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Abstract—Generative Adversarial Networks (GANs) have
been successfully used in a large number of domains. This paper
proposes the use of GANs for generating network traffic in
order to mimic other types of traffic. In particular, our method
modifies the network behavior of a real malware in order to
mimic the traffic of a legitimate application, and therefore avoid
detection. By modifying the source code of a malware to receive
parameters from a GAN, it was possible to adapt the behavior of
its Command and Control (C2) channel to mimic the behavior of
Facebook chat network traffic. In this way, it was possible to avoid
the detection of new-generation Intrusion Prevention Systems that
use machine learning and behavioral characteristics. A real-life
scenario was successfully implemented using the Stratosphere
behavioral IPS in a router, while the malware and the GAN
were deployed in the local network of our laboratory, and the
C2 server was deployed in the cloud. Results show that a GAN
can successfully modify the traffic of a malware to make it
undetectable. The modified malware also tested if it was being
blocked and used this information as a feedback to the GAN.
This work envisions the possibility of self-adapting malware and
self-adapting IPS.

Keywords—GAN, malware, intrusion detection, intrusion pre-
vention, network behavior, network traffic obfuscation

I. INTRODUCTION

A significant part of the most important current malware
can be detected in the network using static detection rules and
reputation systems. Although these rules have to be created
manually, their effectiveness is relatively good. There are also
plenty of anomaly detection algorithms that are able to identify
anomalies in network traffic. These algorithms are complex,
but they have become a standard in modern detection systems.
Although new malware is usually not detected because of its
unknown characteristics, recent advances in machine learning
detection methods show very promising results in this area.
Due to the detection systems currently being implemented
and the trends in new malware we foresee future malware
automatically adapting their network traffic to avoid detection.
This adaptation will probably use machine learning techniques.
Such adapting malware would have severe consequences to our
defensive ability.

The adaptation of malware to changing conditions in
detection methods has been so far implemented mostly by
static methods. Examples of evasion methods are the Domain
Generation Algorithms (DGA), Fast-Flux techniques, and the
constant modification of the infrastructure used. Every time
an IP address, domain or tool is changed, the Indicators

of Compromise (IoC) have to be adapted. These evasion
techniques work because the most common detection methods
are static and still trying to block IP addresses and domains.
The need for a malware to adapt would only be forced by a
detection algorithm that does not use static data, but behavioral
methods.

With the advent of more complex detection methods, we
expect the malware to start adapting. However, this new area
of network security is quite unexplored so far. The security
community does not have a clear idea of how the new detection
methods should work if the malware adapts. It is in this context
that we studied adapting malware traffic by using a GAN
which instructs the malware how to adapt to a real behavioral
detection system. Our hypothesis is that a GAN can help
malware to adapt, given the specific traffic that is going to be
mimicked. Such adaptation would make a malware not easily
detected.

Our proposed method is to use a GAN to learn to imitate
Facebook chat traffic and consequently communicate to the
malware how to modify its traffic so that it will not be
blocked. The GAN is fed with real Facebook chat network
flow parameters in order to train for a predefined number of
epochs. The trained GAN generator communicates its output
parameters to the malware. The malware adapts its traffic
according to these parameters and continues its work. The
malware traffic never stops in the network, it just changes.
In a subsequent phase, the malware detects if it was blocked
or not during the last time window and it uses this information
to signal the need for additional training and data to the
GAN. The detection and blocking of the traffic is done by the
Stratosphere IPS system [1], which uses behavioral methods
based on machine learning. In order to keep the setup realistic,
the feedback signal is a special network measurement done by
the malware to know if the Internet access is blocked. There
is no signal being generated by the blocking device.

Two very important constraints were set in place during
the experiments: First, the malware should be real and perform
real malware actions in the network. This was the only way
of knowing that the modifications to the traffic did not affect
the malware operation. The second constraint was that the
blocking of the malware should also be real, because this may
perturb its operation.

Results show that starting from a malware blocked situa-
tion, it is possible to modify the malware behavior to emulate
a normal traffic profile, and therefore become unblocked.
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Moreover, it was possible to accomplish these results with a
relatively short training regime and without the need for a large
amount of data. Our experiments were conducted with only
217 network flows from the normal traffic. After 400 epochs
of training the blocking percentage dropped to zero. From the
malware perspective, the malicious actions were successful and
its operation remain unaffected.

