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Abstract—The program call stack is a major source of ex-
ploitable security vulnerabilities in low-level, unsafe languages
like C. In conventional runtime implementations, the underlying
stack data is exposed and unprotected, allowing programming
errors to turn into security violations. In this work, we design
novel metadata-tag based, stack-protection security policies for
a general-purpose tagged architecture. Our policies specifically
exploit the natural locality of dynamic program call graphs to
achieve cacheability of the metadata rules that they require.
Our simple Return Address Protection policy has a performance
overhead of 1.2% but just protects return addresses. The two
richer policies we present, Static Authorities and Depth Isola-
tion, provide object-level protection for all stack objects. When
enforcing memory safety, our Static Authorities policy has a
performance overhead of 5.7% and our Depth Isolation policy
has a performance overhead of 4.5%. When enforcing data-
flow integrity (DFI), in which we only detect a violation when
a corrupted value is read, our Static Authorities policy has a
performance overhead of 3.6% and our Depth Isolation policy has
a performance overhead of 2.4%. To characterize our policies,
we provide a stack threat taxonomy and show which threats are
prevented by both prior work protection mechanisms and our
policies.

I. INTRODUCTION

Low-level, memory-unsafe languages such as C/C++ are

widely used in systems code and high-performance applica-

tions. However, they are also responsible for many of the

classes of problems that expose applications to attacks. Even

today, C/C++ remain among the most popular programming

languages [1], and code written in these languages exists

within the Trusted Computing Base (TCB) of essentially all

modern software stacks. In memory-unsafe languages the bur-

den of security assurance is left to the application developer,

inevitably leading to human error and a long history of bugs

in critical software.

The program call stack is a common target for attacks

that exploit memory safety vulnerabilities. Stack memory

exhibits high spatial and temporal predictability, is readable

and writeable by an executing program, and serves as a storage

mechanism for a diverse set of uses related to the function

call abstraction. The stack holds, in contiguous memory, local

function variables, return addresses, passed arguments, and

spilled registers, among other data. The particular concrete

layout of stack memory, chosen by the compiler and calling

convention, is exposed. An attacker can wield a simple mem-

ory safety vulnerability to overwrite a return address, corrupt

stack data, or hijack the exposed function call mechanism in

a host of other malicious ways.

Consequently, protecting the stack abstraction is critical

for application security. Currently deployed defenses such as

W⊕X and stack canaries [2] make attacks more difficult to

conduct, but do not protect against more sophisticated attack

techniques. Full memory safety can be retrofitted onto existing

C/C++ code through added software checks, but at a high cost

of 100% or more in runtime overhead [3]. These expensive

solutions are unused in practice due to their unacceptably high

overheads [4].

There is a long history of accelerating security policies with

hardware to bring their overheads to more bearable levels

[5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. However,

introducing a dedicated hardware mechanism to address a

single kind of vulnerability has disadvantages. Not only does

a new hardware feature take many years to implement and

deploy, but each mechanism can require independent changes

to the entire hardware/software stack. For example, Intel’s re-

cent Memory Protection Extensions (MPX) [15], a hardware-

accelerated mechanism for performing spatial memory safety

checks on pointer accesses, added new hardware registers and

new instructions in the instruction set, as well as required

updated compilers, recompiled software and new operating

system routines specific to MPX. Nonetheless, these additions

did not fully address stack protection, demanding the later

addition of separate hardware support and new instructions for

stack protection in the form of CET, Control-flow Enforcement

Technology [16]. Repeating this lengthy process for all desired

security policies will result in bloated hardware (i.e., poor

economy of mechanism) that cannot adapt to security threats

at the rate at which they evolve.

Furthermore, a single, fixed policy will not be best suited for

the range of applications and security requirements in practice.

Protection mechanisms make tradeoffs between performance

overhead, the protection provided, and compatibility, among

other metrics. Different requirements and performance budgets

likely lead to a range of solutions. A rigid, hardwired security

mechanism, however, necessarily positions itself at a fixed

point in the tradeoff space. CET, for example, provides hard-

ware acceleration for coarse-grained Control-Flow Integrity

(CFI) but cannot be used for fine-grained protection.

Recent work has shown that programmable, hardware-

accelerated rich metadata tag-based security monitors are
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capable of expressing and enforcing a large range of low-

level security policies [17]. In this model, the processor core

is enriched with expressive metadata tags attached to every

word of data in the system, including on registers and on

memory. The hardware propagates metadata tags and checks

each instruction against a software-defined security policy.

The same hardware mechanism accelerates any policy (or

composition of policies) expressed in a unified programming

model by caching a subset of the security monitor’s behavior

in hardware. Policies can be updated in-field or configured on

a per-application basis.

In this work we develop tag-based stack protection policies

for the Software-Defined Metadata Processing model (SDMP)

that are efficiently accelerated by an architecture that caches

metadata tag rules [17]. We propose a simple policy that

utilizes only a few tags, as well as richer policies that generate

thousands of tags for fine-grained, object-level stack protec-

tion. Our policies leverage the compiler as a rich source of

information for protecting the stack abstraction. The compiler

is responsible for the low-level arrangement of the stack,

including how arguments are passed, registers are spilled and

where program variables are stored; similarly, the compiler

is aware of which parts of a program should be reading

and writing each item on the stack. In conventional runtime

implementations this information is simply discarded after

compilation—by instead carrying it alongside the data and

instruction words in a computation with metadata tags, we can

validate the compiler’s intent and prevent the machine from

violating the stack abstraction in unexpected ways at runtime.

Stack protection SDMP policies face two major sources

of overhead. The first is the slowdown incurred by software

policy evaluation that must run to resolve security monitor

requests when they miss in the hardware security monitor

cache. The rate at which these misses occur is driven by the

locality of metadata security rules, which in turn is driven by

the diversity and use of metadata tags by the policy being

enforced. We design our policies specifically to exploit the

regular call structure found in typical programs by reusing

identifiers for the same static function (Sec. IV-D2) or by

the stack depth (Sec. IV-D3) to achieve cacheability of the

required metadata rules.

The second significant source of overhead for stack pro-

tection policies is the cost of keeping stack memory tagged,

which is a requirement faced by our richer policies. In con-

ventional runtime implementations on standard architectures,

stack memory is allocated and reclaimed with fast single

instruction updates to the stack pointer. To tag this memory

naively, we would need to insert code into the prologue and

epilogue of every function to tag and then clear the allocated

stack memory, effectively replacing an O(1) allocation opera-

tion with an O(N) one. This change is particularly costly for

stack memory; heap allocations, in contrast, spend hundreds

to thousands of cycles in allocator routines, which makes the

relative overhead of tagging the allocated memory less severe.

To alleviate the cost of tagging stack memory, we consider

several optimizations. One is an architectural change, Cache

Line Tagging (Sec. VI-B), that gives the machine the capability

of tagging an entire cache line at a time. Alternatively, we

propose two variations to our policies that avoid adding

additional instructions to tag memory, Lazy Tagging (Sec.

VI-A) and Lazy Clearing (Sec. VI-C).

Lastly, to characterize our policies, we provide a taxonomy

of stack threats (Sec. VII-A) and show how our policies as

well as previous work protection mechanisms protect against

those threats.

The policies we derive in this work provide word-level

memory protection of the stack abstraction, have low overhead

(<6%), can compose with other SDMP policies to be acceler-

ated with the same hardware (Sec. VIII-B), interoperate with

unmodified library code, do not require source code changes,

and are compatible with existing code and idioms (run on the

SPEC benchmarks).

Our contributions in this work are:

• The formulation of a range of stack protection policies

within the SDMP model

• Three optimizations for our stack policies: Lazy Tagging,

Lazy Clearing and Cache Line Tagging

• The performance modeling results of our policies on

a standard benchmark set, including the impact of our

proposed optimizations

• The protection characterization of our policies and com-

parison to prior work with a stack threat taxonomy

II. SOFTWARE-DEFINED METADATA PROCESSING

The Software-Defined Metadata Processing (SDMP) model

provides an abstraction for tag data processing that allows

flexible, programmable policies to be enforced with hardware

acceleration support. In the model, every word in the system,

including memory, registers, and the program counter, is

indivisibly extended with a metadata tag. As each instruc-

tion executes, the metadata on the inputs to the instruction

are checked versus a software-defined policy. If the policy

permits the operation, it supplies a metadata tag for the result,

otherwise it raises a policy exception so the operating system

can determine how to handle the security violation. Typically,

the OS will terminate the offending program.

Abstractly, the metadata tag is unbounded. Concretely, the

tag bits can be treated as a pointer to a rich data structure.

These data structures can compose data from multiple different

protection policies (e.g., CFI, heap memory, taint tracking)

to allow simultaneous enforcement of an arbitrary number of

different policies.

