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VINS-Mono: A Robust and Versatile Monocular
Visual-Inertial State Estimator

Tong Qin , Peiliang Li , and Shaojie Shen

Abstract—One camera and one low-cost inertial measurement
unit (IMU) form a monocular visual-inertial system (VINS), which
is the minimum sensor suite (in size, weight, and power) for the
metric six degrees-of-freedom (DOF) state estimation. In this pa-
per, we present VINS-Mono: a robust and versatile monocular
visual-inertial state estimator. Our approach starts with a robust
procedure for estimator initialization. A tightly coupled, nonlin-
ear optimization-based method is used to obtain highly accurate
visual-inertial odometry by fusing preintegrated IMU measure-
ments and feature observations. A loop detection module, in com-
bination with our tightly coupled formulation, enables relocal-
ization with minimum computation. We additionally perform 4-
DOF pose graph optimization to enforce the global consistency.
Furthermore, the proposed system can reuse a map by saving
and loading it in an efficient way. The current and previous
maps can be merged together by the global pose graph opti-
mization. We validate the performance of our system on public
datasets and real-world experiments and compare against other
state-of-the-art algorithms. We also perform an onboard closed-
loop autonomous flight on the microaerial-vehicle platform and
port the algorithm to an iOS-based demonstration. We highlight
that the proposed work is a reliable, complete, and versatile sys-
tem that is applicable for different applications that require high
accuracy in localization. We open source our implementations
for both PCs (https://github.com/HKUST-Aerial-Robotics/VINS-
Mono) and iOS mobile devices (https://github.com/HKUST-Aerial-
Robotics/VINS-Mobile).

Index Terms—Monocular visual-inertial systems (VINSs), state
estimation, sensor fusion, simultaneous localization and mapping.

I. INTRODUCTION

S TATE ESTIMATION is undoubtedly the most fundamental
module for a wide range of applications, such as robotic

navigation, autonomous driving, virtual reality, and augmented
reality (AR). Approaches that use only a monocular camera have
gained significant interests in the field due to their small size,
low-cost, and easy hardware setup [1]–[5]. However, monocu-
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lar vision-only systems are incapable of recovering the metric
scale, therefore, limiting their usage in real-world robotic appli-
cations. Recently, we have seen a growing trend of assisting the
monocular vision system with a low-cost inertial measurement
unit (IMU). The primary advantage of this monocular visual-
inertial system (VINS) is to observe the metric scale, as well as
roll and pitch angles. This enables navigation tasks that require
metric state estimations. In addition, the integration of IMU
measurements can dramatically improve the motion-tracking
performance by bridging the gap between losses of visual tracks
due to illumination change, textureless area, or motion blur. The
monocular VINS is not only widely available on ground robots
and drones, but also practicable on mobile devices. It has great
advantages in size, weight and power consumption for self and
environmental perception.

However, several issues affect the usage of monocular VINS.
The first one is rigorous initialization. Due to the lack of direct
distance measurements, it is difficult to directly fuse the monoc-
ular visual structure with inertial measurements. Also recogniz-
ing the fact that VINSs are highly nonlinear, we see significant
challenges in terms of estimator initialization. In most cases,
the system should be launched from a known stationary posi-
tion and moved slowly and carefully at the beginning, which
limits its usage in practice. Another issue is that the long-term
drift is unavoidable for visual-inertial odometry (VIO). In order
to eliminate the drift, loop detection, relocalization, and global
optimization has to be developed. Except for these critical is-
sues, the demand for map saving and reuse is growing.

To address all these issues, we propose VINS-Mono, a robust
and versatile monocular visual-inertial state estimator, which
is the combination and extension of our three previous works
[6]–[8]. VINS-Mono contains following features:

1) robust initialization procedure that is able to bootstrap the
system from unknown initial states;

2) tightly coupled, optimization-based monocular VIO with
camera–IMU extrinsic calibration and IMU bias correc-
tion;

3) online relocalization and four degrees-of-freedom (DOF)
global pose graph optimization;

4) pose graph reuse that can save, load, and merge multiple
local pose graphs.

Among these features, robust initialization, relocalization,
and pose graph reuse are our technical contributions, which
come from our previous works [6]–[8]. Engineering contribu-
tions include open-source system integration, real-time demon-
stration for drone navigation, and mobile applications. The
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Fig. 1. Outdoor experimental results of the proposed monocular visual-inertial
state estimator. Data are collected by a hand-held monocular camera–IMU setup
under normal walking condition. It includes two complete circles inside the
field and two semicircles on the nearby driveway. Total trajectory length is
2.5 km. A video of the experiment can be found in the multimedia attachment.
(a) Trajectory (blue) and feature locations (red). (b) Trajectory overlaid with
Google map for visual comparison.

whole system has been successfully applied to small-scale AR
scenarios, medium-scale drone navigation, and large-scale state-
estimation tasks, as shown in Fig. 1.

The rest of this paper is structured as follows. In Section
II, we discuss the relevant literature. We give an overview
of the complete system pipeline in Section III. Preprocessing
steps for both visual and preintegrated IMU measurements are
presented in Section IV. In Section V, we discuss the estima-
tor initialization procedure. A tightly coupled, self-calibrating,
nonlinear optimization-based monocular VIO is presented in
Section VI. Tightly coupled relocalization is presented in Sec-
tion VII. Global pose graph optimization and reuse is discussed
in Section VIII. Experimental results are shown in Section IX.
Finally, this paper is concluded with the discussion and possible
future research directions in Section X.

II. RELATED WORK

Scholarly works on monocular vision-based state estima-
tion/odometry/SLAM are extensive. Noticeable approaches in-
clude PTAM [1], SVO [2], LSD-SLAM [3], DSO [5], and ORB-
SLAM [4]. It is obvious that any attempts to give a full relevant
review would be incomplete. In this section, however, we skip
the discussion on vision-only approaches, and only focus on
the most relevant results on the monocular visual-inertial state
estimation.

The simplest way to deal with visual and inertial measure-
ments is loosely coupled sensor fusion [9], [10], where the IMU
is treated as an independent module to assist the visual structure.
Fusion is usually done by the extended Kalman filter (EKF),
where the IMU is used for state propagation and the vision-
only pose is used for the update. Further on, tightly coupled
visual-inertial algorithms are either based on the EKF [11]–
[13] or graph optimization [14]–[19], where camera and IMU
measurements are jointly optimized from the raw measurement
level. A popular EKF-based VIO approach is MSCKF [11],
[12]. The MSCKF maintains several previous camera poses in
the state vector, and uses visual measurements of the same fea-
ture across multiple camera views to form multiconstraint up-
date. SR-ISWF [20], [21] is an extension of MSCKF. It uses the
square-root form [14] to achieve single-precision representation
and avoid poor numerical properties. This approach employs
the inverse filter for iterative relinearization, making it equal
to optimization-based algorithms. The batch graph optimiza-
tion or bundle adjustment techniques maintain and optimize all
measurements to obtain the optimal state estimates. To achieve
constant processing time, graph-based VIO methods [15], [17],
[18] usually optimize over a bounded-size sliding window of re-
cent states by marginalizing out past states and measurements.
Due to high computational demands of iterative solving of non-
linear systems, few graph-based methods can achieve real-time
performance on resource-constrained platforms, such as mobile
phones.

For visual measurement processing, algorithms can be cate-
gorized into either direct or indirect methods according to the
definition of residual models. Direct approaches [2], [3], [22]
minimize photometric error, while indirect approaches [12],
[15], [17] minimize the geometric displacement. Direct meth-
ods require a good initial guess due to their small region of
attraction, while indirect approaches consume extra computa-
tional resources on extracting and matching features. Indirect
approaches are more frequently found in the real-world engi-
neering deployment due to its maturity and robustness. However,
direct approaches are easier to be extended for dense mapping
as they are operated directly on the pixel level.

