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Abstract—Double-authentication-preventing signatures (DAPS)
are signatures designed with the aim that signing two messages
with an identical first part (called address) but different second
parts (called payload) allows to publicly extract the secret
signing key from two such signatures. A prime application
for DAPS is disincentivizing and/or penalizing the creation of
two signatures on different payloads within the same address,
such as penalizing double spending of transactions in Bitcoin
by the loss of the double spender’s money.

So far DAPS have been constructed from very specific
signature schemes not used in practice and using existing
techniques it has proved elusive to construct DAPS schemes
from signatures widely used in practice. This, unfortunately,
has prevented practical adoption of this interesting tool so far.
In this paper we ask whether one can construct DAPS from
signature schemes used in practice. We affirmatively answer
this question by presenting novel techniques to generically
construct provably secure DAPS from a large class of discrete
logarithm based signatures. This class includes schemes like
Schnorr, DSA, EdDSA, and, most interestingly for practical
applications, the widely used ECDSA signature scheme. The
resulting DAPS are highly efficient and the shortest among
all existing DAPS schemes. They are nearly half of the size
of the most efficient factoring based schemes (IACR PKC’17)
and improve by a factor of 100 over the most efficient discrete
logarithm based ones (ACM CCS’15). Although this efficiency
comes at the cost of a reduced address space, i.e., size of keys
linear in the number of addresses, we will show that this is not
a limitation in practice. Moreover, we generalize DAPS to any
N > 2, which we denote as N -times-authentication-preventing
signatures (NAPS). Finally, we also provide an integration
of our ECDSA-based DAPS into the OpenSSL library and
perform an extensive comparison with existing approaches.

1. Introduction

Digital signatures are the prevalent cryptographic prim-
itive to provide strong integrity and authenticity guarantees
for messages exchanged in the digital realm. They are used
in major cryptographic protocols such as TLS, for issuing
digital certificates (i.e., certifying public keys) within public-
key infrastructures (PKIs), to authenticate executable code
or digital documents such as PDF documents (in a legally
binding way) or to sign transactions within the distributed

crypto-currency Bitcoin, to name some popular applications.
Arguably, as they enable the secure distribution and trans-
mission of public keys, in a very real sense, they serve as
the foundation of all public key cryptography in practice.

Most widely used signature schemes today are (1) RSA-
FDH, either used with PKCS#1 v1.5 padding or as proba-
bilistic signature scheme (RSA-PSS), and (2) the discrete
logarithm based (elliptic curve) digital signature algorithm
(EC)DSA. While RSA is predominant in legacy applica-
tions, more recent applications that make heavy use of
digital signatures (such as Bitcoin) build upon ECDSA.
Actually, when analyzing the trend of the use of ECDSA for
certificate signing, we can observe that its use is becoming
increasingly popular over the last few years1 (see Table 1).
A similar trend can be observed in DNSSEC in that an ever

Year % of ECDSA signatures
2014 0.01 %
2015 0.02 %
2016 2.54 %
2017 36.07 %

TABLE 1: Usage of ECDSA signatures in certificates of
the top million websites via censys.io [1].

increasing number of DNSSEC resolvers support ECDSA2

and some large companies like CloudFlare are heavily push-
ing ECDSA [2]. Papadopoulos et al. [3] argue that due to
improved performance and security it is very likely that
new features for DNSSEC such as NSEC5 will only target
the elliptic curve setting instead of RSA. Actually, given
that the use of RSA signatures within DNSSEC in practice
suffers from deficient key generation methods [4], switching
to elliptic curves seems to be a viable way to go.

Now let us recall digital signatures more technically.
We have a signer who holds a secret signing key sk and
publishes its corresponding public verification key pk. To
sign a message m, the signer uses sk to produce a signature
σ and anyone who is given (m,σ) together with an authentic
copy of pk can verify that the message originated from
the signer (authenticity) and has not been modified in any
way (integrity). Formal security guarantees for a signature
scheme require that anyone not holding sk, even if allowed

1. https://blog.cloudflare.com/aes-cbc-going-the-way-of-the-dodo/

2. https://blog.apnic.net/2016/10/06/dnssec-and-ecdsa/
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to adaptively obtain signatures for messages of one’s choice,
will not be able to come up with a valid signature for a
non-queried message, i.e., produce a forgery. This notion
is coined existential unforgeability under chosen message
attacks (EUF-CMA), formally discussed in Section 4.1, and
is the widely accepted security notion required by schemes
used in practice today.

In this paper we consider a variant of signature
schemes dubbed double-authentication-preventing signa-
tures (DAPS) [5], [6]. Here, messages to be signed are of
the form m = (a, p) and in particular they consist of an
address a and a payload p. The basic idea behind DAPS
is that they behave exactly like conventional signatures, i.e.,
provide unforgeability in the EUF-CMA sense, as long as no
distinct payloads p′ �= p are signed with respect to the same
address a. If a signer produces two signatures for distinct
payloads p′ �= p but with respect to the same address a
(called colliding messages), then anyone can compute the
signer’s secret key sk from these signatures (the so called
double-signature extraction property).

This concept may sound awkward at first sight, but it
is indeed interesting as it disincentivizes the signer from
“double-signing”. It suggests the use of DAPS instead of
conventional signatures whenever double-signing should be
disincentivized, where the address a (or its associated space
respectively) can be given some application-dependent se-
mantics. Thereby, we can consider any form of a digital
processes where one wants to prevent fraud by discour-
aging users from submitting (signing) duplicates. Think
for instance of requests for reimbursements for the same
expense multiple times, which can be disincentivized when
using some unique ID, identifying the invoice/payment as
address. In Section 2 we discuss some representative and
more concrete applications of DAPS.

We observe that this is conceptually related to some
other approaches discussed subsequently, but DAPS are
stronger in the sense that they reveal the secret key of the
signer to the public. Within offline double spending mech-
anisms [7] of centralized e-cash systems, as long as a user
is honest, the user can anonymously conduct transactions.
But if a user misbehaves and spends an e-coin multiple
times, his identity is revealed. In contrast to just revealing
the identity in case of misbehaviour, however, DAPS reveal
the secret key of the signer. Revealing the secret key as
discouragement to behave fraudulent is also related to what
is done within the so called PKI-assured non-transferability
approach in anonymous credential systems [8]. Here the
secret of the credential is associated to a valuable secret
outside the system, e.g., a secret key that allows to issue
signatures that are equivalent to handwritten signatures,
which disincentivizes the sharing of a credential. However,
in contrast to DAPS the secret key is not made public per se,
but known to everyone with whom the credential is shared.

A problem with existing DAPS constructions [5], [9],
[6], [10] is that they are not based on widely used signa-
ture schemes and thus have not seen adoption in practice.
While the constructions in [5], [6], [10] are factoring based
ones (aka in the RSA setting), the one from Ruffing et al.

in [9] is compatible with discrete-logarithm based signa-
ture public keys (and ECDSA public keys in particular).
Unfortunately, their integration of signature public keys
in so called accountable assertions3, which Ruffing et al.
instantiate with a Merkle-tree construction using chameleon
hash functions [11], does not yield an efficient construction.
Our aim in this paper is to provide a generic construction
that augments existing signature schemes widely used in
practice (such as ECDSA) to yield DAPS being provably
secure, where the security proof makes only black-box use
of the signature scheme.

1.1. Contribution

Our key contributions in this paper can be summarized
as follows:

• We are the first to present DAPS that are based on
widely deployed and used signature schemes and in
particular ECDSA. Additionally, our approach also
works identically for Schnorr signatures, DSA or
EdDSA (and many other discrete-logarithm based
schemes). Consequently, we provide the first construc-
tion that can be directly used in real world and deployed
systems.

• We introduce notions of double-signing extraction se-
curity for DAPS schemes that extend keys of a con-
ventional signature scheme. Our notions ensure that ex-
tractability of the signing key of the signature scheme,
e.g., the ECDSA key, is required, even if it is not
possible to extract the full DAPS secret key. In appli-
cations where the signing key is also used in a different
context, inadvertently leaking the signing key already
disincentivizes double-authentication. We show that our
construction satisfies this notion under adversarially
chosen, i.e., malicious, keys.

• Our DAPS are the shortest DAPS so far in any setting.
For instance, for the 128 bit security level, signatures of
our DAPS with ECDSA on 256 bit elliptic curve groups
are 1280 bits long, whereas most efficient factoring-
based DAPS with a modulus size of 2048 bit require
2049 bits. This compactness, however, comes at the
cost of a reduced address space and public key size
linearly depending on the address space. However, as
we will show, practical use-cases only require small
address spaces and thus keep the key sizes reasonably
low.

