at all times, despite an adversary that

can compromise privileged code running on the hosts of the

cloud infrastructure.

Deployment threshold. We now analyze how ReplicaTEE

ensures that the number of running enclaves for a given

application is always below the threshold set by the application

owner. Controlling the number of application instances, allows

to mitigate forking attack against that application.

ReplicaTEE controls the number of running instances of an

application by ensuring that any progress made by EMS while

serving a deploy/decommission request is always registered

as an event onto the storage service. The latter implements a

consistent BFT service, thereby ensuring total ordering of the

events. This design tolerates possible asynchrony or network

partitioning that could arise in EMS. Namely, since EMS

enclaves do not run a consistent protocol (they only execute a

lightweight node guarding protocol), consistency is guaranteed

by the facts all operations handled by EMS enclaves are

duly registered on a consistent storage service. The number

of running enclave of an application is, therefore, controlled

by EMS as long as EMS can rely on the correctness of the

storage service. Since ReplicaTEE instantiates a BFT service

that leverages SGX, correctness is guaranteed up to n−1
2

compromised BSS nodes. That is, ReplicaTEE ensures that the

number of running application enclaves for a given application

respects the deployment threshold as long as no more than n−1
2

storage nodes are compromised. In what follows, we explain

this in greater detail.

Provisioning/Resuming. Provisioning of an enclave eid is

only executed after the enclave has been attested and

the request has been registered by writing the tuple

〈eid, key, att, ⊥〉 to BSS (Algorithm 2, line 9). Similarly,

resuming of enclave eid only occurs after the request has been

registered by writing the tuple 〈eid, key, tbr, eol〉 to BSS

(Algorithm 5, line 5). For both cases, the tuple written to

storage carries the key established with the eid at the time

of attestation—hence,any EMS enclave can establish a secure

channel with the application enclave and carry out the request.

Provisioning or resuming is carried out by Algorithm 6.

Since BSS ensures that write/read operations are serialized,

no other enclave will be provisioned or resumed before the

request for eid is dispatched. This holds despite the fact that

the EMS enclave in charge of handling the request for eid,

say eEMS, may fail, and despite the fact that multiple EMS

enclaves may concurrently act as masters.

If eid is to be provisioned and eEMS fails right after

provisioning the application enclave (Algorithm 6, line 7),

the new master EMS enclave will use the same secret key

key to establish a secure channel with eid and provision

the application secret key once again. Similarly, if eid is to

be resumed and eEMS fails right after sending the “resume”

command (Algorithm 6, line 9), the new master EMS enclave

will use the same secret key key to establish a secure channel

with eid and send once again the “resume” command. We

stress that provisioning or resuming the same enclave does

not violate the security provisions of ReplicaTEE.

We point out that even if two (or more) EMS enclaves

acting as masters take in charge the request at the same time,

they will both provision (or resume) eid. Also, they will both

write the tuple 〈eid, key, run, eol〉 (Algorithm 6, line 10) to

BSS. Once again, provisioning/resuming the same enclave and

writing the same tuple to storage does not bring ReplicaTEE

to an inconsistent state.

Only after the enclave status is set to “run” in BSS, EMS

enclaves will start provisioning/resuming another enclave.

Hence, provisioning/resuming of enclaves is carried out in

strict sequential order so that EMS enclaves can be always

aware of the running enclaves for a given application.

Terminating/Suspending. As discussed before, once C issues

a request to terminate or suspend an enclave eid, there is

no guarantee that the enclave has been effectively deleted

or suspended. This is due to the fact that any attempt from

EMS to contact eid may be dropped by the adversary that

controls the communication network. For this reason, we resort

to leases and require application enclaves to stop as soon as

the current lease expires, unless EMS renews it.

EMS therefore treats an enclave eid as suspended and sets

its status accordingly (Algorithm 7, line 5) only at the end of

the lease. At the time EMS receives the request to suspend eid,

it simply writes the request to BSS by setting eid’s state to

“to be suspended” (Algorithm 4, line 5). However, the enclave

is considered as running until the end of the current lease. A

similar approach is taken for requests to delete an enclave eid.