The IMUs usually acquire data at a much higher rate than
the camera. Different methods have been proposed to handle
the high-rate IMU measurements. The most straightforward ap-
proach is to use the IMU for state propagation in EKF-based
approaches [9], [11]. In a graph optimization formulation, an
efficient technique called IMU preintegration is developed in
order to avoid the repeated IMU reintegration. This technique
was first introduced in [23], which parameterize the rotation er-
ror using Euler angles. Shen et al. [16] derived the covariance
propagation using continuous-time error-state dynamics. The
preintegration theory was further improved in [19] and [24] by
adding posterior IMU bias correction.

Accurate initial values are crucial to bootstrap any monocu-
lar VINS. A linear estimator initialization method that leverages
relative rotations from the short-term IMU preintegration was
proposed in [17] and [25]. This method fails to model gyroscope
bias and image noise in raw projection equations. A closed-form
solution to the monocular visual-inertial initialization problem
was introduced in [26]. Later, an extension to this closed-form
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Fig. 2. Block diagram illustrating the full pipeline of the proposed monocular VINS. The system starts with measurement preprocessing (see Section IV).
The initialization procedure (see Section V) provides all necessary values for bootstrapping the subsequent nonlinear optimization-based VIO. The VIO with
relocalization modules (see Sections VI and VII) tightly fuses preintegrated IMU measurements, feature observations, and redetected features from the loop
closure. Finally, the pose graph module (see Section VIII) performs global optimization to eliminate drift and achieve reuse purpose.

solution by adding a gyroscope bias calibration was proposed
in [27]. These approaches fail to model the uncertainty in in-
ertial integration since they rely on the double integration of
IMU measurements over an extended period of time. In [28], a
reinitialization and failure recovery algorithm based on SVO [2]
was proposed. An additional downward-facing distance sensor
is required to recover the metric scale. An initialization algo-
rithm built on top of the popular ORB-SLAM [4] was introduced
in [18]. It is reported that the time required for the scale con-
vergence can be longer than 10 s. This can pose problems for
robotic navigation tasks that require scale estimates right at the
beginning.

Odometry approaches, regardless the underlying mathemati-
cal formulation that they rely on, suffer from long-term drifting
in global translation and orientation. To this end, loop closure
plays an important role in long-term operations. ORB-SLAM [4]
is able to close loops and reuse the map, which takes advantage
of bag-of-words [29]. A 7-DOF [30] (position, orientation, and
scale) pose graph optimization is followed loop detection.

III. OVERVIEW

The structure of the proposed monocular visual-inertial
state estimator is shown in Fig. 2. The system starts with
measurement preprocessing (see Section IV), in which features
are extracted and tracked, and IMU measurements between
two consecutive frames are preintegrated. The initialization
procedure (see Section V) provides all necessary values,
including, pose, velocity, gravity vector, gyroscope bias, and
three-dimensional (3-D) feature location, for bootstrapping
the subsequent nonlinear optimization-based VIO. The VIO
(see Section VI) with relocalization (see Section VII) mod-
ules tightly fuses preintegrated IMU measurements, feature

observations. Finally, the pose graph optimization module (see
Section VIII) takes in geometrically verified relocalization
results, and perform global optimization to eliminate the drift.
It also achieves the pose graph reuse. The VIO and pose graph
optimization modules run concurrently in separated threads.

In comparison to OKVIS [15], a state-of-the-art VIO algo-
rithm, which is suitable for stereo cameras, our algorithm is
specifically designed for the monocular camera. So, we partic-
ularly propose an initialization procedure, keyframe selection
criteria, and use and handle a large field-of-view (FOV) camera
for the better tracking performance. Furthermore, our algorithm
presents a complete system with a loop closure and pose graph
reuse modules.

We now define notations and frame definitions that we use
throughout this paper. We consider (·)w as the world frame.
The direction of the gravity is aligned with the z-axis of the
world frame. (·)b is the body frame, which we define to be the
same as the IMU frame. (·)c is the camera frame. We use both
rotation matrices R and Hamilton quaternions q to represent
rotation. We primarily use quaternions in state vectors, but
rotation matrices are also used for the convenience rotation of
3-D vectors. qwb and pwb are rotation and translation from the
body frame to the world frame. bk is the body frame while
taking the kth image. ck is the camera frame while taking the
kth image. ⊗ represents the multiplication operation between
two quaternions. gw = [0, 0, g]T is the gravity vector in the
world frame. Finally, we denote (̂·) as the noisy measurement
or estimation of a certain quantity.

IV. MEASUREMENT PREPROCESSING

This section presents preprocessing steps for both inertial
and monocular visual measurements. For visual measurements,
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we track features between consecutive frames and detect new
features in the latest frame. For IMU measurements, we prein-
tegrate them between two consecutive frames.

A. Vision Processing Front End

For each new image, existing features are tracked by the
KLT sparse optical flow algorithm [31]. Meanwhile, new corner
features are detected [32] to maintain a minimum number (100–
300) of features in each image. The detector enforces a uniform
feature distribution by setting a minimum separation of pixels
between two neighboring features. Two-dimensional (2-D) fea-
tures are first undistorted, and then, projected to a unit sphere
after passing outlier rejection. Outlier rejection is performed
using RANSAC with a fundamental matrix model [33].

Keyframes are also selected in this step. We have two criteria
for the keyframe selection. The first one is the average parallax
apart from the previous keyframe. If the average parallax of
tracked features is between the current frame and the latest
keyframe is beyond a certain threshold, we treat frame as a new
keyframe. Note that not only translation but also rotation can
cause parallax. However, features cannot be triangulated in the
rotation-only motion. To avoid this situation, we use short-term
integration of gyroscope measurements to compensate rotation
when calculating parallax. Note that this rotation compensation
is only used for the keyframe selection, and is not involved
in rotation calculation in the VINS formulation. To this end,
even if the gyroscope contains large noise or is biased, it will
only result in suboptimal keyframe selection results, and will
not directly affect the estimation quality. Another criterion is
tracking quality. If the number of tracked features goes below a
certain threshold, we treat this frame as a new keyframe. This
criterion is to avoid complete loss of feature tracks.

B. IMU Preintegration

We follow our previous continuous-time quaternion-based
derivation of IMU preintegration [16], and include the han-
dling of IMU biases as [19] and [24]. We note that our current
IMU preintegration procedure shares almost the same numer-
ical results as [19] and [24], but using different derivations.
So, we only give a brief introduction here. Details about the
quaternion-based derivation can be found in Appendix A.

1) IMU Noise and Bias: IMU measurements, which are
measured in the body frame, combines the force for countering
gravity and the platform dynamics, and are affected by acceler-
ation bias ba , gyroscope bias bw , and additive noise. The raw
gyroscope and accelerometer measurements, ω̂ and â, are given
by

ât = at + bat + Rt
wgw + na

ω̂t = ωt + bwt
+ nw . (1)

We assume that the additive noise in acceleration and gyroscope
measurements are Gaussian white noise, na ∼ N (0,σ2

a), nw ∼
N (0,σ2

w ). Acceleration bias and gyroscope bias are modeled
as random walk, whose derivatives are Gaussian white noise,

nba ∼ N (0,σ2
ba

), nbw ∼ N (0,σ2
bw

)

ḃat = nba , ḃwt
= nbw . (2)

2) Preintegration: For two time consecutive frames bk and
bk+1 , there exists several inertial measurements in time interval
[tk , tk+1]. Given the bias estimation, we integrate them in local
frame bk as

αbk
bk + 1

=
∫∫

t∈[tk ,tk + 1 ]
Rbk
t (ât − bat )dt

2

βbk
bk + 1

=
∫
t∈[tk ,tk + 1 ]

Rbk
t (ât − bat )dt

γbk
bk + 1

=
∫
t∈[tk ,tk + 1 ]

1
2
Ω(ω̂t − bwt

)γbk
t dt (3)

where

Ω(ω) =

[−�ω�× ω

−ωT 0

]
, �ω�× =

⎡
⎣ 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

⎤
⎦. (4)

The covariance Pbk
bk + 1

of α,β, and γ also propagates accord-
ingly. It can be seen that the preintegration terms (3) can be
obtained solely with IMU measurements by taking bk as the
reference frame given bias.