• Our construction paradigm is a generic and novel ap-
proach to combine verifiable Shamir secret sharing with
(linear) ElGamal encryption in a semi-black box way.
In a nutshell, the idea is to homomorphically evaluate
the verification relation of the verifiable secret sharing
scheme in the encrypted domain and to prove that the
respective encrypted evaluation actually contains the
expected value. This, in turn, gives us the required
flexibility to perform a black-box reduction to the EUF-

3. Ruffing et al. show that certain accountable assertions (and in partic-
ular their construction) yield DAPS.
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CMA security of ECDSA, or, more generally, to the
EUF-CMA security of any discrete logarithm based
signature scheme where the public key is the image of
the secret key under a group homomorphism. From a
practical point of view, this allows an easy extension of
existing (EC)DSA, EdDSA and Schnorr signing keys
to DAPS keys.

• We generalize DAPS and show how our approach to
construct DAPS can easily be extended to N -times-
authentication-preventing signatures (dubbed NAPS)
for any N > 2. This is achieved by setting the degree
of the polynomial in Shamir’s secret sharing to N − 1
(where we simply have a degree 1 polynomial in case
of DAPS).

• We provide an implementation of our DAPS and in-
tegration into the popular OpenSSL library, which
requires no changes to OpenSSL’s ECDSA interface
and implementation. This allows faster adoption of our
DAPS in existing applications such as Bitcoin.

Follow up work. Bertram Poettering made us aware of
follow up work on short DAPS in the discrete logarithm
setting which appears at AFRICACRYPT 2018 [12]. His
DAPS provide noticeably smaller key and signature sizes,
extractability of the whole DAPS key, but his work does
not allow to extend signature schemes to DAPS in a black
box way. In contrast, our results allow to extend signature
schemes to DAPS in a black box way, while the extrac-
tion notion only allows to extract the key of the signature
scheme. Additionally, the work in [12] does not yield NAPS.

2. Applications of DAPS

Below we discuss three appealing applications of DAPS.
The first two are applications already given in [9], which
can be implemented with our construction much more ef-
ficiently. The last field of application is more generic and
includes disincentivizing double-signing of certificates and
executables.

Moreover, we stress that as our DAPS constructions
are the first that are ready to be used based on a widely
deployed signature scheme that is used in many real world
applications and whose popularity is ever increasing. Thus,
we are convinced that DAPS will find many more interesting
applications.

2.1. Accountable Assertions and Non-equivocation
Contracts

Accountable assertions introduced in [9] are a crypto-
graphic mechanism that allows binding of statements to
contexts in an accountable way: if the attacker asserts
two contradicting statements in the same context, then any
observer can extract the attacker’s secret key. DAPS can
be viewed as a stronger variant of accountable assertions,
as they are additionally required to be unforgeable. Hence
efficient DAPS constructions also provide more efficient
instantiations of accountable assertions.

Combining accountable assertions respectively DAPS
with Bitcoin deposits as discussed in [9] enables the con-
struction of non-equivocation contracts. Latter make it pos-
sible to penalize equivocation in distributed protocols mon-
etarily. If a party A should be penalized if it equivocates, A
creates a new Bitcoin key pair and extends it to a DAPS key
pair.4 It creates a deposit under the newly created Bitcoin
key pair. Whenever A is supposed to send a statement in
some context, it additionally sends a signature under the
corresponding DAPS key. If A equivocates, anyone can
extract the secret key from the two assertions with respect
to the same context and can hence transfer the funds stored
in the deposit to an address under their control. In case that
A does not equivocate, it keeps full control over the deposit.

2.2. Disincentivizing Bitcoin Double-Spending

A central issue in the Bitcoin protocol is that it takes
some time (in the order of tens of minutes) until a trans-
action gets confirmed in the blockchain and thus becomes
valid. This makes it hard to prevent double-spending for
“fast” transactions, i.e., transactions which involve transfer-
ring goods immediately after completing a transaction. To
this end various non-cryptographic means to detect double-
spending in fast Bitcoin transactions were proposed [13],
[14].

With DAPS we can come up with a cryptographic
solution towards solving this problem that strongly disin-
centivizes double-spending of the aforementioned type. In
particular, we can ensure that double-spending will reveal
the signing key and thus the associated Bitcoin(s) of the
misbehaving party. To achieve this we can follow a similar
strategy as [9], but building upon our DAPS yields a much
more efficient solution which is suited to be directly added to
the Bitcoin core with a few lines of code, i.e., by extending
the existing use of ECDSA for signing to our DAPS based
on ECDSA. To disincentivize double-spending for a limited
number of offline transactions, a user A of a service B first
transfers an amount of spendable coins and a penalty to a
deposit. After the deposit was confirmed by the blockchain,
A can buy services from B offline by signing transactions
with the DAPS scheme and giving the signatures to B.
Now, if A is honest throughout all transactions, A can clear
the deposit after some threshold. However, when A double-
spends the DAPS signatures leak the secret (ECDSA) key to
B. Thus A looses the coins deposited as penalty, since B is
now able to transfer the coins to a wallet under its control.

2.3. Disincentivizing Double-Signing

More generally, DAPS are useful to disincentivize
double-signing. Poettering and Stebila [5], [6] propose the
use of DAPS for certificate signing within public key in-
frastructures (PKIs). For this application, it seems that [6]
is favorable to what we will present. Nevertheless, there are

4. Ruffing et al. use the signature public key as a public key of a
accountable assertion instead of using a DAPS directly.
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other similar application, where—likewise to the other ap-
plications presented in this section—our novel constructions
are favorable to prior work.

Think of the application of DAPS in context of code-
signing, i.e., for the signing of executables. When DAPS are
used, the address represents a unique ID (such as used by
Apple’s App Store or Google’s Play Store) and the payload
is the version number. Providing a clean and a backdoored
variant of the same software version will leak the signing
key. This disincentivizes such a behaviour as this will then
likely lead to a pandemia of malware signed with such a
key.

2.4. Observation Regarding the Address Space

Interestingly, we observe that none of the applications
requires an exponentially large address space. For example
the application to accountable assertions inherently only
requires a single address. Furthermore, in the application
to disincentivizing double-spending for fast Bitcoins trans-
action, one may observe that a small number of addresses
suffices. Consider for example a public transport company
that allows customers to charge a transport pass for multiple
trips. In this case the number of taken trips can serve as
address. Finally, in the application to code signing one
requires a somewhat larger address space, but still having
an address space of size 100 would allow to sign a new
software version every week for about two years.

3. Overview

In the following we provide an overview of the path we
take in this paper to construct DAPS. Previous approaches to
construct DAPS follow the idea of finding and formalizing
some suitable cryptographic primitive that directly allows
to obtain DAPS. Examples are 2:1 trapdoor functions as
in [5], [6], or certain trapdoor identification schemes as
in [10]. While such an approach is highly challenging and
interesting from a theoretical perspective, following this
approach makes it very unlikely that one ends up with DAPS
that are based on some already deployed signature scheme
like (EC)DSA. Our approach in this paper is diametrically
opposed to this approach. Namely, we look at signature
schemes used in practice and ask if and how we can turn
them into DAPS. Thereby, we put our focus on the elliptic-
curve (discrete logarithm) setting.

The dead end. Before we present our approach we briefly
discuss why a seemingly rather obvious path unfortunately
does not work, as we consider this finding an interesting
observation. When looking at schemes from the ElGamal
family [15], [16], like (EC)DSA or Schnorr [17] signatures,
it is well known that wrong usage may inadvertently leak the
entire secret signing key. More precisely, due to the nature of
these schemes, using the same randomness for computing
signatures on different messages—as already happened in
the past either due to erroneously fixing the randomness5

5. http://www.bbc.com/news/technology-12116051

or due to a bad randomness generation6—reveals the secret
signing key. While there are countermeasures to avoid the
aforementioned issues in practice at all by either making
(EC)DSA deterministic [18] or by explicitly designing de-
terministic schemes such as EdDSA [19], the randomized
versions, which are susceptible to the above problem, are
still those most commonly used.

Now, one could try to make this aforementioned “bug”
a “feature” and use this inherent property of such signature
schemes in a positive way to construct DAPS. Recall, that
DAPS require extraction of the signing key when given two
signatures for colliding messages. Now what we could do
is to adopt the idea as used by [18], [19]. The idea would
be to pseudorandomly compute the randomness used for
signing from the message and the (secret) key. In contrast to
making conventional signatures deterministic, in DAPS we
cannot trust the signer to actually compute the randomness
pseudorandomly from the address and there must be some
means for anyone to check that the signer indeed honestly
computed the randomness from the address. Now, one could
think that it would work to use a verifiable random function
(VRFs) [20] to derive the randomness pseudorandomly from
the address. In short, a VRF is a public key primitive
which computes some random and unique output from an
input together with a publicly verifiable (implicit) proof of
correct computation. If one would have a VRF where the
randomness itself is not leaked, but its output is a group
element and only the holder of the VRF secret key knows
the discrete logarithm of this group element with respect to
the base element of the group, then this could work. Indeed,
the Dodis-Yampolskiy (DY) construction [21] satisfies this
property and additionally has compact keys and proofs.7

While using such a VRF to derive the randomness for the
signature scheme from the address seems intuitively secure,
there does not seem to be a viable proof strategy to prove
EUF-CMA security with a (black-box) reduction to the VRF
and the signature scheme. The problem is that we see no way
of decoupling the output of the VRF and the randomness in
the signature scheme to come up with a working simulation
strategy in the security proof. Even decoupling and proving
consistency using NIZKs did not work for any strategy we
tried. As we, moreover, do not want to resort on highly
idealized models such as the generic group model [22] to
directly analyse such a DAPS construction (cf. Section 4.3
for problems with such an analysis for ECDSA), we pursue
an alternative path where we can avoid such models use the
signature scheme in a black-box fashion.