The request is written to BSS by setting eid’s status to “to be

deleted” (Algorithm 3, line 5), however the enclave will be

considered as running until the end of the current lease. Once

the current lease expires, the enclave metadata is deleted from

storage (Algorithm 7, line 7).

Note that enclaves considered as running (i.e., the ones with

status set to “running”, “to be suspended”, or “to be deleted”)

affect the decision of whether a request to provision/resume

an enclave should be honored. That is, an application enclave

is provisioned/resumed only if the number of enclaves consid-

ered as running for that application is below the threshold set

by the application owner (Algorithm 5).

Lease Renewal. At the end of a lease, EMS proceeds to renew

the lease to all application enclaves with status “running”.

If the EMS enclave carrying out the operation crashes after

renewing the lease to a given enclave eid, but before writing

to BSS that the operation was completed (Algorithm 7, line 9),

then eid will receive the same renewal message from another

EMS enclave taking up the master role. Repeating the lease

renewal operation by issuing the same end-of-lease timestamp

to the same enclave does not constitute a security breach.
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Application LoC
MinBFT 339
Proxied attestation (prover) 200
Proxied attestation & provisioning (verifier) 800
DupLESS integrated with ReplicaTEE 80

TABLE I
LINES OF CODE (LOC) OF THE ROUTINES IN OUR PROTOTYPE

V. PERFORMANCE ANALYSIS

A. Implementation Setup

We deployed the storage service of ReplicaTEE on five

identical servers with SGX supports. Each server is equipped

with Intel Xeon E3-1240 V5 (8 vCores @3.50GHz) and

32 GiB RAM. The EMS instances were deployed on a

machine with Intel Core i5-6500 (4 Cores @3.20GHz) and

8 GiB RAM. All these machines are equipped with SGX

to run enclaves and are connected with a 1Gbps switch in

a private LAN network. We argue that this setting emulates a

realistic cloud deployment scenario where the compute servers

and their corresponding storage servers communicate over the

cloud’s private LAN (e.g., Amazon AWS and S3).

As mentioned earlier, we instantiate the atomic stor-

age service of ReplicaTEE using MinBFT. Our implemen-

tation of MinBFT uses 2 interface functions (createUI,

verifyUI [30]) and a total 339 LoC of enclave code.6 We

argue that this is small enough to make formal verification

of the consensus service code base as needed. In our evalua-

tion, we relied on HMAC-SHA256 to achieve authentication

between replicas and clients [15], [30].

We implemented the proxied attestation procedure described

in Section IV-A based on the libraries provided by the SGX

SDK [4]. The prover’s code in the enclave requires around 200

lines, while the verifier’s code in the EMS enclave is around

800 lines (cf. Table I).7

B. Evaluation Results

In what follows, we evaluate the performance of

ReplicaTEE. Namely, we measure the latency incurred in

the provisioning of enclaves and in termination, suspension,

resumption and lease renewal. Note that we do not evaluate

the overhead incurred in the initial setup phase of EMS and

the initial code upload by application owners, since the setup

is carried out only once and the overhead for application

owners to upload their code to the cloud is not particular to

ReplicaTEE and is incurred by all applications that leverage

cloud-based SGX deployments.

We also measure the latency incurred in the provisioning of

enclaves with respect to the achieved throughput. We measure

the throughput as follows. The master EMS enclave invokes

operations in a closed loop, i.e., enclaves may have at most one

pending operation. We require that the master EMS enclave

6We contrast this to Paxos (based on LibPaxos [31]) which requires around
4,000 LoC.

7The verifier enclave also includes JSON and Base64 decoder libraries [5],
[3] in order to decode the response from IAS.

performs a series of back-to-back operations (requests) and

measure the end-to-end time taken by each operation. We then

increase the number of provisioning requests in the system

until the aggregated throughput is saturated.

Enclave Provisioning. In Figures 2(a) and 2(b), we evaluate

the throughput vs latency for the enclave provisioning process

given different storage failure threshold f . We see that when

f = 1 (3 storage servers), the system achieves a peak through-

put of 85 op/s with a latency of 270 ms. On the other hand,

when f = 2 (5 storage servers), the latency remains almost

the same, while the peak throughput is reduces to 75 op/s.