The inputs associated with an instruction include the OP-

code of the current instruction (OP) (e.g., add, load, jump) and

the tags associated with the Program Counter (PC), the Current

Instruction itself (CI), the Register Source inputs (RS1, RS2),

and the Memory input (M). In turn, the policy can provide

result metadata for the Register or Memory Result (MR) and

new metadata for the PC (PC′). The SDMP model allows

software to define an arbitrary function from the operator

and the 5 metadata inputs to an allow check and 2 metadata

outputs. This function is pure in that no additional input state is
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part of the functional computation. As we will see, all of these

inputs and outputs are needed by stack protection policies.

For compact short hand, we typically write policies as a

collection of rules of the form:

Op : (PC,CI,RS1, RS2,M)→ (PC ′,MR)

To accelerate computation, an SDMP implementation will

typically include a hardware rule cache that maps from the

rule inputs (operation and metadata tags) to results, such as

the PUMP in [17]. Appropriately designed (e.g., [18]), a level-

1 rule cache can perform this mapping in a single processor

cycle so that policy rule checking does not slow execution.

As with a normal data cache, the rule cache can have multiple

levels to provide greater capacity without impacting common

case cycle time. Misses to the final level of the rule cache

trap to software handlers that compute the policy function

and insert the missing rule into the rule cache. Rules in the

cache are based on the concrete encoding of the metadata

tags, including the pointer addresses. Because the metadata

data structures are immutable and rule outputs depend only

on the tag inputs, the rule cache does not need to dereference

pointers to see their data or interpret the meaning of the tags.

Performance overhead is tightly related to rule locality. If a

policy only needs a small number of distinct tags and rules for

a program, the rules can fit into the level-1 rule cache with little

overhead required to run software rule miss handlers to define

the results. Similarly, if locality means the working set of tags

and rules is small, there is little overhead. If the program must

traverse a large number of distinct tags, it can exceed the level-

1 rule cache capacity. If the program and policy create new

tags rapidly, compulsory misses to create rules for the new

tags can add to the overhead.

Tagged architectures have a long history [19] with early

uses for typing [20]. Early work provided tags with hardwired

semantics. Modern security interest was revived with single-bit

information flow tracking [10] and has expanded in flexibility

and bits [21], [22], [23], [24], with SDMP providing the most

general and programmable metadata architecture. Prior flexible

tagged architectures and monitoring architectures have not

directly explored the strong stack protections we introduce

here, and our policies can likely be adapted to many of these

architectures (Sec. VIII-C).

III. THREAT MODEL AND ASSUMPTIONS

In developing our stack protection policies we assume the

same powerful but realistic attacker capabilities of most related

work, e.g., [25][26]. In this threat model an attacker provides

arbitrary input to a program that contains a memory safety

vulnerability, leading to adversarial reads or writes into the

program address space. As a consequence, any attacks against

stack data are in scope, including control flow hijacking and

data corruption or data leaking attacks. We consider side

channels and hardware attacks such as Rowhammer [27] to

be out of scope. In Sec. VII-A we provide a set of specific

threats to demonstrate an attacker’s capabilities within our

threat model.

main:
lda sp,−32(sp) ; allocate frame
stq ra ,8(sp) ; store return address
stq fp ,16(sp) ; store old frame pointer
mov sp , fp ; set new frame pointer
stq a0,0( fp) ; write arg for foo ()
bsr ra,<foo> ; cal l foo ()
mov fp , sp ; reset sp before epilogue
ldq ra ,8(sp) ; restore return address
ldq fp ,16(sp) ; restore frame pointer
lda sp ,32(sp) ; release frame
ret ; jump to return address

Fig. 1: Typical Alpha stack maintenance code

Our policies leverage compiler-level information such as

the locations of objects on the stack and occasionally re-

quire adding instructions into programs. We thus consider the

toolchain (the compiler, linker, and loader) to be in our TCB

and assume we can recompile programs. Our policies do not,

however, require code changes or programmer annotations.

We develop our policies specifically for the Alpha architec-

ture, a RISC ISA, and use the gcc toolchain. These choices

do impact the low-level stack details used in our policy

descriptions and experiments. However, our policies should be

easy to port to any RISC ISA; CISC ISAs would require some

more care to handle the more complex memory operations

such as CALLs that side effect both memory and register state.

In Fig. 1 we show typical Alpha assembly code for maintaining

the stack.

IV. STACK PROTECTION POLICIES

In this section we describe our stack protection policies.

We begin with the motivation for our policy designs (IV-A),

proceed to connect our mechanism of tags and rules to the

stack abstraction (IV-B), enumerate the stack invariants that we

would like to maintain (IV-C), and finally give three concrete

policies (IV-D).

A. Motivation

Attacks on the stack arise from violations of high-level

abstractions that are unchecked by the low-level code produced

by compilers. Attackers exploit the machine’s willingness to

increment or decrement a pointer beyond the bounds of its

intended object and to perform abstraction-violating reads and

writes.

To prevent these violations, our policies tag stack objects

with both a frame-id (an identifier for a stack frame) and

an object-id (an identifier for an object within a frame), and

tag program code to allow the machine to validate accesses

to these words using appropriate metadata rules. Formulating

identifiers in this way allows us to express a range of policies;

we are driven both by a desire for strong protection (precise

notions of object-id and frame-id) and the performance of our

policies (the cacheability of our metadata rules), making the

choice of how we identify frames and differentiable objects

inside them core to our designs. In general, cacheability

concerns drive us to avoid creating a unique identifier for each

480

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 04,2024 at 12:15:44 UTC from IEEE Xplore.  Restrictions apply. 



dynamic procedure call to avoid the compulsory misses that

would be required.

B. Tags and Rules

The building blocks of SDMP policies are tags and rules.

Our policies use tags on (1) memory words, (2) registers,

and (3) instructions. Tags on stack memory words encode a

frame-id and an object-id, which together identify the frame

that owns a word and which of the differentiable objects held

by that frame is stored there. Tags on registers encode the

frame-id and object-id that a particular stack pointer is granted

access, if the register contains a pointer to stack data. Lastly,

instruction tags are used by the compiler to grant instructions

capabilities beyond what generic instructions would have, such

as the right to set the tags on memory words, to set the tags

on registers as pointers are crafted, to clear memory tags or

to perform other policy-specific functionality.

Rules allow us to define the set of permitted operations and

describe how result tags are computed from input tags. For

example, to validate a memory access, we can check that the

object-id and frame-id fields on a pointer tag match those of

the tag on the accessed memory word. Furthermore, during

such a load, we could use additional fields on the memory

word tag to describe how to tag the resulting value produced by

the load. As another example, we can propagate a pointer tag

along with a pointer value as the pointer is moved around the

system (including between registers, to and from memory, and

through operations such as pointer arithmetic) with appropriate

rules, allowing us to use the dynamic tainting rules as in [28]

to maintain pointer tags.

C. Stack Invariants

As a program executes, we would like to verify that objects

on the stack are accessed in ways that the compiler expects

with respect to our identifiers; i.e., the object-id and frame-
id accessed by memory instructions match the compiler’s

intentions. Several kinds of accesses capture stack behavior,

which we describe below.

Some stack objects, like return addresses, stored frame

pointers and callee-saved values, are accessed strictly by code

produced by the compiler specifically to maintain the stack

abstraction. These objects are accessed in a highly restricted

way; they are written to the stack once in the function prologue

and are read only in the return sequence before returning

control to the caller. Statically the compiler has emitted

specific instructions for these purposes, and so, by the principle

of least privilege, we would like to restrict access to these

objects to just those predetermined instructions. For accesses

of this variety, we place the object-id intention directly on the

instruction performing the access.

Local stack variables are accessed in two ways. One way is

through a fixed offset access from the frame pointer register.

Accesses of this type, like above, allow us to encode the

object-id intentions directly on the instructions that perform

the accesses. In this case the object-id might be Vi, where Vi

is an identifier for ith variable belonging to a particular frame.

The second way that local stack variables can be accessed

is through pointers held in general-purpose registers that are

crafted by the program. This type of access occurs when

accessing non-scalar types such as arrays, when the address of

a local variable is taken and dereferenced, or when a piece of

code obtains a pointer to stack data (e.g., was passed a pointer

to stack local data as an argument). To validate this kind

of access, we require that the accessing pointer was crafted

specifically to access the object it is used to read or write;

i.e., it was intentionally provided the capability to access a

particular object-id inside a frame-id. This definition allows a

pointer to a specific stack object to be passed as an argument

to another function, but restricts the use of that pointer by the

callee to just the intended object-id and frame-id.

A final class of memory operations used in the stack

abstraction is the case of accessing function arguments them-

selves. This is a special case—function arguments are held

in the caller’s frame, but no pointer is passed to the callee

to be treated as a capability for accessing them. Instead, the

locations of arguments are implicitly dictated by the calling

convention, and the callee will compute an offset beyond its

own frame to access the arguments it has been passed. While

we will still use compiler-level information to validate these

accesses, we leave our discussion of how this is done to each

of our concrete policies.