A working path. Besides the problems which turn up
when pursuing the direction sketched above, it turns out
to be highly non-trivial to achieve the desired functionality
in the discrete logarithm setting in general. In particular, the
requirement to be able to extract a certain discrete logarithm,
i.e., the secret key, as soon as more than one signature

6. http://www.theregister.co.uk/2013/08/12/android bug batters
bitcoin wallets/

7. We could even avoid bilinear groups in the DY VRF by providing an
efficient NIZK of validity of the verification equation instead of using a
pairing to check the proof.
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within the same context exists, makes it very hard to perform
the simulation within the security reduction when trying to
relate the unforgeability of the DAPS to the unforgeability
of the underlying signature scheme in a black-box fashion.

Fortunately, we are nevertheless able to come up with
novel techniques which are inspired by secret sharing. In
particular, we use a secret sharing of the secret signing
key (in Zq) such that producing signatures for two col-
liding messages, i.e., messages with identical address but
different payloads, allows to reconstruct the secret, i.e., the
signing key. If now every address a is associated to a
degree 1 polynomial fa(X) with fa(0) being the signing
key and every signature includes a share fa(p) (evaluation
of the polynomial on the payload p of the message to be
signed), two colliding messages reveal the signing key. The
tricky part is that one additionally requires a mechanisms
to convince a verifier that the signer behaves honest, i.e.,
really reveals a share of the key associated to the address-
polynomial, while still preserving the ability to conduct
the simulation in the security reduction. While latter is
typically approached by adding verifiability to the secret
sharing scheme using a mapping of the coefficients defining
fa(X) to the group G = (G, q, g), we can not do so as
this immediately destroys the possibility to conduct a black-
box reduction to the EUF-CMA security of the underlying
signature scheme (essentially the public verifiability destroys
the possibility to simulate in the security proof).

To this end, we need a trick to decouple the public
verifiability of the secret sharing from the signing key to
make the proof work. We approach this by encrypting the
coefficients of the address-polynomials mapped to elements
of G (except the constant term representing the public key
of the signature scheme) and provide a zero-knowledge
proof of knowledge (using an efficient Σ-protocol made
non-interactive via Fiat-Shamir) that the value fa(p) in the
signature really represents an evaluation of the encrypted
address-polynomial. While conducting such a proof would
already be sufficient for a working scheme, we additionally
observe that we can employ linearly homomorphic encryp-
tion (e.g., ElGamal) to do some pre-computations before we
actually conduct the proof. This, in turn, makes our approach
highly efficient.

In addition, we observe that our approach directly allows
us to derive a generalization to N -times-authentication-
preventing signatures (NAPS) for arbitrary N > 2 by using
higher degree polynomials.

Efficiency of our approach. Our constructions yield short
signatures and are practically efficient (which we extensively
discuss in Section 7). For instance, constructing a DAPS
from ECDSA implemented using the prime256v1 elliptic
curve yield a signature of size 160 byte, being roughly 2.5
times the size of conventional ECDSA signatures. Signing is
roughly 3.8 times and verification 1.6 times of conventional
ECDSA. On the platform we use for benchmarking, signing
and verification require 0.23 and 0.35 ms respectively.

4. Signature Schemes

In this section we firstly present a formal model for
the security of signature schemes. Secondly, we present the
ECDSA signature scheme which we later use to instantiate
our DAPS construction.

4.1. Formal Model

Definition 1 (Signature Scheme). A signature scheme Σ
is a triple (KGenΣ, SignΣ,VerifyΣ) of PPT algorithms,
which are defined as follows:

KGenΣ(1
κ) : This algorithm takes a security parameter κ

as input and outputs a secret (signing) key skΣ and a
public (verification) key pkΣ with associated message
space M (we may omit to make the message space M
explicit).

SignΣ(skΣ,m) : This algorithm takes a secret key skΣ and
a message m ∈M as input and outputs a signature σ.

VerifyΣ(pkΣ,m, σ) : This algorithm takes a public key pkΣ,
a message m ∈ M and a signature σ as input and
outputs a bit b ∈ {0, 1}.

We require a signature scheme to be correct and EUF-CMA
secure. For correctness we require that for all κ ∈ N, for all
(skΣ, pkΣ)← KGenΣ(1

κ) and for all m ∈M it holds that

Pr [VerifyΣ(pkΣ,m, SignΣ(skΣ,m)) = 1] = 1.

Definition 2 (EUF-CMA). A signature scheme Σ is EUF-
CMA secure, if for all PPT adversaries A there is a
negligible function ε(·) such that

Pr
[
ExpEUF-CMA

A,Σ (κ) = 1
]
≤ ε(κ),

where the corresponding experiment is depicted in Fig-
ure 1.

ExpEUF-CMA
A,Σ (κ):

(skΣ, pkΣ)← KGenΣ(1
κ)

Q ← ∅
(m∗, σ∗)← ASign′Σ(skΣ,·)(pk)

where oracle Sign′Σ on input m:
let σ ← SignΣ(skΣ,m)
set Q ← Q∪ {m}
return σ

return 1, if VerifyΣ(pkΣ,m
∗, σ∗) = 1 ∧ m∗ /∈ Q

return 0

Figure 1: EUF-CMA security.

4.2. Elliptic Curve Groups

We briefly recall groups from elliptic curves. Let an
elliptic curve E over the finite field Fp be a plane, smooth
algebraic curve usually defined by a Weierstrass equation.
The set E(Fp) of points (x, y) ∈ F2

p satisfying this equation
plus the point at infinity O, which is the neutral element,
forms an additive Abelian group, whereas the group law is
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determined by the chord-and-tangent method. If we write
Px we refer to the x coordinate of a point P . In general,
we write G = (G, q, g) to denote a group G of order q
with generator g and we always use multiplicative notion
throughout the paper.

4.3. ECDSA

In Scheme 1 we recall the ECDSA signature scheme.
Thereby, H : {0, 1}∗ → Zq is a hash function mapping
exactly to the order of the group.

KGenECDSA(1
κ) : Let G = (G, q, g) be an elliptic curve

group. Choose x←R Z∗q and set sk ← x and pk ← gx

and return (sk, pk).
SignECDSA(sk,m) : Parse sk as x

1) choose k←R Z
∗
q

2) compute R← gk

3) let r ← Rx (mod q) and if r = 0 goto step 1
4) let s ← k−1(H(m) + rx) (mod q) and if s = 0

goto step 1
5) return σ ← (r, s)

VerifyECDSA(pk,m, σ) : Parse σ as (r, s)

1) If r = 0 ∨ s = 0 return 0
2) let z ← H(m) and w ← s−1 (mod q)
3) let u1 ← zw (mod q) and u2 ← rw (mod q)
4) let R← gu1 · pku2

5) if Rx = r (mod q) return 1 and return 0 otherwise

Scheme 1: ECDSA signature scheme.

The security analysis of ECDSA was for quite some
time a topic of debates. There exist proofs of security
of modified variants of ECDSA [23]. Brown [24], [25]
provides an analysis of standard ECDSA in the generic
group model [22], which quite leaves some open questions
(cf. [26] for a discussion why such a proof is problematic for
ECDSA). The most recent work on the security of ECDSA
from Fersch et al. [26] avoids the generic group model
and proves EUF-CMA security of ECDSA in the bijective
random oracle model (ROM). We want to emphasize that we
do not require details of any technique to prove security of
ECDSA in this paper, as we will make a black-box reduction
to EUF-CMA security of ECDSA.

5. Double-Authentication-Preventing Signa-
tures

5.1. Formal Model

For double-authentication-preventing signatures
(DAPS), we have a signature scheme on a message
space M = A × P of messages m = (a, p) consisting of
an address a and a payload p. The signature scheme is
extended with a fourth algorithm Ex that extracts the secret
key from signatures on two colliding messages. Before

we can present the formal definition of DAPS we need to
define the term colliding messages.

Definition 3 (Colliding Messages). We call two messages
m1 = (a1, p1) and m2 = (a2, p2) colliding if a1 = a2,
but p1 �= p2.

Below, we now formally introduce DAPS following [5], [6].