The contributions of our work are:

e The use of a GAN to model network traffic behavior
that mimics a given traffic profile such as Facebook
chat.

e The modification of the behavior of a real malware
that mimics a normal traffic profile based on input
parameters from the GAN.

e A real-life experiment of traffic blocking using the
Stratosphere IPS in a router.

e A novel feedback mechanism of the malware and
GAN to adapt depending on the blocking state.

Although our method focuses in modifying malware behav-
ior for the future purpose of improving detectors, it may also
be applied as a censorship circumvention method. Censorship
circumvention consists in adapting traffic in such a way that
censors can not block it. The TOR network has had histor-
ically several implementations for this purpose, such as Ste-
gotorus [2], SkypeMorph [3], Dust [4] and ScrambleSuit [5].
The last two actually modify the size and inter-arrival times
of packets to resemble random distributions.

Our proposal is, in a sense, similar to Dust and Scramble-
Suit anti-censorship methods. The difference would be that our
method works in the flow level instead of the packet level, and
that it changes the values to mimic real normal applications
and not random distributions.

II. BACKGROUND AND RELATED WORK
A. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a class of
generative models mainly focused on the generation of new
samples following a distribution learned from a training set [6].
They consist of two neural networks: a generator (G), and a
discriminator (D). The generator receives as input a random
vector z and it is trained to generate data that is eventually
indistinguishable from the real dataset. The discriminator is
trained using two batches of data: the training data x sampled
from the real data probability distribution pg.¢, and the data
generated by the generator G(z).

The discriminator loss J(P) is typically computed as a
cross entropy loss for a binary classifier with a sigmoid output:

1 1
JD) = 7§Esz,Malog(D(m)) - iEzlog(l - D(G(2)))

A formulation for the GAN as a zero-sum game would
suggest that the generator loss would be computed by

JG@ — _ D)

However, this approach does not seem to work well in prac-
tice. Instead, a heuristic approach is usually followed for the
generator loss:

J6) %EZZOg(D(G(Z)))

While the majority of the work around GANS is typically
about computer vision problems, several researchers have
proposed using GANs in other domains. Sequential GANs
have been proposed both in discrete [7], [8] and continuous
forms [9]. Network traffic parameters as time-series data
resemble a continuous sequence.

The convergence of GANSs is usually difficult to estimate
since the loss functions are not a good indication of the quality
of the generator’s output. This problem was solved by using an
external entity (IPS) that evaluates the results of the generated
traffic.

B. Stealthy Malware Communication

Malware typically hides its C2 channels to remain un-
detected. Popular methods include DGA, Fast-Flux, HTTPS,
tunneling, and the abuse of popular services such as Twitter,
Gmail or Google Docs [10], [11]. These evasion approaches
do not try to mimic other traffic but to use varied, trusted and
difficult to find infrastructures.

Another proposed approach for camouflaging malware
traffic was to use Format Transforming Encryption (FTE)
which uses regular expressions that “convert traffic flows
to another application protocol using a regular expression
describing the target protocol” [12]. FTE was initially proposed
for censorship circumvention [13] but in [12] it was used
to modify the traffic of an existing malware named Zeus.
Sheridan et al. [14] modeled DNS requests within a network as
Poisson distributions and proposed to use a dynamic Poisson
distribution model in order to conceal malicious DNS traffic
that can be used further as a C2 channel. While effective, the
channel efficiency was rather low.

C. Red Team Tools

During a penetration test, red teams often rely on post-
exploitation frameworks that allow them to emulate malware
behavior in the network and host environments. These frame-
works offer some degree of adaptation, usually by the creation
of profiles or scripted actions. Kaldera [15] is an adversary
emulation framework that utilizes automated planning in order
to emulate different post-exploitation attack stages. One of the
limitations of the framework is that it does not model a C2
channel. Empire [16] is an open source PowerShell and Python
post-exploitation agent that has adaptable communication ca-
pabilities. From a network behavior perspective the only con-
figurable parameters offered are the jitter and delay between
messages. Cobalt Strike [17] is another commercial framework
that offers the possibility to create Malleable C2 profiles which
define the behavior of the agent. Similar to [16] the only
network behavior related parameters are jitter and delay. To the
best of our knowledge there is no post-exploitation framework
or tool that offers advanced network behavior configuration
and the ability to mimic traffic profiles.
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Fig. 1. Network experiments setup. The GAN is implemented independently
and communicates with the malware through a web service. The malware gets
the parameters and modifies its traffic in real time. The C2 channel should be
maintained and should be operational. The IPS blocks all the traffic that does
not look like Facebook chat.