D. Policies

In this subsection we describe three concrete policies. In

each case, we (1) give a high level description of the policy,

(2) describe the implementation, and (3) detail the security

properties of the policy. The rules for each policy written in

SDMP notation are available in the appendix.

We focus on the the core policy behavior in this section and

discuss how our policies handle common low-level features

and optimizations in Appendix A, including setjmp/longjmp,

tail calls, and dynamic stack memory allocations such as

through alloca.

1) Return Address Protection:

Policy Description: The first stack protection policy

we present, Return Address Protection, is a lightweight policy

that is concerned only with control flow hijacking attacks

that overwrite return addresses. It treats return addresses as

special objects and restricts access to words containing return

addresses to just the specific instructions generated by the

compiler for this purpose (i.e., Sec. IV-C). It is designed to

have comparable protection characteristics to mechanisms

such as stack canaries [29], shadow stacks [26], or the HDFI

stack protection policy [12], namely just the protection of

return addresses stored on the stack. We abbreviate “return

address” with RA in our tags and rules.

Because the policy is only concerned with differentiating

return addresses stored on the stack from all other stack

objects, it only needs two object-ids: RA and OTHER.

As another simplification, we will not differentiate return
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addresses by any notion of their owner, thus choosing to use

a single frame-id in all cases. Conceptually, this is equivalent

to removing the frame-id field from the tags for this policy;

we choose this interpretation for the rest of the section. The

full rules for the policy are available in Appendix B.

Policy Implementation: This policy requires support from

the compiler only to appropriately tag the instructions that

store and retrieve return addresses from the stack. Specifically,

the compiler tags the instruction in the function prologue

that stores the return address to the stack with a special

tag STORE–RA, which, with an appropriate rule, causes the

written memory word to become tagged RA. Similarly, the

compiler tags the instruction in the function epilogue generated

to retrieve the return address from the stack with a special tag

READ–RA. With an appropriate rule, instructions with this tag

are granted the unique permission to read words marked RA
from the stack.

In this policy all other memory words are tagged OTHER,

and all other instructions are tagged generically as INSTR.

Instructions tagged INSTR are permitted to access memory

words tagged OTHER but not those tagged RA.

One final detail wraps up the policy: in standard stack

disciplines, the return address (which we will have tagged

RA) is left on the stack after a function returns. We insert one

additional instruction in the function epilogue that cleans up

the RA tag left on the stack by performing a store to the word

containing the return address. This cleanup instruction is

tagged REMOVE–RA by the compiler, granting it the unique

permission to overwrite words tagged RA, which it tags with

the generic OTHER.

Security Properties: The Return Address Protection policy

uses information from the compiler and appropriate rules to

keep return addresses saved on the stack tagged RA and all

other words tagged as OTHER. Only specific instructions

generated by the compiler to manage the stack abstraction

have permission to access words tagged RA, which prevents

any other code from overwriting them to hijack control flow.

Separately, instructions that load return addresses from the

stack require valid RA targets; this prevents attacks that

require attacker-synthesized return addresses, for which no

corresponding call instructions were issued, from being loaded

during return sequences (e.g., a standard ROP attack).1

This policy is complementary to CFI policies that restrict

the control-flow edges taken by a program to match those

of a control-flow graph. Return edges are imprecise in that

they can potentially return to any of their call cites [31];

the additional protection for return addresses in memory is

useful to assure a return flows to the correct instance. This

policy could replace a shadow stack proposed by [31] for this

purpose.

1We note, however, that this simple policy would not prevent sophisticated
code reuse attacks, e.g., [30]. Our later policies provide protection for other
code pointers on the stack as well.

2) Static Authorities:

Policy Description: The next policy we present, Static

Authorities, greatly expands upon the set of object-ids and

frame-ids that will be used to differentiate objects on the

stack. The key design decision of the policy is to statically

assign a unique identifier to each function in a program,

and to reuse that same identifier as the frame-id for each

dynamic function instance that is pushed onto the runtime call

stack. Conceptually, each function will tag the stack memory

that it allocates with its unique frame-id, and instructions

belonging to that function are the only instructions tagged

in the appropriate way to access (or create pointers to) that

allocated memory. In this sense, each function in a program

is the authority over the memory that it allocates.
In this policy we enrich our notion of object-ids for precise

object protection internal to a frame. Within each frame we

statically assign a unique object-id to each program-level

variable used by that function, including each primitive, array

and structure in the frame; i.e., for each variable Vi belonging

to a function f we assign a new differentiable object-id i.
Like Return Address Protection, we continue to use additional

object-ids to manage the stack control data, but now we expand

the set to include the return address, the saved frame pointer

and callee-saved registers; these other objects can also be used

to mount attacks, e.g., [32], [33]. Due to the restricted way

in which these compiler-managed objects are accessed (Sec.

IV-C), we reuse the same object-id for them all; we only need

to isolate them from the other program-managed objects on the

stack to secure them. Leveraging this piece of static analysis

allows us to avoid unnecessary tag and rule diversity.
At a high level, the implementation is then concerned with

(1) tagging stack memory according to the Static Authorities

formulation above, and (2) tagging instructions and defining

appropriate rules to validate accesses to these stack objects to

enforce the invariants (Sec. IV-C). The full rules for the policy

are available in Appendix C. In Fig. 2 we show an example

of how the stack memory would be tagged when our tagging

scheme is applied to the code shown. For demonstrative

purposes, we assume the first argument is passed on the stack.

Policy Implementation:
Initialization: To initialize this policy, we tag all stack memory

words with a special tag, EMPTY STACK, indicating that the

cell is unclaimed.2 Instructions are tagged with both their cor-

responding frame-id (authority identifier) and an instruction-
type field that is set generically as INSTR unless otherwise

indicated below. We initialize non-stack memory to ⊥.
Tagging Stack Memory: In each function prologue, the

compiler adds instructions that tag the freshly allocated stack

words with their appropriate frame-id and object-id. These in-

structions are tagged with both the instruction-type SET MEM
and the object-id that they are initializing; with an appro-

2For simplicity, we assume a fixed, maximum stack size, although with
additional OS and loader support stack pages could be allocated lazily and
tagged on demand as they are faulted in.
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long square( long i ){
long r = i ∗ i ;
return r ;

}

int main(){
long x = 3;
long r ;
r = square(x) ;

}

(a) Source Code
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(b) Stack Memory

Fig. 2: The Static Authorities tagging scheme. The tags we

show are pairs (frame-id, object-id). In this example we assign

frame-id 1 to main() and frame-id 2 to square(). We assign the

object-id 1 for stack control data, object-id 2 for arguments,

and use 3 and higher for program level variables. The word

containing the passed argument is described in the text.

priate rule, SET MEM instructions become the only type of

instructions that can claim empty stack memory, which they

convert from EMPTY STACK to the appropriate frame-id and

object-id of the allocated word. Functions that do not allocate

stack memory (e.g., handwritten assembly code in libc) tag no

memory—they require no stack protection.

Tagging Pointers: The compiler places the MAKE-PTR
instruction-type along with the frame-id and appropriate

object-id on instructions that create pointers to stack objects. A

special rule tags the resulting register with the corresponding

frame-id and object-id. Additionally, in the function prologue,

a MAKE-PTR is placed on the arithmetic instruction that

subtracts from the stack pointer register to allocate the fresh

frame. This transfers the frame-id from the static instruction to

the active stack pointer (and subsequently the frame pointer).

We use the same dynamic tainting rules as in [28] to propagate

pointer tags between registers, to and from memory, and

through pointer operations such as pointer arithmetic.

Accessing Objects: The way in which accesses to stack

objects are validated depends on the access type. For direct

frame pointer offset accesses, instructions are tagged with

the instruction-type ACCESS LOCAL and the specific object-
id that they access; these accesses use the frame-id from the

frame pointer. For the general pointer case, a special rule

allows the access when the frame-id and object-id of the

accessing pointer matches the frame-id and object-id of the

stack word.

Retagging the Stack Pointer: After each function call, the

compiler inserts one instruction to tag the stack pointer back

to the authority identifier of the caller. The frame pointer gets

the correct tag by retrieving the stored frame pointer from the

stack memory in the function epilogue.

Passing Arguments: To handle the special case of argument

passing, the Static Authorities policy sets aside a special

object-id for arguments (ARG) and tags stack words that

contain passed arguments with this special object-id. These

argument words are extended with another field, argument for,

containing the authority (frame-id) of the intended consumer.

Access to words marked ARG are permitted with a special rule

that allows the accesses if the accessor’s frame-id matches the

argument’s indicated argument for field. The way in which

we tag ARGs with the appropriate authority identifier of the

expected callee depends on the type of function call. For

direct calls, the needed information is trivially available to

the compiler, and these words can be set up by appropriately

tagging the instructions that prepare the arguments before the

call instruction. For indirect calls (in which the callee authority

identifier is not known statically), we add additional fields to

keep function pointers tagged with their appropriate frame-
id, so that at runtime we can setup the argument words with

correct frame-id based on the dynamic function pointer being

used. We describe these details in Appendix C.