Definition 4 (DAPS). A double-authentication-
preventing signature scheme DAPS is a tuple
(KGenD, SignD,VerifyD,ExD) of PPT algorithms,
which are defined as follows:

KGenD(κ) : This algorithm takes a security parameter κ as
input and outputs a secret (signing) key skD and a
public (verification) key pkD with associated message
space M (we may omit to make the message space M
explicit).

SignD(skD,m) : This algorithm takes a secret key skD and
a message m ∈M as input and outputs a signature σ.

VerifyD(pkD,m, σ) : This algorithm takes a public key pkD,
a message m ∈ M and a signature σ as input and
outputs a bit b ∈ {0, 1}.

ExD(pkD,m1,m2, σ1, σ2) : This algorithm takes a public
key pkD, two colliding messages m1 and m2 and
signatures σ1 for m1 and σ2 for m2 as inputs and
outputs a secret key skD.

Note that the algorithms KGenD, SignD, and VerifyD match
the definition of the algorithms of a conventional signature
scheme. For DAPS one requires a restricted but otherwise
standard notion of unforgeability [5], [6], where adversaries
can adaptively query signatures for messages but only on
distinct addresses. Figure 2 details the unforgeability secu-
rity experiment.

Definition 5 (EUF-CMA [5]). A DAPS scheme is EUF-CMA
secure, if for all PPT adversaries A there is a negligible
function ε(·) such that

Pr
[
ExpEUF-CMA

A,DAPS (κ) = 1
]
≤ ε(κ),

where the corresponding experiment is depicted in Fig-
ure 2.

ExpEUF-CMA
A,DAPS (κ):

(skD, pkD)← KGenD(1
κ)

Q ← ∅, R ← ∅
(m∗, σ∗)← ASign′D(skD,·)(pkΣ)

where oracle Sign′D on input m:
(a, p)← m
if a ∈ R, return ⊥
σ ← SignD(skD,m)
Q ← Q∪ {m}, R ← R∪ {a}
return σ

return 1, if VerifyD(pkD,m
∗, σ∗) = 1 ∧ m∗ /∈ Q

return 0

Figure 2: EUF-CMA security for DAPS.

The interesting property of a DAPS scheme is the notion
of double-signature extractability (DSE). It requires that
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whenever one obtains signatures on two colliding messages,
one should be able to extract the signing key using the
extraction algorithm ExD. We give the security game in Fig-
ure 3, where we consider the conventional notion, denoted
as DSE, which requires extraction to work if the key pair
has been generated honestly. In this game, the adversary is
given a key pair and outputs two colliding messages and
corresponding signatures. The adversary wins the game if
the key produced by ExD is different from the signing key
although extraction should have succeeded, i.e, the messages
were colliding and their signatures were valid.

Definition 6 (DSE [5]). A DAPS scheme provides double-
signature extraction (DSE), if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr
[
ExpDSE

A,DAPS(κ) = 1
]
≤ ε(κ),

where the corresponding experiment is depicted in Fig-
ure 3.

ExpDSE
A,DAPS(κ):

(skD, pkD)← KGenD(1
κ)

(m1,m2, σ1, σ2)← A(skD, pkD)
return 0, if m1 and m2 are not colliding
vi ← VerifyD(pkD,mi, σi) for i ∈ [2]
return 0, if v1 = 0 or v2 = 0
sk′D ← ExD(pkD,m1,m2, σ1, σ2)
return 1, if sk′D �= skD
return 0

Figure 3: DSE security for DAPS.

In Appendix C we recall the strong variant of extractabil-
ity under malicious keys (denoted as DSE∗), where the ad-
versary is allowed to generate the key arbitrarily. The DSE∗
notion is very interesting from a theoretical perspective, but
no efficient DAPS construction, including ours, can achieve
this notion so far. However, as we will show in Section 6.5
our, constructions satisfy a weaker notion under malicious
keys introduced in this paper.

5.2. Existing DAPS Constructions

Poettering and Stebila [5], [6] present the first ever
DAPS construction in a factoring-based setting, where a sig-
nature contains n+1 elements in a group Z∗N with n being
the length of the output of a cryptographic hash function
and N is an RSA modulus. At a security level of 128 bit
(a 2048-bit RSA modulus and 256-bit hash), a signature
contains > 250 group elements yielding a signature size
of > 64 KB and signing as well as verification times much
higher than standard signatures. Ruffing, Kate and Schroeder
in [9] introduced the notion of accountable assertions (AS),
a weaker primitive than DAPS, and present one AS that
also is a DAPS (termed RKS). The RKS construction is
based on Merkle tress and chameleon hash functions in
the discrete logarithm setting. Signing and verification are
much more efficient than within PS, but signature sizes

are still in the order of PS. Very recently, Bellare, Poet-
tering and Stebila [10] proposed new factoring-based DAPS
from trapdoor identification-schemes using an adaption and
extension of a transform from [27]. Their two transforms
applied to the Guillou-Quisquater (GQ) [28] and Micali-
Reyzin (MR) [29] identification scheme yield signing and
verification times as well as signature sizes comparable (or
slightly above) standard RSA signatures. In a concurrent and
independent work Boneh et al. [30] propose constructions
of DAPS from lattices. They consider DAPS as a special
case of what they call predicate-authentication-preventing
signatures (PAPS). In PAPS one considers a k-ary predicate
on the message space and given any k valid signatures that
satisfy the predicate reveal the signing key. Consequently,
DAPS are PAPS for a specific 2-ary predicate and what we
call N -times-authentication-preventing signatures (NAPS) is
denoted as k-way DAPS in their work.

Unfortunately, as it is clear from the discussion, none
of these DAPS schemes relies on widely used signature
schemes such as RSA or (EC)DSA signatures. It is also
important to mention that all these constructions only pro-
vide the extractability notion under honestly generated keys
(DSE)8. We now present our DAPS in the next section and
defer a detailed comparison of existing DAPS and ours to
Section 6.10.

6. Short DAPS in the DL Setting

In this section we present our generic DAPS construc-
tions from any discrete logarithm-based EUF-CMA secure
signature scheme and in particular provide an instantiation
with ECDSA signatures. As already mentioned, we thereby
will be as non-invasive as possible in constructing DAPS
“around” existing signatures without modifying the setting,
e.g., groups, that are used by the respective schemes.

6.1. Intuition of Our Approach

As already mentioned in Section 3, our generic approach
to construct DAPS is based on the idea of combining a
signature scheme with a verifiable secret sharing scheme and
in every signature include a share (specific to the address) of
the secret signing key. Consequently, signing two different
payloads with respect to the same address within the DAPS
allows to extract the signing key of the underlying signature
scheme.

Before presenting our construction paradigm and instan-
tiations of DAPS, we introduce verifiable secret sharing in
Section 6.2, ElGamal encryption in Section 6.3 and non-
interactive zero-knowledge proofs from Σ-protocols (and a
standard proof for the language of DDH tuples) in Sec-
tion 6.4.

8. To be precise, in the initial work [5], [6] the authors could tweak
their construction to provide DSE∗ at the cost of adding quite expensive
non-interactive zero-knowledge proofs to show that the public key is a well-
formed Blum integer. But this would make their already rather impractical
constructions with signature sizes > 64 KB only more impractical.
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6.2. Verifiable Secret Sharing

Shamir’s (k, �)-threshold secret sharing [31] allows to
information-theoretically share a secret s among � parties
such that whenever k evaluations of the polynomial (shares)
are given, reconstruction of s is possible, but as long as
only k − 1 shares are available the secret s is information-
theoretically hidden. Let s be the constant term of an
otherwise randomly chosen k − 1 degree polynomial

f(X) = ρk−1X
k−1 + · · ·+ ρ1X + s

over a prime field Zq . A share is computed as f(i) for
party i, 1 ≤ i ≤ �. Let S be any set of cardinality
at least k of these � shares and let us denote the set of
indices corresponding to shares in S by IS . Using Lagrange
interpolation one can compute s = f(0) as

s =
∑
j∈IS

λjf(j) whereas λj =
∏

i∈IS\{j}

j

j − i
.

Now, we discuss a well known technique due to Feld-
man [32] to make Shamir’s secret sharing verifiable, by
relaxing the otherwise information-theoretic secrecy to be
only computational. The basic idea is to allow the use of
a one-way homomorphism and in particular let us use a
group G = (G, q, g). To enable verifiability one publishes
the sequence (gρk−1 , . . . , gρ1 , gρ0) with gρ0 = gs and when
given a share f(i), everyone can non-interactively verify
whether the share is correct by checking

gf(i) =

k−1∏
j=0

(gρj )i
j

.

Clearly, secrecy of s is only guaranteed if it has high min-
entropy, as guesses can efficiently be verified.

6.3. ElGamal Encryption

Before presenting ElGamal encryption [33], let us define
an encryption scheme first.

Definition 7 (Public Key Encryption Scheme). A public
key encryption scheme Ω is a triple (KGen,Enc,Dec)
of PPT algorithms such that:

KGen(1κ) : This algorithm on input security parameter κ
outputs the secret and public key (sk, pk) (the public
key pk implicitly defines the message space M).