III. GENERATION METHOD

A. Threat Model

There are three main components in our threat model: (1)
the detector, (2) the malware, and (3) the C2 server.

The detector is based on the Stratosphere Linux IPS
software, deployed in a Turris router [18]. It inspects all the
network traffic between the infected host and the Internet and
decides if the traffic of each IP address is allowed to pass or
not. It is programmed to block all the traffic that does not
match the normal traffic profile we have chosen to mimic.
In our work this is Facebook messaging traffic, i.e. Facebook
chat. The detector implements a behavioral detection, which
means that it knows how the Facebook chat traffic looks like
and it is configured to only let that traffic through. It does not
perform Deep Packet Inspection (DPI) or any other signature
based detection.

B. GAN

Both the generator and the discriminator are Recurrent
Neural Networks (RNNs). More specifically, they use a Long-
Short Term Memory (LSTM) architecture [19]. For the real
data, one-side label smoothing is applied [20]. The GAN com-
ponents were implemented with the Keras Framework [21].

A web service component is used to facilitate the commu-
nication between the GAN and the malware. This web service
exposes two API calls: get_params and feedback. The first
API call loads the saved generator model and produces new
traffic parameters which are then send back to the malware as
a JSON object. The generated parameters are also saved to a
local file database along with their generation timestamp.

The feedback API call loads both the saved generator and
discriminator models, and based on the feedback received
(blocked traffic or not) it adds the parameters of the previous
time window to the current dataset. Subsequently, another
training round of 5 epochs is performed using the augmented
dataset.
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C. Malware

To evaluate our method we used the open source Remote
Access Trojan (RAT) called Flu [22]. Flu was modified to
receive the input from the GAN generator and adapt its
network behavior. Flu consists of a client that is written in
C# and a C2 server that is written in PHP. The C2 server
was deployed in Amazon Web Services (AWS). The infected
client was deployed in a Windows 7 virtual machine in the
Stratosphere laboratory network at the CTU University.

The communication between client and server is estab-
lished over HTTP. The Flu client performs the following
actions in sequence:

1)  Checks if the server is online.

2)  Sends a heartbeat message with a unique identifier.

3) Retrieves a XML file from a pre-configured URL
path. The XML file contains a command id and a
list of commands that the client needs to execute.

4)  Executes any “fresh” commands in the XML file.

These steps are performed sequentially and between each
step there is a delay of three seconds. This makes the commu-
nication channel highly periodic and therefore predictable.

We modified the Flu client to alter its network behavior.
The modifications affect the timing, duration and request sizes
of each flow. These features were adapted based on the pa-
rameters provided by the generator. Before any communication
between the client and the server, Flu interrogates the GAN
using the HTTP API and retrieves three parameters: total
byte size, duration of the next network flow, and time delta
between the current flow and the next one.

The size of each HTTP request is computed by taking
into account the minimum size of the original request, the
size of the TCP three-way handshake and the expected HTTP
response size from the server. The HTTP request body is
padded in order to match the total byte size value that was
generated by the GAN. The duration of the network flow is
controlled at the TCP level by keeping the connection open
for the time indicated by the duration value. The time-delta
parameter defines the amount of time Flu needs to wait before
initiating a new request towards the server. In case the time-
delta is smaller than the duration of the flow a new flow and
therefore a new request is initiated before the duration of the
ongoing request elapses. This is accomplished by the use of
a new thread that is responsible for fetching new parameters
from the GAN and launching a new request towards the server.

Finally, during the start-up of the client a five minute timer
is initiated, which is responsible for triggering the checks on
whether or not the client is blocked.

D. Intrusion Prevention System

An important part of the methodology was to evaluate
our proposal in a real security environment. For this, a
real behavioral Intrusion Prevention System was needed. The
Stratosphere Linux IPS (slips) system [1] was chosen because
it models behaviors in the network and uses machine learning
algorithms to detect those behaviors in the network.

The core method consists of reading the network flows
from the traffic to model and extracting three features for each
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flow: its duration, its size and its periodicity. The periodicity
is a ratio between the time differences between the last three
flows. Each combination of features for each flow is assigned
a state. Since flows are sequential, states are sequential. From
these transition states, a Markov model is created, that is the
final model of the traffic behavior. These models are stored
on disk. During detection, the unknown traffic is converted to
a sequence of states. Slips then computes the probability that
each unknown sequence of states matches the generated stored
model. Slips is integrated with the iptables Linux firewall to
block the IP addresses that do not match a normal model or
that match a malware model.