3) Bias Correction: If the estimation of bias changes mi-
norly, we adjust αbk

bk + 1
,βbk

bk + 1
, and γbk

bk + 1
by their first-order

approximations with respect to the bias as

αbk
bk + 1

≈ α̂bk
bk + 1

+ Jαba δbak + Jαbw δbwk

βbk
bk + 1

≈ β̂
bk
bk + 1

+ Jβba δbak + Jβbw δbwk

γbk
bk + 1

≈ γ̂bk
bk + 1

⊗
[

1
1
2 J

γ
bw
δbwk

]
. (5)

Otherwise, when the estimation of bias changes significantly,
we do repropagation under the new bias estimation. This strat-
egy saves a significant amount of computational resources for
optimization-based algorithms since we do not need to propa-
gate IMU measurements repeatedly.

V. ESTIMATOR INITIALIZATION

Monocular tightly coupled VIO is a highly nonlinear system
that needs an accurate initial guess at the beginning. We get
necessary initial values by loosely align IMU preintegration
with the vision-only structure.

A. Vision-Only SfM in Sliding Window

The initialization procedure starts with a vision-only SfM
to estimate a graph of up-to-scale camera poses and feature
positions.

We maintain several frames in a sliding window for bounded
computational complexity. First, we check feature correspon-
dences between the latest frame and all previous frames. If we
can find stable feature tracking (more than 30 tracked features)
and sufficient parallax (more than 20 pixels) between the latest
frame and any other frames in the sliding window. we recover
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Fig. 3. Illustration of the visual-inertial alignment process for estimator ini-
tialization. The basic idea is to match the up-to-scale visual structure with IMU
preintegration.

the relative rotation and up-to-scale translation between these
two frames using the five-point algorithm [34]. Then, we arbi-
trarily set the scale and triangulate all features observed in these
two frames. Based on these triangulated features, a perspective-
n-point (PnP) method [35] is performed to estimate poses of all
other frames in the window. Finally, a global full bundle adjust-
ment [36] is applied to minimize the total reprojection error of
all feature observations. Since we do not yet have any knowl-
edge about the world frame, we set the first camera frame (·)c0

as the reference frame for SfM. All frame poses (p̄c0
ck
,qc0

ck
) and

feature positions are represented with respect to (·)c0 . Given
extrinsic parameters (pbc ,q

b
c ) between the camera and the IMU,

we can translate poses from the camera frame to body (IMU)
frame as

qc0
bk

= qc0
ck

⊗ (qbc)
−1

sp̄c0
bk

= sp̄c0
ck

− Rc0
bk

pbc (6)

where s is the unknown scaling parameter, which will be solved
in the next.

B. Visual-Inertial Alignment

An illustration of the visual-inertial alignment is shown in Fig.
3. The basic idea is to match the up-to-scale visual structure with
IMU pre-integration.

1) Gyroscope Bias Calibration: Consider two consecutive
frames bk and bk+1 in the window, we get the rotation qc0

bk
and

qc0
bk + 1

from the visual SfM, as well as the relative constraint

γ̂bk
bk + 1

from IMU preintegration. We linearize the IMU preinte-
gration term with respect to gyroscope bias and minimize the
following cost function:

min
δbw

∑
k∈B

∥∥∥qc0
bk + 1

−1 ⊗ qc0
bk

⊗ γbk
bk + 1

∥∥∥2

γbk
bk + 1

≈ γ̂bk
bk + 1

⊗
[

1
1
2 J

γ
bw
δbw

]
(7)

where B indexes all frames in the window. In such way, we
get an initial calibration of the gyroscope bias bw . Then, we re-

propagate all IMU preintegration terms α̂bk
bk + 1

, β̂
bk
bk + 1

, and γ̂bk
bk + 1

using the new gyroscope bias.
2) Velocity, Gravity Vector, and Metric Scale Initialization:

After the gyroscope bias is initialized, we move on to initialize
other essential states for navigation, namely, velocity, gravity

Fig. 4. Illustration of 2-DOF perturbation of gravity. Since the magnitude of
gravity is known, g lies on a sphere with radius g ≈ 9.81 m/s2 . The gravity is
perturbed around current estimate as g(ˆ̄g + δg), δg = w1b1 + w2b2 , where
b1 and b2 are two orthogonal basis spanning the tangent space.

vector, and metric scale

XI =
[
vb0
b0
, vb1

b1
, . . . vbnbn , g

c0 , s
]

(8)

where vbkbk is velocity in the body frame while taking the kth
image, gc0 is the gravity vector in the c0 frame, and s scales the
monocular SfM to metric units.

Consider two consecutive frames bk and bk+1 in the window,
we have following equations:

αbk
bk + 1

= Rbk
c0

(s(p̄c0
bk + 1

− p̄c0
bk

) +
1
2
gc0 Δt2k − Rc0

bk
vbkbk Δtk )

βbk
bk + 1

= Rbk
c0

(Rc0
bk + 1

vbk + 1
bk + 1

+ gc0 Δtk − Rc0
bk

vbkbk ). (9)

We can combine (6) and (9) into the following linear measure-
ment model:

ẑbkbk + 1
=

[
α̂bk
bk + 1

− pbc + Rbk
c0

Rc0
bk + 1

pbc

β̂
bk
bk + 1

]
= Hbk

bk + 1
XI + nbkbk + 1

(10)
where

Hbk
bk + 1

=

[−IΔtk 0 1
2 R

bk
c0

Δt2k Rbk
c0

(p̄c0
ck + 1

− p̄c0
ck

)

−I Rbk
c0

Rc0
bk + 1

Rbk
c0

Δtk 0

]
.

(11)
It can be seen that Rc0

bk
,Rc0

bk + 1
, p̄c0

ck
, and p̄c0

ck + 1
are obtained

from the up-to-scale monocular visual SfM. Δtk is the time
interval between two consecutive frames. By solving this linear
least-square problem

min
XI

∑
k∈B

∥∥∥ẑbkbk + 1
− Hbk

bk + 1
XI

∥∥∥2

(12)

we can get body frame velocities for every frame in the window,
the gravity vector in the visual reference frame (·)c0 , as well as
the scale parameter.

3) Gravity Refinement: The gravity vector obtained from the
previous linear initialization step can be refined by constrain-
ing the magnitude. In most cases, the magnitude of the gravity
vector is known. This results in only 2-DOF remaining for the
gravity vector. Therefore, we perturb the gravity with two vari-
ables on its tangent space, which preserves 2-DOF. Our gravity
vector is perturbed by g(¯̂g + δg), δg = w1b1 + w2b2 , where g
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Fig. 5. Illustration of the sliding window monocular VIO with relocalization. Several camera poses, IMU measurements, and visual measurements exist in the
sliding window. It is a tightly coupled formulation with IMU, visual, and loop measurements.

is the known magnitude of the gravity, ˆ̄g is a unit vector rep-
resenting the gravity direction. b1 and b2 are two orthogonal
basis spanning the tangent plane, as shown in Fig. 4. w1 and
w2 are 2-D perturbation toward b1 and b2 , respectively. We can
arbitrarily find any set of b1 and b2 spinning the tangent space.
Then, we substitute g into (9) by g(ˆ̄g + δg), and solve for 2-
D δg together with other state variables. This process iterates
several times until ĝ converges.

