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Abstract—This paper presents a prediction model for short-
term electric load forecast based on Local Prediction (LP) with a
dual-SE weighted morphological filter derived from Mathematical
Morphology (MFLP). The historical load data with frequent fluc-
tuations is processed by a morphological filter to obtain a relatively
smooth load curve and meanwhile reserve the characteristics of
the load. After filtering out the volatility, the obtained time series is
embedded into a high-dimension phase space by the LP. Moreover,
weather conditions such as local temperature and humidity can
also be involved in the proposed MFLP, by embedding them as an
individual temperature series and a weather series, respectively,
to form a forecast sample. The nearest neighbours who have high
similarity to the forecast sample are selected to construct the
training set and then predicted by Support Vector Regression
(SVR). In order to evaluate the performance of the proposed
model, simulation studies have been carried out, respectively, on
data collected by AEMO and Elia, in comparison with the SVR,
Back Propagation Neural Network (BPNN) and persistence (Per.)
models. The results demonstrate that the accuracy and stability of
the proposed model are much better than the traditional models.

Index Terms—Morphological filter, local prediction, load fore-
cast, multi-variable inputs

I. INTRODUCTION

W Ith the deregulation of electricity industry and construc-
tion of electricity market, the whole electricity sector

has been undergoing record decades. The reform brings an
open electricity market for market participants. At the same
time, with the development of smart grid, modern technologies
such as communication technology have been penetrated into
the electricity grid [1]. The electricity industry is not the
traditional one anymore, and the electricity market brings harsh
competition to all market participants. Each market participant
is an individual seeking for maximizing profit. In such situation,
timely and accurate load forecast is urgently needed by system
operators, suppliers, power generators, etc, to optimize system
and market operation, enhance system security, minimize trans-
mission loss, optimize demand side management, etc [2] [3].
Thus, load forecast plays an even more important role in the
competitive environment [4].

According to time scale, load forecast can be classified
into several categories: long-term, medium-term, short-term and
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ultra-short-term prediction. The latter two types deal with the
prediction from one hour up to a few days [5] offering decision
basis for pre-scheduling plan, real-time scheduling, real-time
electricity price forecasting. In many countries, the time interval
between short-term dispatch actions is very short [6]. One data
set in this paper comes from Australia where the time interval
is only 5 minutes. In such cases, load forecast is concerned
with both time consumption and accuracy.

Many data-driven mathematical statistics approaches and
artificial intelligence approaches have been proposed in the field
of forecast. Several well-known data-driven approaches include
the Per. model [7], artificial neural network (ANN) [8], auto-
regressive and moving average (ARMA) [9], support vector
machine (SVM) [10], and a number of methods have been
proposed on this basis. The Per. model is a kind of simple
but non-intelligent model [7]. With the development of artificial
intelligence forecasting techniques, the ANNs are recognized as
powerful tools for prediction [8]. But its forecast accuracy relies
on the huge amount size of training samples. The ARMA [9]
techniques are criticized for its incapability when dealing with
non-linear problems. In many cases SVM [11] gets satisfactory
results but once the parameters are not properly tuned, the result
may go wild. The SVR [12] is derived from the SVM. The
kernel functions of SVR help it to achieve non-linear mapping
from the sample space to the feature space successfully. Since
it provides a better performance in high-variance time series
prediction, the SVR has been adopted widely in the field of
forecast.

Nonetheless, the time consumption of the conventional mod-
el is usually large which reduces the prediction efficiency
especially in short-term forecast. Furthermore, electrical load
is related closely to complex demand side behaviours. Hence,
using the previous models to forecast directly is not acceptable.
A number of approaches to forecast electric load is developed.
Models decompose the load into several components have been
proposed by researchers such as wavelet transformation (WT)
[13] and empirical mode decomposition (EMD) [14] [15].
Nevertheless, decomposing the original time series into several
components and forecasting them respectively may bring errors
in every component and cause the increases of total error, so
that the final result is far from satisfactory. In another word,
the stochastic component which indicates the high randomness
of human behaviours is unpredictable. Therefore, a MM-based
filter is proposed aiming at filtering out this kind of component.
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Electrical load is mainly classified into three categories–
industrial, commercial, residential. The characteristics of com-
mercial and residential load depend on weather to a certain
extent. In conventional methods, only the historical load data
is used to construct the training set. Nonetheless, this paper also
engages weather data in prediction to make full use of weather
information to improve forecast accuracy. In fact, the reliability
of forecast is sensitive to the internal relevances between the
forecast point and its nearest neighbours. The proposed model
engages multi-variables can select the nearest neighbours those
carry the maximal relevance.

This paper proposes a novel model for short-term load fore-
cast. The morphological filter is used to filter out the stochastic
component of original load curve and reserve the characteristics
of the load. The filtered load data and the weather data in time
series are embedded together into a high dimension phase space
by the LP. The SVR is applied to perform the forecast using
the training data set selected by the LP.

II. A FILTER BASED ON MATHEMATICAL
MORPHOLOGY

A. Mathematical morphology (MM)

MM as a signal/image processing technique is proposed
based on integral geometry and random set theory, which is
quite different from frequency domain filtering methods. In this
paper, it is used to deal with load data which is a time series.
The local features of the load curve reflect the behavior of
demand side which should not be ignored. The proposed MM-
based filter reserves these features well, and improves forecast
accuracy and stability greatly.