IV. EXPERIMENTS
A. Initial Data Collection

The data used for training the GAN and for generating
of the detection models in Slips were network traces gathered
while two users were using Facebook chat. The communication
between the two users was intermittent as we tried to simulate
normal user behaviors. The messages included text, images,
links and documents. The traffic capture was performed in the
router and it lasted approximately one day.

B. Data Pre-processing and Feature Selection

The network captures were converted to bidirectional flows
using the Argus suite [23]. They resulted in 217 distinct flows
of Facebook chat traffic. The features used for the GAN
training and also as input for the malware traffic modification
were the duration of the network flow, the total number
of bytes in the flow and the inter-flow time calculated from
the time-stamp of each flow. Flows were sorted in time. The
data were converted to time series to be used as input for the
discriminator.

C. GAN Hyperparameters

LSTM hidden layers The generator and discriminator are
unidirectional LSTM networks. Both networks have a depth
of one, each with 128 hidden units and a sequence length of
6.

Training The LSTMs are trained using batch gradient
descent. It uses the Adam optimizer with a learning rate 0.001.
The discriminator was trained for three epochs for every one
epoch of training for the generator.

Latent input variable (z): A sequence of 16 random
normal vectors with y = 0 and std = 1.0.

D. Time Windows

The width of the time window was set to five minutes in
both the detector and the malware. The detector collects traffic
for the duration of the time window and it takes a decision
on whether the traffic matches the stored Facebook model.
From the malware perspective the time window was used to
check whether or not it got blocked by the detector. This was
accomplished by sending an HTTP request to the well known
stable internet service www.google.cz. The result was used to
signal a positive or negative feedback to the GAN and trigger
additional training.
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TABLE 1. PERCENTAGE OF UNBLOCKING ACTIONS PER NUMBER OF
TRAINING EPOCHS IN FIVE RUNS
# Epochs Mean (%) Std (%)
0 0.0 0.0
50 16.88 3.26
100 67.37 13.89
200 67.54 6.84
300 61.39 7.84
400 63.42 10.37
TABLE II. PERCENTAGE OF BLOCKING ACTIONS PER NUMBER OF
TRAINING EPOCHS IN FIVE RUNS
# Epochs Mean (%) Std (%)
0 0.0 0.0
50 44.44 11.18
100 16.72 14.15
200 3.16 2.64
300 0.08 1.23
400 0.0 0.0

It is worth noting that the time window was a known
parameter in the malware configuration. The reason for this
decision was twofold: the size of the time window needed to
be set in a value that would permit meaningful detection but
at the same time would not delay the experiment significantly;
in addition, developing a technique to identify the decision
time window from the malware perspective was considered as
a separate topic worthy of its own research.

E. Evaluation

The evaluation was done by first pre-training the GAN and
subsequently using only the generator to get new parameter
sequences for the malware. Then, the channel efficiency was
computed, mainly in terms of number of flows per time
window. Finally, the original dataset was augmented based
on the external feedback signal. The evaluation focused on
three questions: (a) can the GAN mimic the traffic profile of
Facebook chat, (b) what is the C2 channel efficiency in terms
of the amount of undetected flows and (c) can the feedback
loop be used as a way to augment the dataset in case we have
very little data to begin with?

Our experiments included two verification steps to guar-
antee the correctness of the approach. First, the Flu malware
kept connecting to its C2 server and receiving orders. Second,
the Facebook traffic was replayed continually to see if Slips
blocked it or not.

1) Network Traffic Profile Generation: In this experiment
the GAN is trained for a number of different epochs and the
trained generator is used as a source of network parameters.
Then, we let the malware communicate with the C2 server for
a fixed amount of time (four hours) and recorded the amount
of times the traffic was blocked by the detector.

The detector makes three types of decisions at the end of
each time window: (1) if it gets more than three flows from
the malware it decides to block the traffic or not. If there are
less than three flows it just logs the traffic without blocking.
The threshold of three flows was chosen to avoid blocking
the malware perpetually due to SYN packet re-transmission
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traffic that was either blocked, unblocked or unblocked due to no decision.

from the TCP stack which occurs when the malware is already
blocked. Each experiment was repeated 10 times. The mean
and standard deviations of the results are shown in tables I and
II for the unblocking and blocking actions respectively.