4) Completing Initialization: After refining the gravity vec-
tor, we can get the rotation qwc0

between the world frame and the
camera frame c0 by rotating the gravity to the z-axis. We then
rotate all variables from the reference frame (·)c0 to the world
frame (·)w . The body frame velocities will also be rotated to
the world frame. Translational components from the visual SfM
will be scaled to metric units. At this point, the initialization
procedure is completed and all these metric values will be fed
to a tightly coupled monocular VIO.

VI. TIGHTLY COUPLED MONOCULAR VIO

After estimator initialization, we proceed with a sliding
window-based tightly coupled monocular VIO for high-
accuracy and robust state estimation. An illustration of the
sliding window formulation is shown in Fig. 5.

A. Formulation

The full state vector in the sliding window is defined as

X =
[
x0 , x1 , . . . xn , xbc , λ0 , λ1 , . . . λm

]
xk =

[
pwbk , v

w
bk
, qwbk , ba , bg

]
, k ∈ [0, n]

xbc =
[
pbc , q

b
c

]
(13)

where xk is the IMU state at the time that the kth image
is captured. It contains position, velocity, and orientation of
the IMU in the world frame, and acceleration bias and gyro-
scope bias in the IMU body frame. n is the total number of
keyframes, and m is the total number of features in the sliding
window. λl is the inverse distance of the lth feature from its first
observation.

We use a visual-inertial bundle adjustment formulation. We
minimize the sum of prior and the Mahalanobis norm of all mea-

surement residuals to obtain a maximum posteriori estimation
as

min
X

{
‖rp − HpX‖2 +

∑
k∈B

∥∥∥rB(ẑbkbk + 1
, X )

∥∥∥2

P b k
b k + 1

+
∑

(l,j )∈C
ρ(
∥∥rC(ẑcjl , X )

∥∥2
P
c j
l

)

⎫⎬
⎭ (14)

where the Huber norm [37] is defined as

ρ(s) =

{
s s ≤ 1

2
√
s− 1 s > 1.

(15)

where rB(ẑbkbk + 1
, X ) and rC(ẑ

cj
l , X ) are residuals for IMU and

visual measurements, respectively. The detailed definition of the
residual terms will be presented in Sections VI-B and VI-C. B
is the set of all IMU measurements, C is the set of features that
have been observed at least twice in the current sliding window.
{rp , Hp} is the prior information from marginalization. The
Ceres solver [38] is used for solving this nonlinear problem.

B. IMU Measurement Residual

Consider the IMU measurements within two consecutive
frames bk and bk+1 in the sliding window, the residual for prein-
tegrated IMU measurement can be defined as

rB(ẑbkbk + 1
, X ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δαbk
bk + 1

δβbk
bk + 1

δθbkbk + 1

δba
δbg

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rbk
w (pwbk + 1

− pwbk + 1
2 g

wΔt2k − vwbk Δtk ) − α̂bk
bk + 1

Rbk
w (vwbk + 1

+ gwΔtk − vwbk ) − β̂
bk
bk + 1

2
[
qw

−1

bk
⊗ qwbk + 1

⊗ (γ̂bk
bk + 1

)
−1
]
xyz

ba bk + 1 − ba bk
bw bk + 1 − bw bk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16)
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Fig. 6. Illustration of the visual residual on a unit sphere. ˆ̄Pc j
l

is the unit

vector for the observation of the lth feature in the jth frame. Pc j
l

is predicted
feature measurement on the unit sphere by transforming its first observation in
the ith frame to the jth frame. The residual is defined on the tangent plane of
ˆ̄Pc j
l

.

where
[ · ]

xyz
extracts the vector part of a quaternion q for

the error-state representation. δθbkbk + 1
is the 3-D error-state rep-

resentation of quaternion. [α̂bk
bk + 1

, β̂
bk
bk + 1

, γ̂bk
bk + 1

] are preinte-
grated IMU measurement terms between two consecutive image
frames. Accelerometer and gyroscope biases are also included
in the residual terms for the online correction.

C. Visual Measurement Residual

In contrast to the traditional pinhole camera models that de-
fine reprojection errors on a generalized image plane, we define
the camera measurement residual on a unit sphere. The optics
for almost all types of cameras, including wide-angle, fisheye,
or omnidirectional cameras, can be modeled as a unit ray con-
necting the surface of a unit sphere. Consider the lth feature that
is first observed in the ith image, the residual for the feature
observation in the jth image is defined as

rC(ẑ
cj
l , X ) =

[
b1 b2

]T ·
(

ˆ̄Pcj
l − Pcj

l

‖Pcj
l ‖
)

ˆ̄Pcj
l = πc

−1

([
û
cj
l

v̂
cj
l

])

Pcj
l = Rc

b

(
Rbj
w

(
Rw
bi

(
Rb
c

1
λl
πc

−1

([
ûcil

v̂cil

])

+ pbc

)
+ pwbi − pwbj

)
− pbc

)
(17)

where [ûcil , v̂
ci
l ] is the first observation of the lth feature that

happens in the ith image. [ûcjl , v̂
cj
l ] is the observation of the

same feature in the jth image. π−1
c is the back projection func-

tion, which turns a pixel location into a unit vector using camera
intrinsic parameters. Since the degrees-of-freedom of the vision
residual is two, we project the residual vector onto the tangent
plane. b1 and b2 are two arbitrarily selected orthogonal bases

that span the tangent plane of ˆ̄Pcj
l , as shown in Fig. 6. The

variance Pcj
l , as used in (14), is also propagated from the pixel

coordinate onto the unit sphere.

Fig. 7. Illustration of our marginalization strategy. If the second latest frame
is a keyframe, we will keep it in the window, and marginalize the oldest frame
and its corresponding visual and inertial measurements. Marginalized measure-
ments are turned into a prior. If the second latest frame is not a keyframe, we
will simply remove the frame and all its corresponding visual measurements.
However, preintegrated inertial measurements are kept for nonkeyframes, and
the preintegration process is continued toward the next frame.

D. Marginalization

In order to bound the computational complexity of our
optimization-based VIO, marginalization is incorporated. We
selectively marginalize out IMU states xk and features λl from
the sliding window, meanwhile convert measurements corre-
sponding to marginalized states into a prior.

As shown in Fig. 7, when the second latest frame is a
keyframe, it will stay in the window, and the oldest frame is
marginalized out with its corresponding measurements. Other-
wise, if the second latest frame is a nonkeyframe, we throw
visual measurements and keep IMU measurements that connect
to this nonkeyframe. We do not marginalize out all measure-
ments for nonkeyframes in order to maintain sparsity of the
system. Our marginalization scheme aims to keep spatially sep-
arated keyframes in the window. This ensures sufficient parallax
for feature triangulation, and maximize the probability of main-
taining accelerometer measurements with large excitation.

The marginalization is carried out using the Schur comple-
ment [39]. We construct a new prior based on all marginalized
measurements related to the removed state. The new prior is
added onto the existing prior.

We note that marginalization results in the early fix of lin-
earization points, which may result in suboptimal estimation
results. However, since small drifting is acceptable for VIO, we
argue that the negative impact caused by marginalization is not
critical.

E. Motion-Only Visual-Inertial Optimization for Camera-Rate
State Estimation

For devices with low computational power, such as mobile
phones, the tightly coupled monocular VIO cannot achieve
camera-rate outputs due to the heavy computation demands for
the nonlinear optimization. To this end, beside the full opti-
mization, we employ a lightweight motion-only visual-inertial
optimization to boost the state estimation to camera rate (30 Hz).