Clearing Memory: To clear a function’s allocated memory,

the compiler adds additional instructions into the function

epilogue tagged CLEAR MEM that, with an appropriate

rule, can release the stack memory allocated by the function

by retagging the words currently owned by the function’s

frame-id with the tag EMPTY STACK. We choose epilogue

clearing over prologue clearing to limit the writing privilege

of each function to just the memory that it has allocated itself.

Security Properties: The Static Authorities policy tags each

object on the stack with a frame-id, indicating which function

owns the object, as well as an object-id, indicating which

object held by that frame is stored there. Accesses to stack

objects are validated with compiler assistance, using tags on

instructions and pointers. Accesses are permitted only if the

correct frame-id and object-id are used, preventing the out-

of-bounds accesses that give rise to stack attacks; both inter-
frame and intra-frame violations are prevented with the Static

Authorities tagging scheme. However, in order to achieve

cacheability of the metadata rules, the policy does reuse the

same frame-id for each dynamic instance of a function. This

reuse constrains the number of tags and rules that are generated

to remain modest, i.e., remain proportional to the number of

active functions in an application. It also means that the policy

does not differentiate between dynamic instances of a stack

object; it shares this limitation with systems built on static

points-to analysis like WIT [34] and others [35]. The Static

Authorities policy provides both spatial and temporal security

properties—a dangling pointer is still bound to its specific

frame-id and object-id.

Non-stack pointers are tagged ⊥, which prevents them from

accessing stack memory. Stack pointers are prevented from

accessing other memory regions, which are tagged ⊥. These

rules prevent gross cross-region violations, including “stack

clashes” [36]. Additionally, by combining these rules with

strict epilogue rules that require the stack pointer tag to not

be ⊥, the policy protects against stack pivots similar to [37].

483

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 04,2024 at 12:15:44 UTC from IEEE Xplore.  Restrictions apply. 



3) Depth Isolation:

Policy Description: The last policy we present, Depth Isola-

tion, is constructed in almost the same way as Static Author-

ities. However, instead of using a unique function identifier

to serve as the frame-id, the Depth Isolation policy uses

the current stack depth, d, as the frame-id for each function

instance—this allows the policy to discriminate between dy-

namic instances of a particular stack object. The policy uses

the same set of differentiable objects within a frame as in

Static Authorities: that is, a unique object-id for each program

variable, an object-id for stack control data, and an object-id
for argument passing.

Conceptually, the system will maintain the current stack

depth, d, and all functions will use it to tag the dynamic

instances that they allocate. The full rules for the policy are

available in Appendix D.

Policy Implementation: Our Depth Isolation implementation

differs from Static Authorities in only a few aspects, so we

present the differences here. The other implementation details

are the same.

Maintaining Stack Depth: This policy requires tracking the

current stack depth to serve as the frame-id, which we choose

to place in the tag on the stack pointer register. In the function

prologue, the compiler tags the instruction that allocates the

stack frame with INCR–DEPTH; with an appropriate rule,

this causes the value held in the tag, d, to be updated to

d+1. Similarly, in the function epilogue, the compiler tags the

instruction that releases the stack frame with DECR–DEPTH,

which, with an appropriate rule, replaces the current depth, d,

with d-1.

Argument Passing: Argument passing in the Depth Isola-

tion policy is simpler than in the Static Authorities policy. We

tag stack words that contain arguments with the object-id ARG
and the current depth of caller d, but we do not need to extend

them with argument for as was done in Static Authorities.

Instead, in the Depth Isolation policy, we require that the depth

of the accessor to argument words is either d, the depth of the

owner, or d+1, the depth that will be used by the callee; no

other depths are permitted to access arguments.

Other: The Depth Isolation policy does not need to retag

the stack pointer after returning from a call because there is

no authority identifier kept on the stack pointer; the depth

decrement by the caller sufficiently resets the stack pointer. In

Depth Isolation instructions have no authority identifier and

so are only tagged with their instruction-type on initialization.

Security Properties: The Depth Isolation policy, like Static

Authorities, prevents out-of-bounds accesses to objects on the

stack by requiring that the frame-id and object-id tags of the

instruction or pointer match those of the accessed memory

word—and so it has similar security properties to Static

Authorities. However, the Depth Isolation policy provides

better spatial memory safety properties than Depth Isolation,

as each live function instance (even of the same static function)

has a unique frame-id. The Depth Isolation policy has weaker

temporal guarantees; a dangling pointer tagged for a particular

frame-id and object-id may be able to be used for unintended

instances.

V. EVALUATION

A. Methodology

We model the runtime overheads for our stack protection

policies on the SPEC CPU2006 [38] benchmark set running on

a simulated metadata-enhanced Alpha microarchitecture. We

compile the benchmarks using gcc with the -O2 optimization

level. We allow each benchmark to complete any benchmark-

specific initialization, such as parsing input files or setting up

data structures, and then run it for an additional one billion

warm up instructions. After completing initialization and warm

up, we then collect statistics from the system for a 500M

instruction measurement period.

1) Microarchitecture: For concrete evaluation, we target a

single-issue, in-order Alpha microarchitecture with a unified

512KB L2 cache, a 64KB L1 instruction cache and a 64KB

L1 data cache. We use a wide-word, coupled metadata imple-

mentation for tags, so tags are moved atomically with their

associated data words. We simulate a 1024 entry L1 PUMP

cache and a 4096 entry L2 PUMP cache. We use the same

basic architecture optimizations as in [17]. Shortened metadata

tags in our L1 cache system are 11 bits, and shortened

metadata tags in our L2 system are 14 bits, with full 64-bit

tags in DRAM. At these sizes, running with a 1 GHz clock in a

32 nm process, the L1 and L2 cache access cycles are 1 and 5

cycles for both the baseline and tagged cases based on CACTI

[39] estimates. Cache lines are 8 words and require 100 cycles

to fetch from DRAM in the no-tag case and up to 130 cycles

in the tagged case; since tags live on the same DRAM page

with the data, they cost additional cycles for bandwidth but

do not require additional latency for page access or writeback.

The main memory cache compression from [17] means most

cache line accesses can fetch compressed tag descriptions for

the cache line and consequently require fewer than 130 cycles

to fetch the data and tags from DRAM.

2) Tagging Instructions: Our stack protection policies re-

quire tagging individual instructions in policy-specific ways.

Ideally, all instruction tags would be provided by a modified

policy-aware compiler. For our prototyping purposes, we use a

custom instruction tagger. The instruction tagger takes as input

the DWARF [40] debug information generated by gcc, which

we extract from the benchmark binaries and process using

libdwarf [41]. This debug information gives the instruction

tagger the layout of the stack memory, which it uses to tag

instructions as described by the policies.

3) Simulation: Our evaluation framework is shown in Fig-

ure 3. We use gem5 [42] for architectural statistics and

generating instruction traces, a custom PUMP simulator for

simulating the metadata tag subsystems of the simulated

processor, and CACTI [39] for estimating memory access

latencies for the final runtime calculations. After running

an initial gem5 simulation of the application, we process
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Fig. 3: Evaluation Framework

the instruction trace in the PUMP simulator that models the

metadata tags on the registers, memory and program counter,

as well as computes the SDMP policy rules for creating

new tags. We then run a separate, second pass of gem5 on

the SDMP software to generate the instruction trace of the

misshandler code itself. Finally, we run a memory simulator

to model the memory and rule cache system performance with

a composite trace assembled from the benchmark instruction

trace, the misshandler trace, and the instructions added by the

stack protection policies.

B. Results
1) Return Address Protection:

The Return Address Protection policy has a mean runtime

overhead of 1.2% (Figure 4). The policy needs only 6

static tags and 8 total rules. The small set of rules fits into

the L1 PUMP rule cache; after the misshandler evaluates

and installs each of them into the cache, no more cycles

are spent on policy evaluation. The misshandler took an

average of 21 instructions to evaluate a miss. The runtime

overhead comes from the one instruction added to every

function epilogue to clear the RA (0.4%) and the additional

DRAM cycles to transfer tag-extended memory words (0.8%).

2) Static Authorities:
The Static Authorities policy has a mean runtime overhead of

11.9% (Figure 5). It generates an average of 5,213 tags and

12,412 unique rules. The average L1 rule cache hit rate is

99.76%. 13 out of 24 benchmarks experienced no rule misses

in the measurement period at all, and most others experienced

very few; only two benchmarks experienced enough misses to

incur a > 1% overhead for resolving security monitor requests.