Figure 2 shows clearly that as the number of training
epochs increases, blocking actions go to zero. However, the
unblocking actions are relatively stable.
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Fig. 3. Number of flows per time window for each of the pre-trained models.
The x-axis represents the number of training epochs and the y-axis the average
number of flows per time window of five minutes.

2) Communication Channel Efficiency: By default the C2
channel in Flu has a three second periodicity. This means 75-
100 flows in a five-minute time window. Forcing the malware
to behave as a web service that exhibits intermittency, influ-
ences the amount of traffic between client and server. However,
Figure 3 shows that the average number of flows per time
window is higher than 5 for the best performing generators.
This implies that the server and the client communicate on
average at least once per minute, which makes this a feasible
channel for a C2. If someone operates a large number of clients
it is perfectly acceptable to experience small delays between
sending a command and receiving the results.

3) Feedback Loop: We ran experiments where we selected
a random subset of the dataset of 35 data points as a pre-
training set and used the detector’s decisions as a way to
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Detection results for each of the pre-trained models. The x-axis represents the number of training epochs and the y-axis the average percentage of

augment the dataset with new data. The results were promising
and led to a gradually better performance, but they were not
statistically significant. This indicates that for this particular
setup the training data requirement was not high and good
results were obtained even with a subset of the data.

V. ANALYSIS OF RESULTS

The results suggest that it is possible to use GANs for
network traffic mimicking. After enough number of training
epochs we managed to reduce the number of blocking actions
to zero even with a relatively small dataset. The percentage of
unblocking actions was 63.42% while the rest of the time the
detector allowed the traffic to go through due to the number
of network flows being below the detection threshold. This
indicates that the approach can be used for practical purposes.
Under these circumstances the malware can keep behaving like
Facebook forever and not be blocked. One of the most impor-
tant constraints of our experiments was that the communication
between malware and C2 server would continue unimpeded.
Indeed, the most successful GAN models (produced after 300-
400 epochs of training) generated more than one C2 flow per
minute. While there is room for improvement, this result is
acceptable from a deployment perspective.

Finally, the idea of using implicit network feedback in the
form of blocking or unblocking detection seems promising and
merits further exploration. The experiments were successful
in that additional data and training improved our results over
time, but we attribute the improvement more to the additional
training than to the data augmentation.

VI. CONCLUSION

The automatic adaptation of malware to blocking condi-
tions is an important concern for current and future security
mechanisms. To better understand the adaptability limits of
malware, and the future needs for the blocking systems of
our community, we implemented a GAN that modifies the
behavioral patterns of a specific malware in the network in
order to mimic Facebook chat.

Our proposed method consists of a GAN that was trained
with real Facebook chat traffic and directly communicates
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with a malware sample. The malware adapts the behavioral
characteristics of its traffic according to the GAN parameters.
The malware has a C2 channel on the internet that has to be
kept operative. All the traffic is monitored by the Stratosphere
Linux IPS system in a router that blocks all the traffic that
does not behave like Facebook chat traffic. The malware also
monitors whether it is being blocked and uses this information
as a feedback signal to improve the GAN models.

The results are promising, showing that it is in fact possible
to improve the chances of the malware not being blocked by
mimicking Facebook chat traffic. Moreover, it is shown that a
small amount of data for training the GAN is enough for this
use case.

Our future work will include certain improvements. First,
we want the malware traffic to not only look like Facebook
to the algorithm, but also to a human. Therefore we plan
to use HTTPS connections and probably some mimicking of
Facebook certificates and content. In addition we would like
to test the generalization of the approach using different traffic
profiles. From the GAN perspective we plan to explore alterna-
tive architectures such as using Convolutional Neural Networks
in the discriminator as well as looking into other ways to take
advantage of the feedback capabilities of our setup. We will
also test the GAN against different types of network detectors
and combinations of them, including an improved Stratosphere
Linux IPS. From an implementation perspective we would like
to combine the malware and the GAN in order to avoid the
need of having a separate deployment of a web service to
facilitate communication between the two.

Among the possible implementations of our work are: a
standalone testing tool against Intrusion Detection Systems,
an external framework for adapting any tool with pre-defined
behaviors, and as a tool for censorship circumvention. We
believe that further research in this area may prove substantial
for the security community.
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