The cost function for the motion-only visual-inertial opti-
mization is the same as the one for monocular VIO in (14).
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Fig. 8. Illustration of motion-only optimization for camera-rate outputs.

However, instead of optimizing all states in the sliding window,
we only optimize the poses and velocities of a fixed number of
latest IMU states. We treat feature depth, extrinsic parameters,
bias, and old IMU states that we do not want to optimize as
constant values. We do use all visual and inertial measurements
for the motion-only optimization. This results in much smoother
state estimates than the single-frame PnP methods. An illustra-
tion of the proposed strategy is shown in Fig. 8. In contrast to the
full tightly coupled monocular VIO, which may cause more than
50 ms on state-of-the-art embedded computers, the motion-only
visual-inertial optimization only takes about 5 ms to compute.
This enables the low-latency camera-rate pose estimation that
is particularly beneficial for drone and AR applications.

F. IMU Forward Propagation for IMU-Rate State Estimation

IMU measurements come at a much higher rate than visual
measurements. Although the frequency of our VIO is limited by
image capture frequency, we can still directly propagate the lat-
est VIO estimate with the recent IMU measurements to achieve
IMU-rate performance. The high-frequency state estimates can
be utilized as state feedback for the closed-loop closure. An
autonomous flight experiment utilizing this IMU-rate state esti-
mates is presented in Section IX-C.

VII. RELOCALIZATION

Our sliding window and marginalization scheme bound the
computation complexity, but it also introduces accumulated
drifts for the system. To eliminate drifts, a tightly coupled relo-
calization module that seamlessly integrates with the monocular
VIO is proposed. The relocalization process starts with a loop-
detection module that identifies places that have already been
visited. Feature-level connections between loop closure candi-
dates and the current frame are then established. These feature
correspondences are tightly integrated into the monocular VIO
module, resulting in drift-free state estimates with minimum
computation. Multiple observations of multiple features are di-
rectly used for relocalization, resulting in higher accuracy and
better state estimation smoothness. A graphical illustration of
the relocalization procedure is shown in Fig. 9(a).

A. Loop Detection

We utilize DBoW2 [29], a state-of-the-art bag-of-words place
recognition approach, for loop detection. In addition to the cor-
ner features that are used for the monocular VIO, 500 more
corners are detected and described by the BRIEF descriptor [40].

Fig. 9. Diagram illustrating the relocalization and pose graph optimization
procedure. (a) The relocalization procedure. It starts with VIO-only pose esti-
mates (blue). Past states are recorded (green). If a loop is detected for the newest
keyframe (see Section VII-A), as shown by the red line in the second plot, a
relocalization occurred. Note that due to the use of feature-level correspon-
dences for relocalization, we are able to incorporate loop-closure constraints
from multiple past keyframes (see Section VII-C), as indicated in the last three
plots. (b) The global pose graph optimization. A keyframe is added into the pose
graph when it is marginalized out from the sliding window. If there is a loop be-
tween this keyframe and any other past keyframes, the loop-closure constraints,
formulated as 4-DOF relative rigid body transforms, will also be added to the
pose graph. The pose graph is optimized using all relative pose constraints (see
Section VIII-C) in a separate thread, and the relocalization module always runs
with respect to the newest pose graph configuration.

The additional corner features are used to achieve better recall
rate on loop detection. Descriptors are treated as the visual word
to query the visual database. DBoW2 returns loop-closure can-
didates after temporal and geometrical consistency check. We
keep all BRIEF descriptors for feature retrieving, but discard
the raw image to reduce the memory consumption.

B. Feature Retrieval

When a loop is detected, the connection between the local
sliding window and the loop-closure candidate is established by
retrieving feature correspondences. Correspondences are found
by the BRIEF descriptor matching. Descriptor matching may
cause some wrong matching pairs. To this end, we use two-step
geometric outlier rejection, as shown in Fig. 10.
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Fig. 10. Descriptor matching and outlier removal for feature retrieval during
the loop closure. (a) BRIEF descriptor matching results. (b) First step: 2-D–2-D
outlier rejection results. (c) Second step: 3-D–2-D outlier rejection results.

1) 2-D–2-D: A fundamental matrix test with RANSAC [33].
We use 2-D observations of retrieved features in the cur-
rent image and loop-closure candidate image to perform
the fundamental matrix test.

2) 3-D–2-D: The PnP test with RANSAC [35]. Based on the
known 3-D position of features in the local sliding win-
dow, and 2-D observations in the loop closure candidate
image, we perform the PnP test.

After outlier rejection, we treat this candidate as a correct
loop detection and perform relocalization.

C. Tightly Coupled Relocalization

The relocalization process effectively aligns the current slid-
ing window to past poses. During relocalization, we treat poses
of all loop-closure frames as constants. We jointly optimize
the sliding window using all IMU measurements, local visual
measurement measurements, and retrieved feature correspon-
dences. We can easily write the visual measurement model for
retrieved features observed by a loop-closure frame v to be the
same as those for visual measurements in VIO, as (17). The
only difference is that the pose (q̂wv , p̂

w
v ) of the loop-closure

frame, which is taken from the pose graph (see Section VIII), or
directly from the past odometry output (if this is the first relo-
calization), is treated as a constant. To this end, we can slightly
modify the nonlinear cost function in (14) with additional loop

Fig. 11. Illustration of four drifted direction. With the movement of the object,
the x, y, z, and yaw angles change relatively with respect to the reference frame.
The absolute roll and pitch angles can be determined by the horizontal plane
from the gravity vector.

terms as

min
X

{
‖rp − HpX‖2 +

∑
k∈B

∥∥∥rB(ẑbkbk + 1
,X )
∥∥∥2

P b k
b k + 1

+
∑

(l,j )∈C
ρ(
∥∥rC(ẑcjl ,X )

∥∥2
P
c j
l

)

+
∑

(l,v )∈Lρ(‖rC(ẑ
v
l ,X , q̂wv , p̂wv )‖2

P c v
l

)
︸ ︷︷ ︸

reprojection error in the loop-closure frame

⎫⎪⎪⎬
⎪⎪⎭

(18)

where L is the set of the observation of retrieved features in
the loop-closure frames. (l, v) means lth feature observed in
the loop-closure frame v. Note that although the cost function
is slightly different from (14), the dimension of the states to
be solved remains the same, as poses of loop-closure frames
are considered as constants. When multiple loop closures are
established with the current sliding window, we optimize using
all loop-closure feature correspondences from all frames at the
same time. This gives multiview constraints for relocalization,
resulting in higher accuracy and better smoothness. The global
optimization to maintain consistency after relocalization will be
discussed in Section VIII.

VIII. GLOBAL POSE GRAPH OPTIMIZATION AND MAP REUSE

After relocalization, additional pose graph optimization step
is developed to ensure the set of past poses are registered into a
globally consistent configuration.

A. Four Accumulated Drift Direction

Benefiting from the inertial measurement of the gravity, the
roll and pitch angles are fully observable in the VINS. As de-
picted in Fig. 11, with the movement of the object, the 3-D
position and rotation change relatively with respect to the refer-
ence frame. However, we can determinate the horizontal plane
by the gravity vectors, that means we observe the absolute roll
and pitch angles all the time. Therefore, the roll and pitch are
absolute states in the world frame, while the x, y, z, and yaw
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Fig. 12. Illustration of the pose graph. The keyframe serves as a vertex in the
pose graph and it connects other vertexes by sequential edges and loop edges.
Every edge represents relative translation and relative yaw.

are relative estimates with respect to the reference frame. The
accumulated drift only occurs in x, y, z, and yaw angles. To take
full advantage of valid information and correct drift efficiently,
we fix the drift-free roll and pitch, and only perform pose graph
optimization in 4-DOF.