Our findings suggest that the remote attestation process is

the dominant factor in the operation latency. Notice that even

if increasing the fault-tolerance threshold of BSS reduces

the peak throughput (since it requires more communication

rounds), it has limited impact on the witnessed latency.

In Figure 2(c), we further measure the constituent latencies

incurred in the enclave provisioning process. In both cases

when f = 1 and f = 2, we see that the time for remote

attestation is around 260 ms while the state update only takes

10 ms without noticeable difference in either cases. Namely,

the state update only comprises up to 3.7% of the whole

provision process even when f = 2.

Termination/Suspension/Resumption/Renewal Requests.
Recall that termination, suspension, resumption, and renewal

requests basically consist of the EMS enclave updating the

records corresponding to the target enclave on the storage

service. These requests are practically instantiated by a PUT

request issued by the EMS primary enclave to update the

associated record. Such requests only take 0.86 ms with a

peak throughput of 9800 op/s or 4700 op/s when f = 1 or

f = 2, respectively.

DupLESS instantiation. In Figure 2(d), we evaluate the

performance overhead incurred by ReplicaTEE on applications

that require shared mutable state for their correct operation. To

this end, we implement a variant of DupLESS [9] and integrate

it with ReplicaTEE in the case where f = 1. DupLESS is a

server-aided encryption scheme that enables data deduplica-

tion over encrypted data. In this scheme, users interested in

deduplicating their files first contact the DupLESS gateway to

obtain an encryption key that is derived to the file digest. This

key is essentially a blind signature on the file digest that allows

client to obtain encryption keys while keeping privacy of their

files. By using a deterministic encryption scheme and a key

derived from the file digest, two users with the same file will

produce the same ciphertext that, as such, can be deduplicated

by a storage service. By involving the gateway in the key

generation process, brute-force attacks on predictable files can

only be slowed down by rate-limiting the requests to the

server. In our variant implementation, we integrate DupLESS’s

blind signature scheme within SGX enclaves and use it as an

exemplary application of ReplicaTEE.8 Namely, we rely on

8We chose DupLESS because it incurs minimum I/O and allows us to
clearly evaluate the computational overhead of ReplicaTEE.

167

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 08,2024 at 04:02:42 UTC from IEEE Xplore.  Restrictions apply. 



 200

 300

 400

 500

 600

 700

 800

 0  10  20  30  40  50  60  70  80  90

La
te

nc
y 

(m
s)

Throughput (op/s)

(a) Throughput vs. latency for enclave provisioning when f = 1.
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(b) Throughput vs. latency for enclave provisioning when f = 2.
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(c) Latency witnessed in the enclave provisioning process of ReplicaTEE.
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Fig. 2. Evaluation of the performance of ReplicaTEE in our setup. Data points are averaged over 10 independent runs; where appropriate, we include the
corresponding 95% confidence intervals.

ReplicaTEE to automatically commission and decommission

DupLESS enclaves and to allow running enclaves to synchro-

nize on their latest state to effectively enforce rate-limiting

across all running enclaves. Since DupLESS leverages RSA-

based blind signatures, we utilize the SGX-SSL library [1] to

implement the signing functionality (with 4096-bit RSA) with

˜80 lines of code. We deploy the DupLESS servers on a ma-

chine with Intel Xeon E3-1240 V5 and evaluate the overhead

introduced by ReplicaTEE in this setting when compared to

a standalone DupLESS gateway that does not leverage any

functionality from SGX (i.e., the standard DupLESS gateway

described in [9]).

Our results show that the latency incurred by a standalone

DupLESS gateway is 18 ms with a peak throughput of

330 op/s. On the other hand, integrating a single DupLESS

instance in ReplicaTEE achieves almost the same perfor-

mance. This confirms that ReplicaTEE does not add significant

overhead to existing SGX-based enclaves. Notice that adding

an additional DupLESS enclave almost doubles the peak

throughput by reaching around 600 op/s (for 2 DupLESS in-

stances). The throughput exhibited by a distributed DupLESS

instantiation will be however limited by the peak throughput

exhibited by BSS which is roughly 9800 op/s; in this case,

BSS can accommodate for roughly 30 DupLESS instances.