Enc(pk,m) : This algorithm input the public key pk, and
the message m ∈M and outputs a ciphertext C.

Dec(sk, C) : This algorithm on input a secret key sk and a
ciphertext C outputs a message m ∈M∪ {⊥}.

We say that an encryption scheme Ω is perfectly correct
if for all κ ∈ N, for all (sk, pk) ← KGen(1κ) and for all
m ∈M it holds that

Pr [Dec(sk,Enc(pk,m)) = m] = 1.

IND-CPA security requires that an adversary A cannot
decide which message is actually contained in a ciphertext

C even when allowed to choose two challenge messages
m0 and m1. We formally define IND-CPA security in Ap-
pendix D.

The ElGamal encryption scheme is multiplicatively ho-
momorphic and IND-CPA secure under the k-LIN assump-
tion in G. We briefly present the popular ElGamal encryption
scheme [33] in a group G = (G, q, g) where the 1-LIN
(DDH) assumption holds. The key generation algorithm
KGen on input κ generates a group G = (G, q, g) of prime
order q of size κ bits and sets sk := x←R Zq and pk := gx.
To encrypt a message m ∈ G, Enc samples r←R Zq and
computes the ciphertext (C1, C2) := (gr,m · pkr). Fi-
nally, the decryption algorithm Dec given sk and ciphertext
(C1, C2) outputs C2 · C−sk

1 .
When setting k = 2 instead of k = 1 one obtains

ElGamal under the 2-LIN (DLIN) assumption [34] (termed
linear ElGamal). It has the benefit that it can be instantiated
in groups where the DDH assumption does not hold, e.g., in
certain pairing-friendly elliptic curve or Schnorr groups. We
recall both assumptions in Appendix A for the convenience
of the reader. In the remainder of this paper we use the DDH
instantiation of ElGamal, but we stress that all our protocols
can be based on linear ElGamal as well.

6.4. Σ-Protocols

Let L ⊆ X be an NP-language with associated witness
relation R so that L = {x | ∃w : R(x,w) = 1}. A Σ-
protocol for language L is an interactive three move protocol
between a prover and a verifier, where the prover proves
knowledge of a witness w to the statement x ∈ L. We recall
the formal definition of Σ-protocols in the full version.

Σ-protocol for DDH-tuples. Σ-protocols for proving that
elements (g1, g2, u1, u2) in a prime order group G form a
DDH tuple are well known and established [35]. We define
the corresponding language via relation R

((g1, g2, u1, u2), w) ∈ R⇔ gw1 = u1 ∧ gw2 = u2 (1)

as witness relation. In Scheme 2 we briefly recall a classical
Σ-protocol for R.

Let G = (G, q, g) and let g1, g2, u1, u2 ∈ G.

Prover Verifier
(u1, u2, k = loggi ui) (u1, u2)

r←R Z
∗
q , ri ← gri

r1, r2

c c←R Zq

s← r + kc s accept iff ∀i : gsi = riu
c
i

Scheme 2: Σ-protocol for proving that (g1, g2, u1, u2)
forms a DDH-tuple.

Lemma 1. The protocol in Scheme 2 represents a Σ-protocol
for the relation R in (1).

We omit the proof of Lemma 1 as it is a well known result
and straightforward.
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Non-Interactive ZK Proof Systems (NIZK). We recall a
standard definition of non-interactive zero-knowledge proof
systems. Let L be an NP-language with witness relation R
as above.

Definition 8 (Non-Interactive Zero-Knowledge Proof Sys-
tem). A non-interactive proof system Π is a tuple of
algorithms (SetupΠ,ProofΠ,VerifyΠ), which are defined
as follows:

SetupΠ(1
κ) : This algorithm takes a security parameter κ as

input, and outputs a common reference string crs.
ProofΠ(crs, x, w) : This algorithm takes a common refer-

ence string crs, a statement x, and a witness w as input,
and outputs a proof π.

VerifyΠ(crs, x, π) : This algorithm takes a common refer-
ence string crs, a statement x, and a proof π as input,
and outputs a bit b ∈ {0, 1}.

From a non-interactive zero-knowledge proof system we
require completeness, soundness and adaptive zero-knowl-
edge. Due to the lack of space we present the formal
definitions in the full version.

NIZK from Σ-protocols. One can obtain a non-interactive
proof system with the above properties from any Σ-protocol
by applying the Fiat-Shamir transform [36] where the min-
entropy μ of the commitment a sent in the first message of
the Σ-protocol is so that 2−μ is negligible in the security
parameter κ and its challenge space C is exponentially large
in the security parameter. Essentially, the transform removes
the interaction between the prover and the verifier by using
a hash function H (modelled as a random oracle) to obtain
the challenge. That is, the algorithm Challenge obtains the
challenge as H(a, x). More formally, SetupΠ(1

κ) fixes a
hash function H : A × X → C, sets crs ← (κ,H) and
returns crs. The algorithms ProofΠ and VerifyΠ are defined
as follows:

ProofΠ(crs, x, w) : Start P on (1κ, x, w), obtain the first
message a, answer with c← H(a, x). Finally obtain s
and return π ← (a, s).

VerifyΠ(crs, x, π) : Parse π as (a, s). Start V on (1κ, x)
and send a as first message to the verifier. When V
outputs c, reply with s and output 1 if V accepts and
0 otherwise.

Combining [37, Thm. 1, Thm. 2, Thm. 3, Prop. 1] (among
others) shows that a so-obtained proof system is complete,
sound, adaptively zero-knowledge, if the underlying Σ-
protocol is special sound and the commitments sent in the
first move are unconditionally binding. When referring to
the NIZK proof system obtained from Scheme 2, we denote
the algorithms as (SetupDDH,ProofDDH,VerifyDDH).

A note on the CRS. We stress that for the sake of generality
the output of SetupDDH is denoted as crs. However, as we
exclusively use NIZK from Σ-protocols in our DAPS, we
do not require a trusted setup and crs is just a description of
the hash function which is globally fixed, e.g., to SHA-256
or SHA-3.

6.5. Extraction of the Signing Key of Σ

When considering constructions that extend conventional
signature schemes to a DAPS, there is a gap between DSE
and DSE∗ notions and ensuring extraction of the Σ signing
key. Recall, that these notions require to extract the complete
DAPS secret key and no existing efficient DAPS scheme
provides DSE∗. When the DAPS key consists of a Σ signing
key, extraction of the signing key alone, however, already
disincentivizes double-authentication for many applications,
where this key is also used outside the context of DAPS.
Hence we define two weaker double-signature extraction
notions that cover extraction of the signing key of the
underlying signature scheme for honestly and maliciously
generated DAPS keys. The security games for weak double-
signature extraction (wDSE) and weak double-signature
extraction under malicious keys (wDSE∗) are depicted in
Figure 4 and Figure 5.

Definition 9 (T ∈ {wDSE,wDSE∗}). A DAPS scheme
provides weak double-signature extraction (T = wDSE)
respectively weak double-signature extraction under ma-
licious keys (T = wDSE∗), if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr
[
ExpT

A,DAPS(κ) = 1
] ≤ ε(κ),

where the corresponding experiments are depicted in
Figure 4 and Figure 5 respectively.

ExpwDSE
A,DAPS(κ):

(skD, pkD)← KGenD(1
κ) with skD = (skΣ, . . . )

(m1,m2, σ1, σ2)← A(skD, pkD)
return 0, if m1 and m2 are not colliding
vi ← VerifyD(pkD,mi, σi) for i ∈ [2]
return 0, if v1 = 0 or v2 = 0
sk′D ← ExD(pkD,m1,m2, σ1, σ2) where sk′D = (sk′Σ, . . . )
return 1, if sk′Σ �= skΣ
return 0

Figure 4: wDSE security for DAPS.

ExpwDSE∗
A,DAPS(κ):

(pkD,m1,m2, σ1, σ2)← A(1κ) where pkD = (pkΣ, . . . )
return 0, if m1 and m2 are not colliding
vi ← VerifyD(pkD,mi, σi) for i ∈ [2]
return 0, if v1 = 0 or v2 = 0
sk′D ← ExD(pkD,m1,m2, σ1, σ2) where sk′D = (sk′Σ, . . . )
return 1, if sk′Σ is not the secret key corresponding to pkΣ
return 0

Figure 5: wDSE∗ security for DAPS.

Clearly, DSE and DSE∗ imply their weaker counterparts
and wDSE∗ implies wDSE.