B. Adding Keyframes Into the Pose Graph

Keyframes are added into the pose graph after the VIO pro-
cess. Every keyframe serves as a vertex in the pose graph, and
it connects with other vertexes by two types of edges, as shown
in Fig. 12.

1) Sequential Edge: A keyframe establishes several sequen-
tial edges to its previous keyframes. A sequential edge repre-
sents the relative transformation between two keyframes, which
is taken directly from VIO. Considering keyframe i and one
of its previous keyframes j, the sequential edge only contains
relative position p̂iij and yaw angle ψ̂ij .

p̂iij = R̂w−1

i (p̂wj − p̂wi )

ψ̂ij = ψ̂j − ψ̂i . (19)

2) Loop-Closure Edge: If the keyframe has a loop connec-
tion, it connects the loop-closure frame by a loop-closure edge
in the pose graph. Similarly, the loop-closure edge only con-
tains a 4-DOF relative pose transform that is defined the same
as (19). The value of the loop-closure edge is obtained using
results from relocalization.

C. 4-DOF Pose Graph Optimization

We define the residual of the edge between frames i and j
minimally as

ri,j (pwi , ψi,p
w
j , ψj ) =

[
R(φ̂i , θ̂i , ψi)−1(pwj − pwi ) − p̂iij

ψj − ψi − ψ̂ij

]

(20)

where φ̂i and θ̂i are the fixed estimates of roll and pitch angles,
which are obtained from monocular VIO.

Fig. 13. Illustration of map merging. The yellow figure is the previous-built
map. The blue figure is the current map. Two maps are merged according to the
loop connections.

The whole graph of sequential edges and loop closure edges
are optimized by minimizing the following cost function:

min
p,ψ

⎧⎨
⎩
∑

(i,j )∈S
‖ri,j‖2 +

∑
(i,j )∈L

ρ(‖ri,j‖2)

⎫⎬
⎭ (21)

where S is the set of all sequential edges and L is the set of
all loop-closure edges. Although the tightly coupled relocaliza-
tion already helps with eliminating wrong loop closures, we add
another Huber norm ρ(·) to further reduce the impact of any pos-
sible wrong loops. In contrast, we do not use any robust norms
for sequential edges, as these edges are extracted from VIO,
which already contain sufficient outlier rejection mechanisms.

The pose graph optimization and relocalization (see
Section VII-C) run asynchronously in two separate threads. This
enables immediate use of the most optimized pose graph for re-
localization whenever it becomes available. Similarly, even if
the current pose graph optimization is not completed yet, re-
localization can still take place using the existing pose graph
configuration. This process is illustrated in Fig. 9(b).

D. Pose Graph Merging

The pose graph can not only optimize the current map, but
also merge the current map with a previous-built map. If we
have loaded a previous-built map and detected loop connections
between two map, we can merge them together. Since all edges
are relative constraints, the pose graph optimization automat-
ically merges two maps together by the loop connections. As
shown in Fig. 13, the current map is pulled into the previous
map by loop edges. Every vertex and every edge are relative
variables, therefore, we only need to fix the first vertex in the
pose graph.

E. Pose Graph Saving

The structure of our pose graph is very simple. We only
need to save vertexes and edges, as well as descriptors of ev-
ery keyframe (vertex). Raw images are discarded to reduce the
memory consumption. To be specific, the states we save for ith
keyframe are

[i, p̂wi , q̂
w
i , v, p̂

i
iv , ψ̂iv ,D(u, v, des)] (22)
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where i is the frame index, and p̂wi and q̂wi are position and
orientation, respectively, from VIO. If this frame has a loop-
closure frame, v is the loop-closure frame’s index. p̂iiv and
ψ̂iv are the relative position and yaw angle between these two
frames, which is obtained from relocalization. D(u, v, des) is
the feature set. Each feature contains 2-D location and its BRIEF
descriptor.

F. Pose Graph Loading

We use the same saving format to load keyframe. Every
keyframe is a vertex in the pose graph. The initial pose of the
vertex is p̂wi and q̂wi . The loop edge is established directly by
the loop information p̂iiv , ψ̂iv . Every keyframe establishes sev-
eral sequential edges with its neighbor keyframes, as (19). After
loading the pose graph, we perform global 4-DOF pose graph
once immediately. The speed of the pose graph saving and load-
ing is in the linear correlation with pose graph’s size.

IX. EXPERIMENTAL RESULTS

We perform dataset and real-world experiments and two ap-
plications to evaluate the proposed VINS-Mono system. In the
first experiment, we compare the proposed algorithm with an-
other state-of-the-art algorithm on public datasets. We perform a
numerical analysis to show the accuracy of our system in details.
We then test our system in the indoor environment to evaluate
the performance in repetitive scenes. A large-scale experiment
is carried out to illustrate the long-time practicability. Addition-
ally, we apply the proposed system for two applications. For
aerial robot application, we use VINS-Mono for the position
feedback to control a drone to follow a predefined trajectory.
We then port our approach onto an iOS mobile device.

A. Dataset Comparison

1) VIO Comparison: We evaluate our proposed VINS-
Mono using the EuRoC MAV visual-inertial datasets [41]. The
datasets are collected onboard a micro-aerial vehicle (MAV),
which contains stereo images (Aptina MT9V034 global shutter,
WVGA monochrome, 20 FPS), synchronized IMU measure-
ments (ADIS16448, 200 Hz), and ground-truth states (VICON
and Leica MS50). We only use images from the left camera.

In this experiment, we compare VINS-Mono with
OKVIS [15], a state-of-the-art VIO that works with monoc-
ular and stereo cameras. OKVIS is an another optimization-
based sliding-window algorithm. Our algorithm is different with
OKVIS in many details, as presented in the technical sections.
Our system is complete with robust initialization and loop clo-
sure. We show results of two sequences, MH_03_medium and
MH_05_difficult, in detail. To simplify the notation, we use
VINS to denote our approach with only monocular VIO, and
VINS_loop to denote the complete version with relocalization
and pose graph optimization. We use OKVIS to denote the
OKVIS’s results using the monocular camera.

For the sequence MH_03_medium, the trajectory is shown in
Fig. 14(a). The relative pose errors evaluated by [42] are shown
in Fig. 15. In the error plot, VINS-Mono with a loop closure

Fig. 14. (a) Trajectory in MH_03_medium, compared with OKVIS. (b) Tra-
jectory in MH_05_difficult, compared with OKVIS. (a) MH_03_trajectory. (b)
MH_05_trajectory.

Fig. 15. Relative pose error [42] in MH_03_medium. Three plots are relative
errors in translation, yaw, and rotation, respectively.

outperforms others in the long range. The translation and yaw
drifts are efficiently reduced by the loop-closure model. The
results are same in MH_05_difficult, as shown in Figs. 14(b)
and 16.

The root-mean-square error (RMSE) of all sequences in Eu-
RoC datasets is shown in Table I, which is evaluated by an
absolute trajectory error (ATE) [43]. VINS-Mono with loop
closure outperforms others in most cases. In some cases with
a short travel distance and little drift, such as V1_03_difficult
and V2_01_easy, loop closure module does not have significant
effects.

More benchmark comparisons can be found in [44], which
shows a favorable performance of the proposed system compar-
ing against other state-of-the-art algorithms.

2) Map Merge Result: Five MH sequences are collected at
different start positions and different times in the same place, so
we can merge five MH sequences into one global pose graph. We
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Fig. 16. Relative pose error [42] in MH_05_difficult. Three plots are relative
errors in translation, yaw, and rotation, respectively.