VI. RELATED WORK

To the best of our knowledge, no previous study has

addressed the problem of enabling seamless replication of

SGX enclaves in the cloud. We now briefly review related

work in the area.

Gu et al. [19] provide an SDK to enable enclave migration

in the cloud. Here, enclaves are augmented with a thread that

carries out state transfer. The thread in the source enclave

brings other threads to a quiescent state and ships the internal

state to the target enclave; a thread in the target enclave

receives the state, installs it and recover execution. Since some

state information is only available to the platform, the authors

use a number of heuristics to estimate that part of the state

and transfer it to the target platform. The authors show that

their heuristic are indeed effective in few application scenarios.

However, the effectiveness of this heuristic for general SGX

applications remains to be assessed.
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Matetic et al. [24] proposed a scheme, ROTE, to enable

rollback protection for SGX enclaves. Recall that the sealing

functionality of SGX provides confidentiality and integrity but

does not guarantee freshness of sealed data. In a rollback

attack, a malicious host leverages this shortcoming to provide

enclaves with stale state information. In ROTE, a set of ROTE
Enclaves running on different platforms, help one application

enclave to maintain monotonic counters that, when used in

conjunction with the sealing functionality of SGX, provide

state freshness. The set of ROTE enclaves is static and must be

setup by an administrator before applications can leverage the

service. Notice that ROTE does not deal with applications that

span across several enclaves and requires that the application

enclave runs on one of the platform that hosts ROTE enclaves.

ICE [29] is another proposal that addresses rollback attacks

in SGX. Differently from ROTE, ICE is a “standalone” solu-

tion that relies on hardware modifications to the platform.

Brandenburger et al. [10] address forking attacks on TEEs

in scenarios where multiple clients interact with an enclave

running at a malicious host. In order to counter forking attacks,

they require an enclave to create a hash chain with the history

of all performed operations. When combined with monotonic

counters shared with all clients, such an approach can ensure

fork linearizability [25].

Proxied attestation was first proposed in [21]. Here, the

proxy is registered with IAS and acts on behalf of the (unreg-

istered) verifier towards the IAS. Notice that [21] leverages a

proactive attestation scheme where the enclave itself requests

a quote from the platform and binds it to its ephemeral

DH key before seeing the ephemeral DH key of the verifier.

This design saves round-trips during attestations but is not

compliant with the SDK of Intel SGX; namely, a quote is

provided after the ephemeral DH key of the verifier has been

received and a shared key established.9 Therefore, the scheme

of [21] requires application developer to update their code

in order to account for changes in the attestation protocol.

Furthermore, the attestation protocol proposed in [21] only

provides an unilaterally authenticated DH key exchange, since

the enclave cannot be sure that the ephemeral DH key is the

one chosen by the verifier and not by the proxy. Mutually

authenticated DH key exchange would require the enclave to

embed the verification key of the verifier. However, this is not

viable if the enclave is meant to be verified by any (previously

unseen) user of the cloud service.

VII. CONCLUSION

In this paper, we presented a novel solution, ReplicaTEE,

that enables dynamic commissioning and decommissioning of

TEE-based applications in the cloud. ReplicaTEE leverages an

SGX-based provisioning service that interfaces with Byzan-

tine Fault Tolerant storage service to orchestrates dynamic

application replication in the cloud without the active inter-

vention of the application owner. We showed that ReplicaTEE

9The data structure providing the quote is referred to as msg3 in the SDK[4]
which is returned by sgx_ra_proc_msg2() that processes the ephemeral
DH key of the verifier and a valid signature on that ephemeral key.

withstands a powerful adversary that can compromise a large

fraction of the cloud infrastructure. By means of a prototype

implementation, we also showed that ReplicaTEE moderately

increments the TCB and does not add significant overhead to

existing applications. ReplicaTEE, therefore, emerges as the

first secure and practical solution to support elasticity of TEE-

based applications in the cloud.
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APPENDIX A

MINBFT

MinBFT comprises four routines and unfolds as follows:

1) Request: Clients send their request messages asking

the replicas to execute certain operations. A client

C prepares its requested operation op in message

〈REQUEST, C, seq, op〉σC , where seq records the (lo-

cal) message sequence from each client to prevent re-

execution of the operations, and σC is the client signature.