6.6. Generic DAPS in the Discrete Logarithm Set-
ting

In the following, let Σ be a signature scheme in the
discrete logarithm setting, which is from the class C of
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signature schemes where the public key is the image of the
secret key under a group homomorphism. In the discrete log-
arithm setting this means that the secret key x is an element
from Zq and the public key is its image gx in the group.
We stress that the class C essentially covers any scheme
in the discrete logarithm setting we can think of, and, in
particular schemes like Schnorr, (EC)DSA, or EdDSA. We
subsequently present our protocols based on ElGamal in the
DDH setting and recall that when the DDH is not hard
in the respective group, we can easily instantiate all our
protocols on linear ElGamal under the DLIN assumption
(cf. Section 6.3)

Our approach is as follows. First we generate an El-
Gamal encryption key-pair (xE , pkE). Then, for each pos-
sible address i we choose ρi ∈ Zq uniformly at random
and additionally include an encryption (Ci,1, Ci,2) of gρi

as well as pkE in the DAPS public key. The secret key
additionally includes the values ρi and the randomness
ri ∈ Zq used upon encrypting ρi. When signing a message
m = (i, p) ∈ [n]×Z

∗
q , we obtain a signature from Σ, and ex-

tend it with a secret share of skΣ: we let fi(X) = ρiX+skΣ
and include z = fi(p) in the signature. When signing
two colliding messages, we obtain two shares for the same
degree 1 polynomial fi and hence can re-construct skΣ.
To ensure the correct computation of z, each signature is
extended by a proof for the following relation R, which
is essentially a proof for a verifiable secret sharing using
ElGamal encryption for the coefficient of the non-constant
term:

((g, pkE , Ci,1, C
′
i,2), r) ∈ R⇔ Ci,1 = gr ∧ C ′i,2 = pkrE

where C ′i,2 = Ci,2 · (pkΣ · g−z)1/p.
Observe that the extraction algorithm, when applied to

colliding signatures, reveals the secret signing key skΣ, but
none of the ri and ρi. However, DAPS extraction needs to
recover the full secret key, so we cannot achieve the stronger
DSE notion, but obtain wDSE security.

We note that in our construction KGenD takes the num-
ber of addresses as explicit argument. The scheme is also
presented using Z

∗
q as payload space, but it can be extended

to an arbitrary payload space using the standard hash-then-
sign technique.

Theorem 1. If Σ is from class C instantiated in group G
and EUF-CMA-secure, DDH is hard relative to G and
the NIZK proof system is adaptive zero-knowledge, then
Σ-DAPS is an EUF-CMA-secure DAPS.

Proof: We prove this theorem using a sequence of
games. We denote the winning event of game Gi as Si. We

use gray textboxes to indicate changes within algorithms.

Game 0: The original EUF-CMA game.
Game 1: As before, but we modify KGenD to use setup

algorithm S1,DDH of the simulator for the NIZK proof
system.

KGenD(1
κ, n) : As before, but let

(crs, τ)← S1,DDH(1
κ) and store τ .

KGenD(1
κ, n) : Let (skΣ, pkΣ) ← KGenΣ(1

κ) with

G = (G, q, g). Let xE ←R Z∗q and pkE ←
gxE . Let (ρi)i∈[n]←R (Z∗q)

n and (ri)i∈[n]←R (Z∗q)
n.

Set (Ci)i∈[n] ← (gri , pkriE gρi)i∈[n]. Let crs ←
SetupDDH(1

κ). Let sk← (skΣ, (ri, ρi)i∈[n]) and pk←
(pkΣ, pkE , (Ci)i∈[n], crs) and return (sk, pk).

SignD(sk,m) : Parse sk as (skΣ, (ri, ρi)i∈[n]). Parse m as

(i, p) with i ≤ n and p ∈ Z
∗
q .

1) Let σ ← SignΣ(skΣ,m)
2) let z ← ρip+ skΣ
3) let C ′2 ← Ci,2 · (pkΣ · g−z)

1
p

4) π ← ProofDDH(crs, (g, pkE , Ci,1, C
′
2), ri)

5) return (σ, z, π)

VerifyD(pk,m, σ) : Parse pk as (pkΣ, pkE , (Ci)i∈[n], crs), m
as (i, p) with i ≤ n, and σ as (σ′, z, π).

1) If VerifyΣ(pkΣ,m, σ′) = 0, return 0

2) let C ′2 ← Ci,2 · (pkΣ · g−z)
1
p

3) return VerifyDDH(crs, (g, pkE , Ci,1, C
′
2), π)

ExD(pk,m1,m2, σ1, σ2) : Parse σi as (·, zi, ·), mi as (ai, pi)
and pk as (·, ·, ·, ·).

1) If m1 and m2 are not colliding, return ⊥
2) if VerifyD(pk,mi, σi) = 0 for any i, return ⊥
3) let skΣ ← z1

p2

p2−p1
+ z2

p1

p1−p2

4) return skΣ

Scheme 3: Σ-DAPS: Generic DAPS from any signature
scheme Σ from class C.

Transition 0→ 1: Game 0 and Game 1 are indistinguish-
able under adaptive zero-knowledge of the proof sys-
tem, i.e. |Pr[S0]− Pr[S1]| ≤ εz,1(κ).

Game 2: As Game 1, but we modify SignD to use the
simulation algorithm S2,DDH of the simulator of the
NIZK proof system:

SignD(sk,m) : As before, but let

π ← S2,DDH(crs, τ, (g, pkE , Ci,1, C
′
2)) .

Transition 1→ 2: Game 1 and Game 2 are indistinguish-
able under adaptive zero-knowledge of the proof sys-
tem, i.e. |Pr[S0]− Pr[S1]| ≤ εz,2(κ).

Game 3: As Game 2, but we modify KGenD as follows:

KGenD(1
κ, n) : Let (skΣ, pkΣ) ← KGenΣ(1

κ) with

G = (G, q, g). Let pkE ←R G . Let (ρi)i∈[n]←R (Z∗q)
n.

Let (Ci)i∈[n]←R (G2)n . Let (crs, τ)← S1,DDH(1
κ).

Let sk ← (skΣ, (ri, ρi)i∈[n]) and pk ← (pkΣ, pkE ,
(Ci)i∈[n], crs) and return (sk, pk).

Transition 2→ 3: We claim that the probability to distin-
guish between Game 1 and Game 2 is bounded by
|Pr[S1] − Pr[S2]| ≤ n · εDDH(κ). To see this assume
n additional hybrids, where in each hybrid Hj with
1 ≤ j ≤ n we replace ciphertext Cj by a random value.
Then the distinguishing probability of two consecutive
hybrids is bounded by εDDH(κ). In particular, assume
we obtain a DDH instance (gu1 , gu2 , gu3) relative to
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G and set pkE ← gu2 . Then in hybrid Hj we choose
all Ci where i < j random (as they were also already
random in the previous hybrid). For Cj , we compute
Cj ← (gu1 , gu3 ·gρi). Furthermore, for Ci where i > j,
we choose ri←R Zq and set Ci ← (gri , (gu2)ri · gρi).
Then the validity of the DDH instance determines
whether we sample from the distribution in Game i or
Game i+1, which proves that the distinguishing proba-
bility between two intermediate hybrids is bounded by
εDDH(κ). Taking all n transitions together, this yields
n · εDDH(κ) which proves our initial claim.

Game 4: As Game 3, but we modify SignD as follows:

SignD(sk,m) : As before, but let z←R Zq .

Transition 3→ 4: This change is conceptual. At this point
skΣ is information-theoretically hidden.

Game 5: As Game 4, but we abort whenever the adversary
comes up with a valid forgery.

Transition 4→ 5: We denote the event that we abort by E.
Both, Game 4 and Game 5 proceed identically unless
E happens, i.e., |Pr[S2]−Pr[S3]| ≤ Pr[E]. Whenever
E happens in Game 5, we can build an EUF-CMA
forger for Σ. To do so, we engage with an EUF-CMA
challenger for Σ and obtain σ from the oracle provided
by the challenger (we no longer require skΣ anywhere
else). If the adversary outputs a forgery, we can output
(σ′, (i,m)) as a valid EUF-CMA forgery, i.e. |Pr[S2]−
Pr[S3]| ≤ εEUF-CMA(κ).

In the final game, the adversary can no longer win, i.e.,
Pr[S5] = 0. Taking all together, we have that Pr[S0] ≤
εz,1(κ) + εz,2(κ) + n · εDDH(κ) + εEUF-CMA(κ), which con-
cludes the proof.

We now show that our Σ-DAPS also provide wDSE
security, and then extend this result to wDSE∗, and thus for
the first time we have some reasonable extraction guarantees
under adversarially generated keys for practical DAPS.

Theorem 2. If the NIZK proof system is sound, then Σ-
DAPS provides wDSE security.

Proof: We prove this theorem using a sequence of
games. We denote the winning event of game Gi as Si.
Let m1,m2, σ1, σ2 be the output of A. For simplicity we
write mj = (a, pj), σj = (·, zj , πj) for i ∈ [2], pkD =
(pkΣ, pkE , (Ci)i∈[n], crs), and (Ca,1, Ca2

) ← Ca. We also

let C ′j,2 ← Ca,2 · (pkΣ · g−zj )
1
pj for j ∈ [2].