TABLE I
RMSE [43] IN EUROC DATASETS IN METERS

Fig. 17. (a) Merged trajectory of all MH sequences. (b) Merged trajectory of
the proposed system compared against ground truth.

do relocalization and pose graph optimization based on similar
camera views in every sequence. We only fix the first frame in
the first sequence, whose the position and yaw angle are set to
zero. Then, we merge new sequences into previous map one by
one. The trajectory is shown in Fig. 17. We also compare the
whole trajectory with ground truth. The RMSE of ATE [43] is

Fig. 18. Device used for the indoor experiment. It contains one forward-
looking global shutter camera (MatrixVision mvBlueFOX-MLC200w) wit
h 752 × 480 resolution. We use the built-in IMU (ADXL278 and ADXRS290,
100 Hz) for the DJI A3 flight controller.

Fig. 19. Results of the indoor experiment with comparison against OKVIS. (a)
Trajectory of OKVIS. (b) Trajectory of the proposed system. Red lines indicate
loop detection.

TABLE II
TIMING STATISTICS

Fig. 20. Estimated trajectory of the very large-scale environment aligned with
Google map. The yellow line is the estimated trajectory from VINS-Mono. Red
lines indicates loop closure.

0.21 m, which is an impressive result in a 500-m-long run in
total. This experiment shows that the map “evolves” over time
by incrementally merging new sensor data captured at different
times and the consistency of the whole pose graph is preserved.
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Fig. 21. (a) Self-developed aerial robot with a forward-looking fisheye cam-
era (MatrixVision mvBlueFOX-MLC200w, 190 FOV) and an DJI A3 flight
controller (ADXL278 and ADXRS290, 100 Hz). (b) Designed trajectory. Four
known obstacles are placed. The yellow line is the predefined figure eight-figure
pattern, which the aerial robot should follow. The robot follows the trajectory
four times with loop closure disabled.

B. Real-World Experiments

1) Indoor Experiment: The sensor suite we use is shown
in Fig. 18. It contains a monocular camera (mvBlueFOX-
MLC200w, 20 Hz) and an IMU (100 Hz) inside the DJI A3
controller.1 We hold the sensor suite by hand and walk at a
normal pace. We compare our result with OKVIS, as shown in
Fig. 19. Fig. 19(a) is the VIO output from OKVIS. Fig. 19(b)
is the result of the proposed method with relocalization and
loop closure. Noticeable VIO drifts occurred when we circle
indoor. OKVIS accumulate significant drifts in x, y, z, and yaw
angles. Our relocalization and loop-closure modules efficiently
eliminate these drifts.

2) Large-Scale Environment: This very large-scale dataset
that goes around the whole HKUST campus was recorded with
a handheld VI-Sensor.2 The dataset covers the place that is
around 710 m in length, 240 m in width, and with 60 m in height
changes. The total path length is 5.62 km. The data contain the
25-Hz image and 200-Hz IMU lasting for 1 h and 34 min. It is
a very significant experiment to test the stability and durability
of VINS-Mono.

In this large-scale test, we set the keyframe database size to
2000 in order to provide sufficient loop information and achieve
real-time performance. We run this dataset with an Intel i7-4790
CPU running at 3.60 GHz. Timing statistics are show in Table II.
The estimated trajectory is aligned with Google map in Fig. 20.
Compared with Google map, we can see our results are almost
drift free in this very long-duration test.

C. Applications

1) Feedback Control on an Aerial Robot: We apply VINS-
Mono for autonomous feedback control of an aerial robot, as
shown in Fig. 21. We use a forward-looking global shutter cam-
era (MatrixVision mvBlueFOX-MLC200w) with 752 × 480
resolution, and equipped it with a 190º fisheye lens. A DJI A3
flight controller is used for both IMU measurements and for at-
titude stabilization control. The onboard computation resource

1http://www.dji.com/a3
2http://www.skybotix.com/

Fig. 22. Trajectory of loop-closure-disabled VINS-Mono on the MAV plat-
form and its comparison against the ground truth. The robot follows the tra-
jectory four times. VINS-Mono estimates are used as the real-time position
feedback for the controller. Ground truth is obtained using OptiTrack. Total
length is 61.97 m. Final drift is 0.18 m.

is an Intel i7-5500U CPU running at 3.00 GHz. The traditional
pinhole camera model is not suitable for the large FOV cam-
era. We use MEI [45] model for this camera, calibrated by the
toolkit [46].

In this experiment, we test the performance of autonomous
trajectory tracking under state estimates from VINS-Mono. The
loop closure is disabled for this experiment. The quadrotor is
commanded to track a figure-eight pattern with each circle being
1.0 m in radius, as shown in Fig. 22. Four obstacles are put
around the trajectory to verify the accuracy of VINS-Mono
without the loop closure. The quadrotor follows this trajectory
four times continuously during the experiment. The 100-Hz
onboard state estimates (see Section VI-F) enables real-time
feedback control of the quadrotor.

Ground truth is obtained using OptiTrack.3 Total trajectory
length is 61.97 m. The final drift is [0.08, 0.09, 0.13] m, resulting
in 0.29% position drift. Details of the translation and rotation as
well as their corresponding errors are shown in Fig. 23.

2) Mobile Device: We port VINS-Mono to mobile devices
and present a simple AR application to showcase its accu-
racy and robustness. We name our mobile implementation
VINS-Mobile.4 VINS-Mobile runs on iPhone devices. we use
30-Hz images with 640× 480 resolution captured by the iPhone,
and IMU data at 100 Hz obtained by the built-in InvenSense
MP67B six-axis gyroscope and accelerometer. First, we insert
a virtual cube on the plane, which is extracted from estimated
visual features as shown in Fig. 24(a). Then, we hold the device
and walk inside and outside the room at a normal pace. When
loops are detected, we use the 4-DOF pose graph optimization
(see Section VIII-C) to eliminate x, y, z, and yaw drifts. After

3http://optitrack.com/
4https://github.com/HKUST-Aerial-Robotics/VINS-Mobile
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Fig. 23. Position, orientation, and their corresponding errors of loop-closure-disabled VINS-Mono compared with OptiTrack.

Fig. 24. Left pictures are AR images from VINS-Mobile, while the right
pictures are estimated trajectory. (a) Beginning: VINS-Mobile is initialized at
the start location and a virtual box is inserted on the plane, which is extracted
from estimated features. (b) End: final trajectory of VINS-Mobile. The total
length is about 264 m.

traveling about 264 m, we return to the start location. The final
result can be seen in Fig. 24(b), VINS returns to the start point.
The drift in total trajectory is eliminated due to the 4-DOF pose
graph optimization. This is also evidenced by the fact that the

cube is registered to the same place on the image comparing to
the beginning.

X. CONCLUSION AND FUTURE WORK

In this paper, we propose a robust and versatile monocular
visual-inertial estimator. Our approach features both state-of-
the-art and novel solutions to IMU preintegration, estimator
initialization, online extrinsic calibration, tightly coupled VIO,
relocalization, and efficient global optimization. We show su-
perior performance by comparing against other state-of-the-art
open-source implementations. We open source both PC and iOS
implementation for the benefit of the community.

Although feature-based VINS estimators have already
reached the maturity of real-world deployment, we still see
many directions for future research. Monocular VINS may reach
weakly observable or even degenerate conditions depending
on the motion and the environment. We are interested in online
methods to evaluate the observability properties of monocular
VINS, and online generation of motion plans to restore
observability. Another research direction concerns the mass de-
ployment of monocular VINS on a large variety of consumer de-
vices, such as Android phones. This application requires online
calibration of almost all sensor intrinsic and extrinsic parame-
ters, as well as the online identification of calibration qualities.
Finally, we are interested in producing dense maps given results
from monocular VINS. Our first results on monocular visual-
inertial dense mapping with application to drone navigation was
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presented in [47]. However, extensive research is still necessary
to further improve the system accuracy and robustness.