2) Prepare: This phase is triggered when the primary

Sp receives a request message m. Once the request

is validated, the primary asks its TEE to generate a

unique message identifier UIp = 〈c,m〉σp
. Note that

the counter c is monotonically increasing and the sig-

nature σp is from the TEE. Subsequently, Sp multicasts

〈PREPARE, v,Sp,m, UIp, 〉 to the other replicas.

3) Commit: This phase serves to acknowledge a valid

PREPARE message. Each replica Si responds with a

COMMIT message. In particular, each replica multi-

casts 〈COMMIT, v,m,Si, UIi,Sp, UIp〉, where UIi is a

unique identifier that Si gets from its TEE.

Client Gateway
h ← H(M)

r
R← Z

∗
N

x ← h · re mod N
x ��
y�� y ← xd mod N

z ← y · r−1 mod N
If ze mod N �= h then ret ⊥

Else ret K ← H(z)

Fig. 3. RSA blind-signature scheme adapted from [9]. H : {0, 1}∗ → ZN

denotes a hash function, N the RSA modulus, e the RSA public exponent
and d the RSA private exponent.

4) Reply: A request is committed locally and can be exe-

cuted once a replica has received enough (i.e., f + 1)

consistent commits, because it is ensured that any re-

quest that commits locally on a correct replica will be

committed on at least f + 1 correct replicas eventually.

Therefore, the replica can execute the operation op and

send the reply 〈REPLY,Si, seq, res〉 with the execution

result res back to the client.

5) View-Change: When a primary is suspected to be mis-

behaving, a replica can request a replacement of the pri-

mary through the view-change procedure. For example,

when a received request failed to be executed within

a certain timeout, a replica multicasts a view-change

request 〈REQ− VIEW − CHANGE,Si, v, v
′〉, where v′

is the new view number and v′ = v + 1. If a

replica receives f + 1 REQ− VIEW − CHANGE, it

moves to view v′. At this stage the replica multicasts

〈VIEW − CHANGE,Si, v
′, CP,O, UIi〉, where CP is

the latest certificate and O is the set of all messages

sent by the replica since CP . Once the new primary

of view v′ receives f + 1 valid VIEW − CHANGE mes-

sages with consistent system state, the view change is

executed by the new primary who broadcasts message

〈NEW − VIEW,Sp′ , v′, Vvc, s, UIp′〉, where Vvc is the

view-change certificate that includes all the received

VIEW − CHANGE messages, and s is the current system

state which will serve as the initial state of view v′.
The correctness of MinBFT holds as long as there is at

least one honest node involved in any two quorums, thus only

2f +1 replicas are required to tolerate f faulty nodes. Further

details on MinBFT can be found in [30].

APPENDIX B

DUPLESS

DupLESS [9] allows clients to derive encryption keys for

secure deduplication in cloud-based storage. Key derivation is

performed in DupLESS by means of an interactive protocol

between a client and a gateway based on RSA blind-signatures.

The protocol is sketched in Figure 3. The client secret input is

a file M , while the server secret input is the private exponent

of an RSA key-pair. The corresponding public exponent is

available to both parties. The client computes the hash of the

file M and blinds it with a random value r that he raises to
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the public exponent e. He transmits the blinded hash value to

the gateway. The gateway now signs the blinded value with its

private exponent d. The gateway finally transmits the signed

blinded hash back to the client. As ed ≡ 1 mod ϕ(N), we

have that y ≡ (hre)
d ≡ hdred ≡ hdr mod N . The client can

compute the r−1 mod N , remove the blinding from y and

obtain the signed hash hd mod N . The client needs now to

check the validity of the signature using the public exponent

of the gateway e. If the signature is valid, the generated

symmetric key will be the hash of the signed hash of the file

K = H(z) = H(hd).

The benefits of such a key generation protocol are two-fold:

• Since the protocol is oblivious, it ensures that the gateway

does not learn any information about the file. On the

other hand, this protocol enables the client to check the

correctness of the computation performed by the gateway

(i.e., verify the gateway’s signature).

• By involving the gateway in the key generation process,

brute-force attacks on predictable messages (i.e., files)

can be slowed down by rate-limiting key-generation re-

quests to the gateway.
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