The misshandler took an average of 46 instructions to evaluate

a miss. The high degree of locality of rules results from a high

degree of locality of tags, which the policy achieves by using

a single frame-id for all dynamic instances of a function. This

causes the number of tags and rules needed by the policy to

be driven by the size of the working set of active functions

(authorities) in the benchmark. The SPEC benchmarks have

an average of 2,507 static functions (including libraries), but

we found that only an average of 399 were called at least

once, and only an average of 93 were active during the core

benchmark behavior. A further reduction in the number of tags

comes from a reduction in the number of object-ids provided

by the compiler’s optimizations. Many program-level variables

either get allocated strictly in registers or optimized away

entirely, meaning that the actual number of stack-allocated

variables is much lower than would appear from the program

source code. The benchmarks that challenged the rule caches

(gobmk, perlbench, gcc) were the ones with large working sets

of functions.

Most of the overhead of the policy (60% of the 11.9%,

or individually 7.1%) comes from the instructions that are

added in the prologues and epilogues to maintain the tags

on stack memory. As can be seen in Figure 5, this alone

accounts for an overhead of more than 60% for sjeng. sjeng is

a chess-playing benchmark that rapidly allocates large 16KB

stack frames that are defensively sized to hold a worst-case

number of chess moves, but in the common case a much

smaller number of moves is found and most of the memory

goes unused. This causes our policy to spend many cycles

setting up and clearing memory tags unnecessarily. Most

benchmarks that have a high added instruction overhead

have a similar root cause. Some functions in libc exhibit this

behavior to a lesser degree, such as IO vfprintf that contains

char work buffer[1000], which is larger than needed in the

common case, for example. We attribute this pattern to the

programmer’s understanding that stack memory is typically

cheap (i.e., O(1)) to allocate.

3) Depth Isolation:
The Depth Isolation policy has a mean runtime overhead of

8.5% (Figure 6). It generates an average of 1,127 tags and

3,603 unique rules. It has an average L1 rule cache hit rate

of 99.98%. 14 of the 24 benchmarks experienced no rule

misses in the measurement period, and only one benchmark

experienced enough misses to incur a >1% overhead for policy

evaluation. The misshandler took an average of 53 instructions

to evaluate a miss. The high degree of locality of rules comes

from a high degree of locality of tags, which this policy

achieves by reusing the frame-ids for each dynamic function

instance that occurs at the same depth. This locality emerges

from the call graph of common applications; rarely do the

benchmarks traverse a large range of stack depths, allowing

the rules for the depths encountered to remain cached. The

benchmarks had an average max stack depth of 60 (median

18) in the full trace, and an average of 32 (median 8) unique

depths in the measurement period. The benchmark that most

challenged the rule caches for this policy was gobmk, a Go

playing program that performs some recursive game state

operations. The main source of overhead for the policy was

also the instructions added to tag and clear stack memory (73%

of the 8.5% overhead, or individually 6.2%).

485

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 04,2024 at 12:15:44 UTC from IEEE Xplore.  Restrictions apply. 



0
1
2
3
4

as
ta

r

bw
av

es

bz
ip

2

ca
ct

us
A

D
M

de
al

II

ga
m

es
s

G
em

sF
D

T
D

gc
c

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er

lb
m

le
sl

ie
3d

lib
qu

an
tu

m

m
cf

m
ilc

na
m

d

om
ne

tp
p

pe
rlb

en
ch

sj
en

g

sp
hi

nx
3

so
pl

ex

ze
us

m
p

m
ea

n

R
un

tim
e 

O
vh

d(
%

) DRAM PUMPs Misshandler Added Instrs Other

Fig. 4: Return Address Protection overhead
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Fig. 5: Static Authorities overhead
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Fig. 6: Depth Isolation overhead

VI. OPTIMIZATIONS

In the preceding evaluation section, we show that the

dominant source of overhead for the stack protection policies

arises from instructions added to tag the stack. Consequently,

to reduce the overhead we focus on techniques that allow us

to reduce or remove the need to add these instructions. Two of

the optimizations we present, Lazy Tagging and Cache Line

Tagging, allow us to speed up the policies without changing

their security properties. The last optimization we present,

Lazy Clearing, explores recasting the policies from memory

safety policies to data-flow integrity [35] policies in order to

remove the instructions that clean up stack memory in the

function epilogue. When using this optimization, we consider

the policies to be fundamentally different and categorize them

separately in our taxonomy (Sec. VII-A).

A. Lazy Tagging

Asymptotically, an unfortunate overhead of the current

policy design is the cost of tagging stack elements that are

allocated but never used. The ratio of used stack frame words

to allocated stack frame words can be arbitrarily small (see

discussion about sjeng in Sec. V-B2). For the stack elements

that are used, the need to tag each with their appropriate frame-
id and object-id means the policies are doubling the stack write

traffic for stack elements that are only written once. Ideally,

we’d like to combine the stack tagging operation with the first

program write to the same word to avoid this overhead and

simultaneously avoid tagging unused stack elements.

We can address both of these issues for stack writes with

the Lazy Tagging optimization, in which we allow all stack

pointers to write over EMPTY STACK memory and update

the tag on the memory cell to that of the stack pointer or

instruction when a write occurs. This eliminates the need to tag

stack memory in the function prologue, and so we eliminate

those added instructions. From a security perspective, we are

still assured that stack pointers and instructions are never

used to access claimed (non EMPTY STACK) stack memory

that does not match the frame-id and object-id of the current

instruction and stack pointer. We keep the full cleanup loop

in function epilogues to maintain the invariant that unused

stack frames are marked with EMPTY STACK to allow future

function calls to succeed.
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A write to the stack beyond the frame’s intended allocation

will not be prevented nor cleaned up, but it will be caught by

a frame-id and object-id mismatch when a later function at-

tempts to use the memory cell. By removing this initialization,

we cut the added instructions roughly in half. When applying

Lazy Tagging, the average overhead for Static Authorities goes

from 11.9% to 8.9% and the average overhead for Depth

Isolation goes from 8.5% to 6.3% (see Figs. 7 and 8).

B. Cache Line Tagging

Next, and independently from Lazy Tagging, we explore

the impact of adding a cache line wide write operation to the

Alpha ISA to perform rapid tagging of memory blocks. We

model a new instruction for this purpose—this is lightweight

to add both for the base datapath and for the metadata rule

cache. Typical cache lines are wider than a single word, and

the cache memory can read or write the entire line in a memory

cycle, so we are exploiting capabilities that the cache already

possesses.

To avoid complicating the SDMP rule checking, we de-

mand all words in the cache line have identical tags for this

instruction to succeed; this assures the same metadata rule

is applicable to every word in the cache line. The SDMP

processor applies the single metadata rule and writes the result

tag to all of the words in the cache line. If any of the tags

on words in the cache line differ, then the instruction instead

fails and the machine falls back by jumping to a displacement

encoded in the instruction that contains the logic for handling

a failure—we model this exception handling code as a series

of store instructions that write a value with the same tag as the

faulting cache line-wide store instruction would have written.

For this optimization, we align all stack frames to cache

lines and model the compiler using the new instruction for

the tagging and clearing of stack memory. While this approach

does not asymptotically remove the burden of stack frame tag-

ging, it provides an 8× speedup in the best case for the 64-byte

cache lines and 8-byte words we assume in our experiments.

This significantly reduces the tagging overhead costs for large

stack frames such as those used in sjeng (See Figs. 7 and

8). We show the impact of both using Cache Line Tagging

alone (for both setup and cleanup) and when it is combined

with Lazy Tagging (used just for cleanup). When used alone,

the average overhead for Static Authorities goes from 11.9%

to 7.9% and the average overhead for Depth Isolation goes

from 8.5% to 5.5%. When combined with Lazy Tagging, the

average overhead for Static Authorities goes from 8.9% to

5.7% and the average overhead for Depth Isolation goes from

6.3% to 4.5%.

C. Lazy Clearing

Lazy Tagging removes the need for adding instructions in

the function prologue to claim memory, but it does not remove

the need to clear every allocated word in the epilogue when a

function returns. As a result, the policies are still faced with an

asymptotic overhead when the allocated stack frame size does

not match the actual stack frame usage. Removing the tags

from released stack frames is required by the policies so that

the subsequent functions, which use the same stack memory,

can claim clean cells tagged EMPTY STACK.

In the Lazy Clearing optimization, we remove the tag

cleanup loop in the function epilogue and allow all stack

writes to succeed. This way, future function calls do not

experience violations when they attempt to write over already-

claimed memory. When a write occurs, the memory cell gets

the authority and object (frame-id and object-id) for which

the write is intended. When using this optimization, we only

validate stack reads, which assure that the frame-id and object-
id of the stack word being read matches the intent of the

compiler as encoded in the instructions and pointers used in

the access. Erroneous code can overflow buffers and write

indiscriminantly over the stack memory, but the code tagging

rules assure that any violations to the stack abstraction will

be detected by the reading instruction before the corrupted

or unintended data is actually used. Violations that overwrite

data that is never read will not be detected, but that’s precisely

because those violations do not impact the result of the

computation since they are not observed. In essence, with

this optimization, our policies provide a data-flow integrity

property instead of a memory safety property.