APPENDIX A
QUATERNION-BASED IMU PREINTEGRATION

Given two time instants that correspond to image frames bk
and bk+1 , position, velocity, and orientation states can be prop-
agated by inertial measurements during time interval [tk , tk+1]
in the world frame as follows:

pwbk + 1
= pwbk + vwbk Δtk

+
∫∫

t∈[tk ,tk + 1 ]
(Rw

t (ât − bat − na) − gw ) dt2

vwbk + 1
= vwbk +

∫
t∈[tk ,tk + 1 ]

(Rw
t (ât − bat − na) − gw ) dt

qwbk + 1
= qwbk ⊗

∫
t∈[tk ,tk + 1 ]

1
2
Ω(ω̂t − bwt

− nw )qbkt dt (23)

where

Ω(ω) =

[
−�ω�× ω

−ωT 0

]
, �ω�× =

⎡
⎣ 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

⎤
⎦. (24)

Δtk is the duration between the time interval [tk , tk+1].
It can be seen that the IMU state propagation requires rotation,

position, and velocity of the frame bk . When these starting states
change, we need to repropagate IMU measurements. Especially,
in the optimization-based algorithm, every time we adjust poses,
we will need to repropagate IMU measurements between them.
This propagation strategy is computationally demanding. To
avoid repropagation, we adopt the preintegration algorithm.

After changing the reference frame from the world frame
to the local frame bk , we can only preintegrate the parts that
are related to linear acceleration â and angular velocity ω̂ as
follows:

Rbk
w pwbk + 1

= Rbk
w

(
pwbk + vwbk Δtk −

1
2
gwΔt2k

)
+ αbk

bk + 1

Rbk
w vwbk + 1

= Rbk
w (vwbk − gwΔtk ) + βbk

bk + 1

qbkw ⊗ qwbk + 1
= γbk

bk + 1
(25)

where

αbk
bk + 1

=
∫∫

t∈[tk ,tk + 1 ]
Rbk
t (ât − bat − na)dt2

βbk
bk + 1

=
∫
t∈[tk ,tk + 1 ]

Rbk
t (ât − bat − na)dt

γbk
bk + 1

=
∫
t∈[tk ,tk + 1 ]

1
2
Ω(ω̂t − bwt

− nw )γbk
t dt. (26)

It can be seen that the preintegration terms (26) can be ob-
tained solely with IMU measurements by taking bk as the ref-
erence frame given bias. αbk

bk + 1
,βbk

bk + 1
, and γbk

bk + 1
are only re-

lated to IMU biases instead of other states in bk and bk+1 .
When the estimation of bias changes, if the change is small,

we adjust αbk
bk + 1

,βbk
bk + 1

, and γbk
bk + 1

by their first-order approx-
imations with respect to the bias, otherwise we do repropaga-
tion. This strategy saves a significant amount of computational
resources for optimization-based algorithms, since we do not
need to propagate IMU measurements repeatedly.

For discrete-time implementation, different numerical inte-
gration methods such as zero-order hold (Euler), first-order hold
(midpoint), and higher order (RK4) integration can be applied.
If we use zero-order hold discretization, the result is numerically
identical to [19] and [24]. Here, we take zero-order discretiza-
tion as the example.

At the beginning, αbk
bk

and βbk
bk

are 0, and γbk
bk

is identity
quaternion. The mean of α,β, and γ in (26) is propagated step
by step as follows. Note that the additive noise terms na and nw
are zero mean. This results in estimated values of the preinte-
gration terms, marked by (̂·) as

α̂bk
i+1 = α̂bk

i + β̂
bk
i δt+

1
2
R(γ̂bk

i )(âi − bai )δt
2

β̂
bk
i+1 = β̂

bk
i + R(γ̂bk

i )(âi − bai )δt

γ̂bk
i+1 = γ̂bk

i ⊗
[

1
1
2 (ω̂i − bwi

)δt

]
(27)

where i is discrete moment corresponding to a IMU measure-
ment within [tk , tk+1]. δt is the time interval between two IMU
measurements i and i+ 1.

Then, we deal with the covariance propagation. Since the
four-dimensional rotation quaternion γbk

t is overparameterized,
we define its error term as a perturbation around its mean

γbk
t ≈ γ̂bk

t ⊗
[

1
1
2 δθ

bk
t

]
(28)

where δθbkt is 3-D small perturbation. We can derive continuous-
time dynamics of error terms of (26) as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

δα̇bk
t

δβ̇
bk
t

δθ̇
bk
t

δḃat
δḃwt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0 I 0 0 0
0 0 −Rbk

t �ât − bat �× −Rbk
t 0

0 0 −�ω̂t − bwt
�× 0 −I

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δαbk
t

δβbk
t

δθbkt

δbat
δbwt

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0 0 0 0
−Rbk

t 0 0 0
0 −I 0 0
0 0 I 0
0 0 0 I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

na
nw
nba
nbw

⎤
⎥⎥⎦ = Ftδz

bk
t + Gtnt .

(29)
In zero-order hold discretization, Ft is constant over the inte-
gration period, such that Fd = exp(Ftδt) for a given time-step
δt. By expanding the exponential series and omitting the higher
order term, we get Fd ≈ I + Ftδt. With the continuous-time
noise covariance matrix Qt = diag(σ2

a ,σ
2
w ,σ

2
ba
,σ2

bw
), the
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discrete-time noise covariance matrix is computed as

Qd =
∫ δt

0
Fd(τ)GtQtGT

t Fd(τ)T

= δtFdGtQtGT
t FT

d

≈ δtGtQtGT
t . (30)

The covariance Pbk
bk + 1

propagates from the initial covariance

Pbk
bk

= 0 as follows:

Pbk
t+δt = (I + Ftδt)Pbk

t (I + Ftδt)T + δtGtQtGt
T

t ∈ [k, k + 1]. (31)

Meanwhile, the first-order Jacobian matrix can be also prop-
agate recursively with the initial Jacobian Jbk = I as

Jt+δt = (I + Ftδt)Jt , t ∈ [k, k + 1]. (32)

Using this recursive formulation, we get the covariance matrix
Pbk
bk + 1

and the Jacobian Jbk + 1 . The first-order approximation of

αbk
bk + 1

,βbk
bk + 1

, and γbk
bk + 1

with respect to biases can be written
as

αbk
bk + 1

≈ α̂bk
bk + 1

+ Jαba δbak + Jαbw δbwk

βbk
bk + 1

≈ β̂
bk
bk + 1

+ Jβba δbak + Jβbw δbwk

γbk
bk + 1

≈ γ̂bk
bk + 1

⊗
[

1
1
2 J

γ
bw
δbwk

]
(33)

where Jαba and is the subblock matrix in Jbk + 1 whose location

is corresponding to
δα

b k
b k + 1

δba k
. The same meaning is also used for

Jαbw ,J
β
ba
,Jβbw , and Jγbw . When the estimation of bias changes

slightly, we use (33) to correct preintegration results approxi-
mately instead of repropagation.

Now, we are able to write down the IMU measurement model
with its corresponding covariance Pbk

bk + 1
as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α̂bk
bk + 1

β̂
bk
bk + 1

γ̂bk
bk + 1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Rbk
w (pwbk + 1

− pwbk + 1
2 g

wΔt2k − vwbk Δtk )
Rbk
w (vwbk + 1

+ gwΔtk − vwbk )

qw
−1

bk
⊗ qwbk + 1

ba bk + 1 − ba bk
bw bk + 1 − bw bk

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(34)
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