Game 0: The original wDSE game.
Game 1: As before, but we abort if C ′1,2 �= C ′2,2.
Transition 0→ 1: Let E be the event that C ′1,2 �= C ′2,2. In

this case we engage with a soundness challenger C of
proof system and modify KGenD as follows:

KGenD(1
κ, n) : Obtain crs from C and compute every-

thing else honestly.

Once A outputs the two colliding messages and
signatures, we have proofs attesting that both
(g, pkE , Ca,1, C

′
j,2) for j ∈ [2] are DDH tuples, but,

by the perfect correctness of ElGamal, at most one of
them can be a DDH tuple, i.e., one of the words is

not in the language. Hence we guess b←R {0, 1}, and
forward (g, pkE , Ca,1, C

′
b+1,2), πb+1 to C. We guess the

word breaking soundness of DDH with probability 1/2.
Hence Pr[E] ≤ 2 · εs(κ) where εs is the soundness
error of DDH.

Now (p1, z1) and (p2, z2) are secret shares of the same
polynomial f = ρX+ skΣ. Hence x is uniquely determined
via

skΣ = f(0) = z1
p2

p2 − p1
+ z2

p1
p1 − p2

.

Since the key was set up honestly, we have Pr[S1] = 0 and
in total Pr[S0] ≤ 2 · εs(κ), which concludes the proof.

Recall that the crs of NIZK proof systems instantiated by
applying the Fiat-Shamir transform to a Σ-protocol consists
of a globally fixed hash function, e.g. SHA-256 or SHA-
3. Consequently, this hash function can simply be part of
the DAPS description, removed from the key generation and
globally fixed. Now one can observe that the properties of
the proof system do not require a trusted setup. So even
when considering keys generated by the adversary, this
observation and the perfect correctness of the encryption
scheme ensure that our DAPS construction guarantees the
successful extraction of the signing key of the underlying
signature scheme. We now give a sketch of the proof.

Theorem 3. If the NIZK proof system is sound and in-
stantiated by applying the Fiat-Shamir transform to the
Σ-protocol in Scheme 2, then Σ-DAPS provides wDSE∗
security.

Proof (Sketch): We observe that the only parameter
which needs to be controlled by the simulator in the proof
of Theorem 2 is the crs. Now, since there is no crs in
Fiat-Shamir transformed Σ-protocols, wDSE∗ follows from
this property, Transition 0 → 1 of Theorem 2, and the
observation that skΣ is then uniquely determined by the two
shares included in the signatures.

6.7. DAPS from ECDSA

As an example we give a concrete instantiation of our
DAPS construction based on ECDSA, dubbed ECDSA-
DAPS. The full scheme is presented in Scheme 4. Further-
more, we state the following corollaries.

Corollary 1. If ECDSA is EUF-CMA-secure, and the NIZK
proof system is adaptive zero-knowledge, then ECDSA-
DAPS is an EUF-CMA-secure DAPS in the random
oracle model.

Corollary 2. If the NIZK proof system is sound and in-
stantiated by applying the Fiat-Shamir transform to the
Σ-protocol in Scheme 2, then ECDSA-DAPS provides
wDSE∗ security.

The two corollaries follow directly from the observation
that ECDSA is included in the class C and Theorem 1, and
Theorem 3.
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Scheme Sign Verify |pk| |σ| Setting Model
PS �Ek

k lEk
k k �k F ROM

H2[GQ] 2E
k/2
k/2

+E�
k E�

k 3k k + � F ROM

ID2[GQ] 4E
k/2
k/2

+2E�
k 3E�

k 3k k + 1 F ROM

H2[MR] 2E
k/2
k/2

+E�
k

2�
3
Mk k k + � F ROM

RKS (r − 1)h SG 2h SG 2sG + k ((h− 1)r + 1)sG DL ROM
Σ-DAPS SignΣ + 4SG VerifyΣ + 6SG |pkΣ|+ (1 + 2n)sG |σΣ|+ 3sZq DL ROM
ECDSA-DAPS 5 SG 8 SG (2 + 2n)sG 5sZq DL ROM

ECDSA SG 2 SG sG 2sZq DL ROM

TABLE 2: Operation count, sizes of public keys (pk) and signatures (σ). Factoring-based: Em′
m exponentiation with

modulus of size m and exponent of size m′, Mm multiplication with modulus of size m, k size of modulus, � size
of hash digest. DL-based: SG scalar multiplication and sG size of an element in group G, n number of addresses.
RKS: r arity and h height of the tree, k size of PRF output.

KGenD(1
κ, n) : Let G = (G, q, g) and H : {0, 1}∗ → Zq

be a hash function mapping exactly to the order of the
group. Let skΣ←R Z∗q and xE ←R Z∗q , and set pkΣ ←
gskΣ and pkE ← gxE . Let (ρi)i∈[n]←R (Z∗q)

n and

(ri)i∈[n]←R (Z∗q)
n. Set (Ci)i∈[n] ← (gri , pkriE gρi)i∈[n].

Let crs← SetupDDH(1
κ). Let sk← (skΣ, (ri, ρi)i∈[n])

and pk← (pkΣ, pkE , (Ci)i∈[n], crs) and return (sk, pk).
SignD(sk,m) : Parse sk as (skΣ, (ri, ρi)i∈[n]). Parse m as

(i, p) with i ≤ n and p ∈ Z∗q .

1) Choose k←R Z∗q
2) compute R← gk

3) let r ← Rx (mod q) and if r = 0 goto step 1
4) let s← k−1(H(m) + rskΣ) (mod q) and if s = 0

goto step 1
5) let z ← ρip+ skΣ
6) let C ′2 ← Ci,2 · (pkΣ · g−z)

1
p

7) π ← ProofDDH(crs, (g, pkE , Ci,1, C
′
2), ri)

8) return (r, s, z, π)

VerifyD(pk,m, σ) : Parse pk as (pkΣ, pkE , (Ci)i∈[n], crs, ·),
m as (i, p) with i ≤ n, and σ as (r, s, z, π).

1) If r = 0 ∨ s = 0 return 0
2) let z ← H(m) and w ← s−1 (mod q)
3) let u1 ← zw (mod q) and u2 ← rw (mod q)
4) let R← gu1 · pku2

Σ
5) if Rx = r (mod q) return 1 and return 0 otherwise

6) let C ′2 ← Ci,2 · (pkΣ · g−z)
1
p

7) return VerifyDDH(crs, (g, pkE , Ci,1, C
′
2), π)

ExD(pk,m1,m2, σ1, σ2) : Parse σi as (·, zi, ·), mi as (ai, pi)
and pk as (·, ·, ·, ·).

1) If m1 and m2 are not colliding, return ⊥
2) if VerifyD(pk,mi, σi) = 0 for any i, return ⊥
3) let skΣ ← z1

p2

p2−p1
+ z2

p1

p1−p2

4) return skΣ

Scheme 4: ECDSA-DAPS: DAPS from ECDSA.

6.8. Further DAPS

Our technique to construct DAPS can also be applied
to the Schnorr signature scheme (cf. Appendix B) and
the finite-field variant DSA. In particular, the latter is

straightforward given the construction of ECDSA-DAPS in
Scheme 4 and for brevity we omit the scheme. Besides
DSA and Schnorr, EdDSA [19] also belongs to the class
C of signatures schemes and can be extended to a DAPS
in the same way. Consequently, our DAPS construction can
easily be instantiated with EdDSA and curves ed25519
[38] or ed448 [39]. Even more generally, our approach
towards DAPS can generically be applied to any signature
schemes in the discrete logarithm setting from class C.
Straightforwardly, if the public key is a single group element
and otherwise for any scheme having public keys k > 1
group elements one simply has to combine the signature
scheme with k copies of our technique. Our approach might
also be applied beyond discrete logarithm based schemes if
the respective setting provides a suitable encryption scheme,
verifiable secret sharing scheme for secret keys and a non-
interactive proof system.

6.9. N -Times-Authentication-Preventing Signa-
tures

Finally, we observe that our techniques can easily
be generalized to what we call N -times-authentication-
preventing signatures (NAPS). That is, signature schemes
where creating N signatures with respect to the same ad-
dress leaks the secret key while they are unforgeable as
long as there are < N signatures for every address. While
an extension of the formal model is straightforward and
therefore omitted, we subsequently sketch the construction.

Essentially, instead of computing z by evaluating a
degree 1 polynomial fi(X) = ρiX + skΣ ∈ Zq[X] asso-
ciated to address i at the payload p, we can generalize our
approach to a degree N − 1 polynomial fi(X) = skΣ +∑

j∈[N−1] ρijX
j ∈ Zq[X]. The evaluation in the encrypted

domain works likewise (when including the values ρij in
encrypted form in the public key) and the proof Π remains
the same. Also the signature size is not influenced by this
extension. Finally, the proofs easily generalize from 2 to N
and hold under exactly the same argumentation. Thus we
do not restate them.
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6.10. Comparison with Previous Work

Now we want to compare the existing instantiations
of DAPS in the factoring (F) and discrete logarithm (DL)
setting with the ones presented in this paper. We stress that
we are interested in cryptographic settings that are currently
widely used and thus do not consider the lattice-based DAPS
in [30]. In Table 2, which is based on the recent work
in [10], we present a comparison of existing DAPS in terms
of operation count and sizes of public keys and signatures.
For reference, we also include the costs of ECDSA.