This change does mean that the tag on a memory cell during

a write can now be uncorrelated to the instruction and stack

pointer performing the write. If we needed to supply rules for

all combinations of instruction tags, stack pointer tags, and

old memory tags, we could end up needing a greater number

of rules than in the eager stack clearing case. However, if we

exploit the ability to indicate that the memory tag is irrelevant

to the rule computation (is a don’t-care), this will not result in

an increase in the number of necessary rules. The don’t-care

feature exists in [17], and it turns out to be quite important to

extracting the benefits of Lazy Clearing for some applications.

While running with the Lazy Clearing optimization, we

discovered several cases in the SPEC2006 benchmarks where

the original C code does use uninitialized data from the stack.

These are errors, and our policy rules correctly flag these errors

as violations. They allow data to flow from an unintended

frame-id and object-id and to be used to effect the computa-

tion. We believe the correct response is to fix these errors in

the original code. To generate a complete and consistent set

of data, we selectively disabled lazy optimizations on just the

functions that were flagged as using uninitialized data.

The impact of Lazy Clearing, which we always combine

with Lazy Tagging, is shown in Figs. 7 and 8. When applied

in addition to Lazy Tagging, the average overhead for Static

Authorities goes from 8.9% to 3.6% and the average overhead

for Depth Isolation goes from 6.3% to 2.4%.

VII. SECURITY CHARACTERIZATION

A. Taxonomy

To demonstrate the security properties of our stack protec-

tion policies and relate them to other stack protection work,

we provide a taxonomy of stack threats in Figure 9. We select

threats that decompose stack protection mechanisms along
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Fig. 7: Optimizations applied to Static Authorities
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Fig. 8: Optimizations applied to Depth Isolation

the main dimensions in which they differ and show which

protection mechanisms provide protection against each threat.

First, we show whether the protection mechanism prevents

the reading of unused stack memory, where previous functions

may have left critical data (security keys, etc). Next, we show

whether the protection mechanism prevents return addresses

from being overwritten, which is the most common vehicle for

control flow hijacking attacks. We differentiate between two

kinds of memory safety attacks as in [26], the contiguous case

and the arbitrary case. In the contiguous case, an attacker must

access memory contiguously from an existing pointer (e.g., the

attacker controls the source of an unchecked strcpy); in the

arbitrary case, an attacker can access memory arbitrarily (e.g.,

the attacker controls the source of an unchecked strcpy and

the index into the destination buffer).

Many stack protection mechanisms only protect return ad-

dresses. However, many of the other items stored on the stack

are security-critical as well—these include code pointers such

as function pointers, permissions bits, security keys and private

information among many other possibilities, so the last threats

in the taxonomy concern accesses to other stack data. We

differentiate read accesses (R) from read/write accesses ( )

to discriminate where violations are detected and enforced in

different policies. Finally, we show the overhead for each of

the protection mechanisms.

B. Microbenchmarks

Due to the difficulty of porting an existing security bench-

marking suite such as RIPE [46] to Alpha, we instead con-

structed a set of security microbenchmarks for testing and

characterizing our policies. We use a simple vulnerable C

program for each of the threats in taxonomy and craft payloads

that allow an attacker to execute the threat shown. Our system

halts the offending program at the expected instruction when

we display a in the taxonomy and does not halt the program

when we display X. Note that for the rest of the security

mechanisms in the taxonomy, the or X comes from our

understanding of the work and not an empirical evaluation.

VIII. RELATED WORK

A. Stack Protection
Due to the prevalence of stack memory safety exploits,

stacks have been the subject of many defensive efforts [4].

Traditional protection mechanisms such as Data Execution

Prevention (DEP) and Address Space Layout Randomization

(ASLR) increase the difficulty of conducting attacks, but do

not prevent them entirely. For example, DEP does not protect

against code reuse attacks such as ROP [47], [48], [49], [50],

and ASLR can be subverted with information leaks [51].
Low-overhead, software-only stack protection solutions

such as StackGuard [29] and shadow stacks [26] protect

return addresses, but do not protect other stack data and can

be defeated by attack techniques such as direct writes and

information leaks. Recent work found that shadow stacks

have a performance overhead of about 10% [26]; we in-

clude the optimized Parallel Shadow Stack variant in our

taxonomy. Hardware support for shadow stacks has been

proposed (SmashGuard [43]); recently Intel has announced

upcoming hardware support for the feature in their Control-

flow Enforcement Technology [16].
AddressSanitizer [44] instruments all memory accesses with

checks against “red zones” in a shadow memory that pads all
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StackGuard [29] [26] X X X X 2.8%

Parallel Shadow Stack [26] X X X X 3.5%

SmashGuard [43] X X X ∼ 0%

Intel’s Control-flow Enforcement Technology [16] X X X

AddressSanitizer [44] X X X 73%

CPI/CPS [25] X X X 8.5%/1.9%

Hardware-Assisted Dataflow-Isolation [12] X X X < 2 %

SoftBound [45] 67%

HardBound [11] 5-9%

O
ur

Po
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ie
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Return Address Protection (Sec. IV-D1) X X X 1.2%

Static Authorities (Sec. IV-D2)

Memory Safety 5.7%

Data-flow Integrity R R R R 3.6%

Depth Isolation (Sec. IV-D3)

Memory Safety 4.5%

Data-flow Integrity R R R R 2.4%

Read freed stack memory

Contiguous access return address

Arbitrary access return address

Contiguous access wrong stack object

Arbitrary access wrong stack object

Overhead

prevents the specified access; X allows it; R denotes cases where writes are allowed

but violations are detected when overwritten data or data that should be inaccessible is read.

Fig. 9: Stack threat taxonomy

objects. It protects stack and heap objects, but only against

the contiguous write case. It bears a high runtime overhead of

73% and a high memory usage overhead of 3.3×.

A recent research direction has proposed providing full

memory safety just for code pointers (Code Pointer Integrity

[25]). While this technique provides an effective level of

protection for the incurred overhead on commodity hardware,

it does not protect all stack data. Recent work has shown that

even non-control data attacks can be Turing complete [52].

The SafeStack component of this work explores splitting the

stack into a “safe stack” and a “regular stack”. Objects that

are accessed in a statically, provably-safe way, such as return

addresses and spilled registers, are placed onto the safe stack.

Other objects, like arrays and structs, are placed on the regular

stack. This spatial separation is useful for protecting items on

the safe stack and additionally has almost no performance

overhead; however, it is opportunistic, protecting the items

that can be cheaply protected and, without CPI, provides no

protection for items on the unsafe stack. The safe region itself

is protected only with information hiding on 64-bit systems,

and implementations have been attacked [53].

Hardware-Assisted Data-flow Isolation (HDFI) [12] uses

a single metadata tag bit for efficient security checks. This

enables it to achieve a low overhead, but with only a single

metadata bit it can only provide coarse protection (e.g., just

return addresses or just code pointers, similar to our Return

Address Protection). It can distinguish two classes of data and

make sure that data from one class is not mistaken for data

in the other, but cannot provide fine-grained frame and object

separation. Recent work shows that single-bit tags, such as

needed for HDFI, can be added without changing the physical

memory word width by using a separate tag table with low

overhead [54]. LowRISC provides two bits of tagging in its

memory system that could be used to implement HDFI with

its ltag/stag operations [55], [56].

Some commercial products are beginning to provide fea-

tures that can approximate HDFI. ARM’s v8.3 pointer authen-

tication feature could be used on the return address, or other

code pointers, to detect tampering [57] without the need for

separate tag bits. Using a unique encoding per return point,

this can be extended to provide some CFI protection as well.

Oracle’s Application Data Integrity (ADI) could be used to

assign one of its 16 colors to spilled stack frames at a cache-

line granularity to serve a similar function to the single tag bit

in HDFI [58]. These offerings are available on commercially

available chips, but only provide protection similar to our

Return Address Protection policy.

Like other data-flow integrity models [35], the DFI variants

of our policies keep track of writers to memory words.

Instead of using static instructions as writers, our policies use

identifiers for stack objects. In this case of Depth Isolation, we

differentiate dynamic instances of the same variable. However,
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in this work we restrict the policies to just stack objects.

Bounds checking approaches such as SoftBound + CETS

[45], [3] can provide complete memory safety using software

checks, but are expensive (116% overhead). Hardware support

for bounds checking, such as HardBoud [11], Intel’s MPX [15]

and CHERI [14], [59] can reduce these overheads drastically.

Metadata tags are an alternative mechanism that can provide

memory protection, and so this work can be seen as exploring

the space of tag-based policies for memory safety.

B. SDMP Policies

The stack protection policies we present in this work are

complementary to, and can be composed with, other SDMP

policies. Prior work has detailed policies for Control-Flow

Integrity (CFI) [17], [60], Information-Flow Control (IFC)

[61], [62], Instruction and Data Tainting [17], Minimal Typing

[17], Compartmentalization [60], Dynamic Sealing [60], Self

Protection [60], and Heap Memory Safety [17], [60]. These

previous policies did not address protecting the program stack.

The previous memory safety work [17] [60] only addressed

heap allocated data, where simply instrumenting the allocator

was sufficient to build the policies. As we have seen, object-

level stack memory protection is significantly more involved.

Interesting future work would be to apply some of the opti-

mizations we describe in this work, such as the DFI variants

of the policies, to previous heap safety policies.

C. Policy Applicability

Several systems provide programmable, multi-bit metadata

tags that could exploit the policies we derive here [63], [23],

[64], [65]. Aries [63] would need to be extended to include

tags on memory. Harmoni [23] lacks instruction tags, but

does decode control from instructions; most of our uses of

instruction tags could be replaced with augmented instructions.

Here, Depth Isolation, where ownership comes from depth

on pointers, would make more sense than Static Authorities,

which would require authority to be embedded in the instruc-

tions. The original Harmoni design has only two inputs to

its tag update table (UTBL), while some of our rules need

3 inputs, beyond the instruction tag, to track tags on both

register arguments and the memory. The SAFE Processor [64]

has a hardware isolated control stack, so does not need to use a

metadata policy for protecting procedure call control data. The

policies in this work can be seen as an option to unify stack

protection under the single mechanism of tagged metadata,

rather than adding a separate mechanism for just protecting

stack control data. DOVER [65] follows SDMP closely and

would be a direct match for our policies.

Emerging flexible, decoupled monitoring architectures sup-

port parallel checking of events with metadata maintained in a

parallel monitor [66], [67], [68]. LBA and FADE [66], [67] add

hardware support to filter and accelerate events with structures

similar to the SDMP rule cache. The accelerators in reported

designs do not include accelerated handling for metadata on

the program counter and instructions, but such extensions

appear feasible. As with Harmoni, instruction tags could be

handled as augmented instructions. ARMHEx exploits the

ARM CoreSight debug port, added instrumentation code, and

programmable logic to perform tagged information tracking on

existing ARM SoCs such as a Xilinx Zynq [68]. Combining

the instrumentation to pass necessary data and programmable

logic to implement tracking and checking, it should be able

to implement the stack policies described here. The Depth

Isolation and Static Authorities policies we describe have

richer metadata and are more sophisticated than any of the

policies assessed in these monitoring architecture papers.

IX. LIMITATIONS AND FUTURE WORK

Other variations of policies we present could be constructed.

With additional compiler support, subfield sensitive policies

(i.e., object-ids for individual fields of structs) could be derived

for stronger protection. Variants of the policies that combine

the notions of static owner and depth could overcome the lim-

itations of the Static Authorities and Depth Isolation policies.

Our policies do not differentiate between arguments, which

would also be a straightforward addition. Policies designed

against a stronger threat model (e.g., untrusted code) would

also be an interesting extension to this work.

X. CONCLUSION

In this work we demonstrate how a general-purpose tagged

architecture can accelerate stack protection security policies

expressed in the Software-Defined Metadata Processing

model. We propose a simple policy that only protects

return addresses, as well as two richer policies that provide

object-level protection of all stack data. Our policies carry

forward information available to the compiler about the

arrangement of stack memory and the intent of the various

accesses to the stack and validate them at runtime with

metadata tags and rules. Our policies exploit the locality

properties of typical programs to achieve effective hardware

acceleration via a metadata tag rule cache. The main source

of overhead incurred by the policies is the instructions added

to tag and clear stack memory. We explore optimizations

for reducing this overhead, bringing the overheads for our

policies below 6% for memory safety and 4% for data-flow

integrity. Although we derive our policies in the SDMP

model, our designs and optimizations are likely applicable to

other tagged architectures.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers,

as well as Cătălin Hriţcu, Benjamin Pierce, Greg Sullivan, Eli

Boling, Nathan Dautenhahn, Nikos Vasilakis and Ben Karel

for their valuable feedback. This research was funded by Na-

tional Science Foundation grant TWC-1513854. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the authors and do not reflect the

official policy or position of the National Science Foundation

or the U.S. Government.

490

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 04,2024 at 12:15:44 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] TIOBE. (2017) TIOBE Index for October 2017. https://www.tiobe.com/
tiobe-index/. 2017-10-14.

[2] GNU Project. (2006) GCC 4.1 Release Series Changes, New Features,
and Fixes. https://gcc.gnu.org/gcc-4.1/changes.html. 2017-05-05.

[3] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic, “CETS:
Compiler enforced temporal safety for C,” in International Symposium
on Memory Management, Jun. 2010.

[4] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal
war in memory,” in IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2013, pp. 48–62. [Online]. Available:
http://lenx.100871.net/papers/War-oakland-CR.pdf

[5] M. D. Schroeder and J. H. Saltzer, “A hardware architecture for
implementing protection rings,” Communications of the ACM, vol. 15,
no. 3, pp. 157–170, March 1972.

[6] E. A. Feustel, “Tagged architecture and the semantics of programming
languages: Extensible types,” in 3rd Annual Symposium on Computer
Architecture (ISCA). ACM, 1976, pp. 147–150.

[7] M. E. Houdek, F. G. Soltis, and R. L. Hoffman, “IBM System/38 Support
for Capability-based Addressing,” in Proceedings of the Eighth Annual
Symposium on Computer Architecture, 1981, pp. 341–348.

[8] O. Saydjari, J. Beckman, and J. Leaman, “Lock trek: Navigating
uncharted space,” in Proceedings of the 1989 IEEE Symposium on
Security and Privacy, 1989.

[9] E. Witchel, J. Cates, and K. Asanović, “Mondrian memory protection,”
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APPENDIX

A. Implementation Challenges

setjmp/longjmp: System code written in C, as well as the

SPEC benchmarks, occasionally use setjmp() and longjmp(), in

which key program state (including the PC and frame pointer)

is stored to a memory buffer and later restored. The longjmp()
operation causes the machine to pop many stack frames with

no unwinding operations; as a result, all of the discarded

memory would remain tagged, which would later cause our

eager policies to encounter violations. To handle this function-

ality, we add additional code into the longjmp() routine that

includes a store instruction with a special LONGJMP–CLEAR
instruction tag; this tag allows it to overwrite the discarded

memory, which it tags with EMPTY STACK. These stores are

violations of the stack invariants as discussed in Sec. IV-C; we

are granting additional power to the longjmp() routine through

this special instruction-type. Similarly, C++ exceptions could

be handled by providing additional power to the exception

handling code with special instruction tags. In the Depth

Isolation policy, the stack depth d is stored on the frame
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(1)Store : (⊥, STORE–RA,⊥,⊥, OTHER)→ (⊥, RA)

(2)Load : (⊥, READ–RA,⊥,⊥, RA)→ (⊥,⊥)
(3)Store : (⊥, REMOV E–RA,⊥,⊥, RA)→ (⊥, OTHER)

(4)Store : (⊥, INSTR,⊥,⊥, OTHER)→ (⊥, OTHER)

(5)Load : (⊥, INSTR,⊥,⊥, OTHER)→ (⊥,⊥)
(6)Other : (⊥, INSTR,⊥,⊥,⊥)→ (⊥,⊥)
(6)Store : (⊥, LONGJMP–CLR,⊥,⊥, )→ (⊥,⊥)

Fig. 10: Return Address Protection rules

pointer and retrieved appropriately by the standard policy

rules, so after longjmp() the system again has the correct depth

that was active at the time of the setjmp().
Tail call recursion: Tail call and sibling call elimination op-

timizations allow a program to reuse a caller’s stack frame for

its callee in the special case of tail calls. These optimizations

are activated with gcc’s -foptimize-sibling-calls optimization

pass which is included in the -O2 optimization level. Our

policies retag stack frames, as the authority identifer may have

changed. Additionally, arguments prepared for one authority

(in the argument for field) may be stale for the new authority

identifier after a sibling call. To handle this case, we insert

instructions with a special DELEGATE ARG tag that allows

an authority to permanently forgo its access rights and grant

them to the sibling authority before making a sibling call.

Dynamic stack allocations: Programs can perform dy-

namic memory allocations on the stack using alloca() or by

using dynamically sized arrays. We insert additional instruc-

tions to tag this memory at the time of the allocation, and

similarly insert additional instructions to clear the allocated

memory when the stack pointer is again incremented. Note

that these setup and cleanup operations are not in the function

prologue or epilogue, in contrast to the tagging operations

discussed in the policy descriptions. A current limitation of

our implementation is that we assign the same object-id to all

dynamically allocated stack objects. Dynamic stack memory

allocations are very rare in the SPEC benchmarks.