The costs of the factoring-based schemes are dominated
by exponentiations with the respective RSA modulus. Ob-
serve that the savings in the signature size of one hash
digest when applying the ID2 transform instead of the
H2 transform, comes at the cost of twice the amount of
operations during signing and thrice the operations during
verification. While choosing MR as identification-scheme
over GQ allows to reduce the operation count for verification
and the size of the public key, signing costs are the same.

The performance of RKS largely depends on the con-
crete choice for the Merkle tree. When using a pseudoran-
dom function (PRF) with k bit output, the arity of the tree
r and the height h need to satisfy rh ≥ 22k. Additionally,
the group G needs to be compatible with the PRF, i.e.,
log2 |G| = 2k. For example, when using a binary tree
(r = 2), then the height needs to be at least 2k. While
increasing the arity decreases the verification times, signing
times and signature sizes increase.

When looking at our DAPS construction, the opera-
tion count of signing and verification takes an extra 4,
respectively 6 group operations. The signature contains 3
additional Zq elements. When instantiating our construction
with ECDSA, signing requires 5 group operations in total,
and verification takes 8 group operations. Signatures consists
of 5 Zq elements.

7. Implementation

We now present an implementation9 of our ECDSA-
DAPS based on the widely used OpenSSL10 library and its
ECDSA implementation. We note that OpenSSL’s ECDSA
implementation can be extended without any modifications.
But also any other ECDSA implementation can be extended
in the same way as long as an API for the necessary group
operations is available. Note that any implementation of our
DAPS construction is extendable to NAPS.

7.1. Benchmarking ECDSA-DAPS

For comparing our construction with existing DAPS
implementations, we benchmarked ECDSA-DAPS using
curves secp256k1 and prime256v1 and the DAPS
schemes H2[GQ], ID2[GQ], and H2[MR] from [10] with
a 2048 bit modulus. The benchmarks were performed on an

9. The implementation is available at https://github.com/IAIK/daps-dl.

10. https://openssl.com.

Intel Core i7-4790 CPU and 16 GB RAM running Ubuntu
17.04 and the results are presented in Table 3. We omit
the PS and RKS DAPS in this comparison, as they are
by far not competitive; neither in terms of signature size
nor performance (cf. [10, Figure 21] for an overview). For
reference, we also include sizes and timings for ECDSA. For
the sizes required to store elliptic curve points, we assume
that point compression is used.11

Scheme Sign Verify |sk| |pk| |σ|
[ms] [ms] [bits] [bits] [bits]

H2[GQ] 1.12 0.65 4096 6144 2304
ID2[GQ] 2.12 2.06 4096 6144 2049
H2[MR] 1.36 0.58 4096 2048 2304
ECDSA-DAPS (s) 0.76 1.33 256 · (1 + 2n) 514 · (1 + n) 1280
ECDSA-DAPS (p) 0.23 0.35 256 · (1 + 2n) 514 · (1 + n) 1280
ECDSA (s) 0.09 0.35 256 257 512
ECDSA (p) 0.06 0.21 256 257 512

TABLE 3: Timings and sizes of private keys (sk), public
keys (pk) and signatures (σ) with n addresses. The curves
secp256k1 and prime256v1 are denoted as s and p,
respectively.

Compared to H2[GQ], ID2[GQ], and H2[MR], ECDSA-
DAPS using the curve prime256v1 is an order of magni-
tude faster when signing and verification is of the same order
of magnitude, yet slightly faster as the faster H2 schemes.
For ECDSA-DAPS using secp256k1 the picture for ver-
ification is slightly different: verification is comparable to
the slower ID2[GQ] scheme. The difference in the signing
and verifications times that can be observed in conventional
ECDSA and ECDSA-DAPS when switching curves, and it
shows that OpenSSL includes a more optimized implemen-
tation of the arithmetic on prime256v1.

8. Conclusion

In this paper we asked whether one can construct DAPS
from signature schemes used in practice. We affirmatively
have answered this question by presenting provably se-
cure DAPS schemes, among others, from the widely used
ECDSA signature scheme. They are the shortest among
all existing DAPS schemes and improve over the most
efficient factoring and discrete logarithm based schemes.
Moreover, we showed how to extend our approach to N -
times-authentication-preventing signatures for any N > 2.
We provided an integration into the OpenSSL library to
foster fast adoption in practical applications, of which we
discuss some interesting ones in this paper.
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11. We store the x-coordinate and a bit indicating the “sign” of the y-
coordinate. So points require b+1 bits instead of 2b bits for b-bit curves.
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Appendix A.
Cryptographic Assumptions

Subsequently, we present the decisional Diffie-Hellman
(DDH or 1-LIN) and decision linear (DLIN or 2-LIN) as-
sumptions, very common assumptions underlying the IND-
CPA security of versions of the ElGamal encryption scheme.

Definition 10 (DDH). The DDH assumptions holds relative
to G = (G, q, g), if for all PPT adversaries A, there is a
negligible function ε such that∣∣∣∣Pr
[

x, y, z←R Zq,
b∗ ← A (

gx, gy, gb·xy+(1−b)z
) : b = b∗

]
− 1

2

∣∣∣∣ ≤ ε(κ)

Definition 11 (DLIN). The DLIN assumptions holds relative
to G = (G, q, g), if for all PPT adversaries A, there is a
negligible function ε such that

∣∣∣∣∣∣Pr
⎡
⎣ u, v, h←R G, x, y, z←R Zq,

b∗ ← A
(

u, v, h, ux, vy,
hb·(x+y)+(1−b)z

)
: b = b∗

⎤
⎦− 1

2

∣∣∣∣∣∣ ≤ ε(κ)

286

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 20,2024 at 00:11:03 UTC from IEEE Xplore.  Restrictions apply. 



Appendix B.
Schnorr Signature Scheme

The Schnorr signature scheme [17] can be seen as a
prime example of a signature scheme obtained from an
identification scheme using the Fiat-Shamir heuristic [36].
We present an instantiation of Schnorr in Scheme 5. The

KGenSchnorr(1
κ) : Let G = (G, q, g). Choose x←R Z∗q and

set sk← x and pk← gx and return (sk, pk).
SignSchnorr(sk,m) : Parse sk as x and choose k←R Z

∗
q . Com-

pute c← H(gk‖m), s← k − cx and return (c, s).
VerifySchnorr(pk,m, σ) : Parse σ as (c, s) and compute r ←

gspkc. Return 1 if c = H(r‖m) and 0 otherwise.

Scheme 5: Schnorr signature scheme.

Schnorr signature scheme can be shown to provide EUF-
CMA security in the random oracle model (ROM) under
the DLP in G by using the now popular rewinding tech-
nique [40] (cf. also [41] for a recent treatment on tightness
and optimality of such reductions).

Appendix C.
DSE∗ Security of DAPS

We recall the DSE∗ security notion of DAPS. The game
is depicted in Figure 6, where in contrast to Figure 3 the
keys are allowed to be generated by the adversary.

Definition 12 (DSE∗ [5]). A DAPS scheme provides double-
signature extraction (DSE∗), if for all PPT adversaries
A there is a negligible function ε(·) such that

Pr
[
ExpDSE∗

A,DAPS∗(κ) = 1
]
≤ ε(κ),

where the corresponding experiment is depicted in Fig-
ure 6.

ExpDSE∗
A,DAPS(κ):

(pkD,m1,m2, σ1, σ2)← A(1κ)
return 0, if m1 and m2 are not colliding
vi ← VerifyD(pkD,mi, σi) for i ∈ [2]
return 0, if v1 = 0 or v2 = 0
sk′D ← ExD(pkD,m1,m2, σ1, σ2)
return 1, if sk′ is not the secret key corresponding to pkD
return 0

Figure 6: DSE∗ security for DAPS.

Appendix D.
IND-CPA Security

IND-CPA security of an encryption scheme Ω is depicted
in Figure 7.
Definition 13 (IND-CPA). A public key encryption scheme

Ω is IND-CPA secure, if for all PPT adversaries A there
is a negligible function ε(·) such that

Pr
[
ExpIND-CPA

A,Ω (κ) = 1
]
≤ ε(κ),

where the corresponding experiment is depicted in Fig-
ure 7.

ExpIND-CPA
A,Ω (κ)

(sk, pk)← KGen(1κ)
b← {0, 1}
(m0,m1, stateA)← A(pk)
if m0 /∈M ∨ m1 /∈M, let C ← ⊥
else, let C∗ ← Enc(pk,mb)
b∗ ← A(C∗, stateA)
return 1, if b∗ = b
return 0

Figure 7: IND-CPA security.
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