B. Return Address Protection

Figure 10 shows the rule set for the Return Address Pro-

tection. In our rule notation we use ⊥ for the empty tag and

to indicate a don’t-care for a particular field, which means

that the rule does not depend on a particular input and may

match any tag.

C. Static Authorities

In this section we explain how we tag arguments for indirect

function calls (as referenced in Sec. IV-D2), as well as provide

the full rules for the policy in SDMP notation.

To handle indirect function calls, we track all function

pointers in the system with their corresponding frame-id by

extending the tags on registers and memory words with another

field for this purpose. Then, before an indirect call takes place,

we use a special instruction tagged BEGIN–INDIRECT–CALL,

which, with an appropriate rule, takes the frame-id of the

register being used by the indirect call (e.g., jsr) and tags

the Program Counter tag with the frame-id of the dynamic

authority identifier. Instructions that prepare arguments for

indirect calls are tagged with SET–ARG–FROM–PC and use

the authority identifier held in the program counter tag to set

the appropriate argument for field. Finally, the indirect call

instruction clears the tag on the PC when it executes.

This strategy requires having all function pointers tagged

with their appropriate frame-id. To achieve this, we tag entries

held in structures such as Global Offset Table (GOT) at

initialization with their appropriate frame-id so that when

these values are loaded the resulting registers get tagged

correctly. Function pointers can also be crafted dynamically by

arithmetic instructions that compute at offset from the global

register. We tag these instructions with the instruction-type
CREATE–FP along with appropriate frame-id for the function

pointer that they are creating, so that with an appropriate rule

the resulting register will contain the correct frame-id.

In the rules we show in Fig. 11, we display tags on instruc-

tions as pairs of the form (instruction-type, frame-id), tags on

registers as triples of the form (frame-id, object-id, func ptr)

and tags on memory as 5-tuples of the form (frame-id, object-
id, frame-id-ptr, object-id-ptr, func ptr). Tags on memory

words require these field so that when a stack pointer is stored

into stack memory, a future load can produce an appropriately

tagged pointer or function pointer identifier (e.g., rule (5)). In

some cases we extend fields for particular instruction-types as

required by the policy.

D. Depth Isolation

In the rules we show in Fig. 12, we display tags on

instructions as singletons of the form (instruction-type), tags

on registers as doubles of the form (frame-id, object-id) and

tags on memory as 4-tuples of the form (frame-id, object-id,

frame-id-ptr, object-id-ptr).
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(1)Lda : (⊥, (MAKE–PTR, f, o),⊥, ,⊥)→ (⊥, (f, o,⊥))
(2)Store : (⊥, (SET–MEM, f, o),⊥, (f, ,⊥), EMPTY –STACK)→ (⊥, (f, o,⊥,⊥,⊥))
(3)Store : (⊥, (CLEAR–MEM, f,⊥),⊥, (f,⊥,⊥), )→ (⊥, EMPTY –STACK)

(4)Store : (⊥, (ACCESS–LOCAL, f, o), (f2, o2, p), (f,⊥,⊥), (f, o, , , ))→ (⊥, (f, o, f2, o2, p))
(5)Load : (⊥, (ACCESS–LOCAL, f, o), , (f,⊥,⊥), (f, o, f2, o2, p))→ (⊥, (f2, o2, p))
(6)Arith prop : (⊥, (INSTR, ),⊥,⊥,⊥)→ (⊥,⊥)
(7)Arith prop : (⊥, (INSTR, ),⊥, (f, o, p),⊥)→ (⊥, (f, o, p))
(8)Arith prop : (⊥, (INSTR, ), (f, o, p),⊥,⊥)→ (⊥, (f, o, p))
(9)Arith prop : (⊥, (INSTR, ), (f1, o1, p1), (f2, o2, p2),⊥)→ (⊥,⊥)
(10)Arith no prop : (⊥, (INSTR, ), (f1, o1, p1), (f2, o2, p2),⊥)→ (⊥,⊥)
(11)Store : (⊥, (INSTR, ),⊥,⊥,⊥)→ (⊥,⊥)
(12)Load : (⊥, (INSTR, ),⊥,⊥,⊥)→ (⊥,⊥)
(13)Store : (⊥, (INSTR, ), (f2, o2, p), (f1, o1,⊥), (f1, o1, , , ))→ (⊥, (f1, o1, f2, o2, p))
(14)Load : (⊥, (INSTR, ), , (f1, o1,⊥), (f1, o1, f2, o2, p))→ (⊥, (f2, o2, p))
(15)Store : (⊥, (INSTR, f), (f2, o2, p2), , ( , ARG, , , , ARGFOR = f))→ (⊥, (f,ARG, f2, o2, p2, ARGFOR = f)

(16)Load : (⊥, (INSTR, f), , , ( , ARG, f2, o2, p, ARGFOR = f))→ (⊥, (f2, o2, p)
(17)Store : (⊥, (SET–ARG, f1, f2), (f3, o3, p), (f1,⊥,⊥), (f1, , , , ))→ (⊥, (f1, ARG, f3, o3, ARGFOR = f2))

(18)Arith : (⊥, (CREATE–FP, f, p),⊥, ,⊥)→ (⊥, p)
(19)Store : (⊥, (LONGJMP–CLEAR, ),⊥, , ( , , , , ))→ (⊥, EMPTY –STACK)

(20)Other : (⊥, (INSTR,⊥,⊥),⊥,⊥,⊥)→ (⊥,⊥)
(21)Arith prop : (⊥, (BEGIN–INDIRECT–CALL, f),⊥, (⊥,⊥, p),⊥)→ (p,⊥)
(22)Store : (pc, (SET–ARG–FROM–PC, f), (f2, o2, p), (f, ,⊥), (f, , , , ))→ (pc, (f,ARG, f2, o2, p, ARGFOR = pc))

(23)Jsr : ( , ( , INSTR,⊥,⊥),⊥,⊥,⊥)→ (⊥,⊥)

Fig. 11: Static Authorities rules
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(1)Lda : (⊥, INCR–DEPTH,⊥, (d,⊥),⊥)→ (⊥, (d+ 1,⊥))
(2)Lda : (⊥, DECR–DEPTH,⊥, (d,⊥),⊥)→ (⊥, (d− 1,⊥))
(3)Lda : (⊥, (MAKE–PTR, o),⊥, (d,⊥),⊥)→ (⊥, (d, o))
(4)Store : (⊥, (SET–MEM, o),⊥, (d,⊥), EMPTY –STACK)→ (⊥, (d, o,⊥,⊥))
(5)Store : (⊥, CLEAR–MEM,⊥, (d,⊥), )→ (⊥, EMPTY –STACK)

(6)Store : (⊥, (ACCESS–LOCAL, o), (d2, o2), (d,⊥), (d, o, , ))→ (⊥, (d, o, d2, o2))
(7)Load : (⊥, (ACCESS–LOCAL, o), , (d,⊥), (d, o, d2, o2))→ (⊥, (d2, o2))
(8)Arith prop : (⊥, INSTR,⊥,⊥,⊥)→ (⊥,⊥)
(9)Arith prop : (⊥, INSTR,⊥, (d, o),⊥)→ (⊥, (d, o))
(10)Arith prop : (⊥, INSTR, (d, o),⊥,⊥)→ (⊥, (d, o))
(11)Arith prop : (⊥, INSTR, (d, o), (d, o),⊥)→ (⊥,⊥)
(12)Arith no prop : (⊥, INSTR, (d1, o1), (d2, o2),⊥)→ (⊥,⊥)
(13)Store : (⊥, INSTR,⊥,⊥,⊥)→ (⊥,⊥)
(14)Load : (⊥, INSTR,⊥,⊥,⊥)→ (⊥,⊥)
(15)Store : (⊥, INSTR, (d2, o2), (d1, o1,⊥), (d1, o1, , , ))→ (⊥, (d1, o1, d2, o2))
(16)Load : (⊥, INSTR, , (d1, o1), (d1, o1, d2, o2))→ (⊥, (d2, o2))
(17)Store : (⊥, INSTR, (d2, o2), (d1, ), (d1, ARG, , , ))→ (⊥, (d1, ARG, d2, o2)

(18)Store : (⊥, INSTR, (d2, o2), (d1, ), (d1 + 1, ARG, , , ))→ (⊥, (d1 + 1, ARG, d2, o2)

(19)Load : (⊥, INSTR, , (d1, ), (d1, ARG, d2, o2))→ (⊥, (d2, o2)
(20)Load : (⊥, INSTR, , (d1, ), (d1 + 1, ARG, d2, o2))→ (⊥, (d2, o2)
(21)Store : (⊥, LONGJMP–CLEAR,⊥, , )→ (⊥, EMPTY –STACK)

(22)Other : (⊥, (INSTR,⊥,⊥),⊥,⊥,⊥)→ (⊥,⊥)

Fig. 12: Depth Isolation rules
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