All the MM operators are derived from two basic operations,
dilation and erosion [16]. A one-dimension signal f(k) dilated
or eroded by a structuring element (SE) g(s) are, respectively,
defined as follows:

f ⊕ g(k) = max{f(k − s) + g(s)} (1)

f ⊖ g(k) = min{f(k + s)− g(s)} (2)

For all k and s, they must satisfy 0 ≤ (k − s) ≤ k and 0 ≤
(k + s) ≤ k, respectively, in (1) and (2).

The opening and closing operations are, respectively, defined
as follows:

(f ◦ g)(k) = f ⊖ g ⊕ g(k) (3)

(f • g)(k) = f ⊕ g ⊖ g(k) (4)

where ◦ and • denote the opening and closing operation respec-
tively. Generally, the opening operation is used to eliminate the
scattered points which smoothes and inhibits the peak noise and
the closing operation is used to connect the two adjacent areas
which inhibits the negative low noise.

Variable combinations of dilation, erosion, opening and clos-
ing operations construct different filters and achieve different
signal processing results.
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Fig. 1: Filtering result of the proposed morphological filter

B. A novel morphological filter

In order to obtain relatively smoother curve which reserves
the useful information of the original load data, a new filter
has been proposed in this paper based on the open-closing
and close-opening filters. The dual-SE weighted morphological
filter is defined as follows:

F (k) = λ1(f ◦ g1 • g2)(k) + λ2(f • g1 ◦ g2)(k) (5)

where f is the signal to be processed; λ1, λ2 are the weighted
coefficients, and λ1 + λ2 = 1; g1 and g2 are SEs of different
shapes; g1 is a flat SE while g2 is a disc shape one. The value
of λ1 is set to be 0.3 and λ2 is set to be 0.7 after a great number
of tests.

The original load curve has a certain periodicity. However,
the rapidly changing stochastic component is non-predictable.
Thus, a flat SE named g1 is used to deal with them and
get a relatively smooth curve. After the process by g1, the
characteristics of the curve are not as same as before. To
filter out the stochastic component completely, a disc shape
SE named g2 is used on the obtain curve. Finally, the filtering
result is used for forecasting and ensures a better performance.

Fig. 1 illustrates the result of original load curve processed by
the morphological filter. When the load is high, the stochastic
component that should be regarded as interference is filtered
out and the curve reserves the wave trend of the peak load.
When the load is low, the curve retains the characteristics of
the original load curve.

III. LOCAL PREDICTION METHOD

Unlike global prediction, LP selects part of historical data
to be used for setting up training set, instead of engaging all
the historical data. LP identifies local pattern for each point,
which is unique and can be displayed in a more obvious manner
in a high-dimension space. Therefore, LP is more targeted in
the modeling stage, leading to a high accuracy than global
prediction.
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A. The principle of local prediction (LP)
Take a three-dimension phase space for example. The prin-

ciple of local predictor is illustrated in Fig. 2. The original
time series is embedded into the three-dimension phase space
and forms a batch of samples. LP chooses a set of nearest
neighbours, named local neighbours, who have smaller Eu-
clidean distance to the forecast sample, and the local neighbours
possess high similarity to the forecast sample.

Fig. 2: LP using the local neighbours

B. Constructing the phase space
The historical load data is collected in time series. The

data in a univariate time series contains all the information
of the variables relatively. In other words, one-dimension time
series can be regarded as a lower dimension with compressed
information of high dimension. For a high-variance system,
the information in the time series can be extracted from one
dimension to a higher dimension by reconstructing a new space
named the phase space using embedding theorem [17].

In time domain, the sample si, i = 1, 2, · · · ,K demonstrates
the local information where K is the length of the time series.
Correspondingly, the phase space can be reconstructed by the
delay coordinate, which is defined as:

st = [s(t), s(t+ τ), ..., s(t+ (d− 1)τ)]T (6)

where d denotes the embedding dimension, τ is the time delay
constant and T stands for the vector transpose.

All the st are independent points in the phase space, and
they jointly form a matrix of:

S = [s1, s2, ..., sq]T (7)

where q = L− (d− 1)τ .
To illustrate information in one-dimension time domain to

a maximum degree, it is of great importance to determine the
embedding dimension d and the time delay τ .

C. Estimate embedding dimension d and time delay τ

According to the delay coordinate, the phase space recon-
structed is a d-dimension space and the obtained series is a
reconstructed embedded series containing the information of
the one-dimension time series as much as possible.

1) The embedding dimension d:
As for load forecast, the fundamental of feature selection

technique is to maximize relevancy, minimize redundancy and
maximize synergy [18]. The embedding dimension of the new
reconstructed phase space is relatively large, satisfying the
following formulae:

d = 2 · ⌈boxdim(A)⌉+ 1 (8)

where boxdim(A) is the dynamic system attractor. To formulate
the system dimension, the correlation dimension dc is deter-
mined from the correlation integral which is defined as follows:

C(r) = lim
N→∝

1

N

N∑
i=1

N∑
j=1

θ(r − ||(Xi)− (Xj)||), (i ̸= j) (9)

where θ(x) is the Heaviside step function defined as:

θ(x) =

{
0, x ≤ 0
1, x ≥ 0

(10)

Obviously, the value of C(r) depends on the size comparison
of r and ||(Xi)− (Xj)|| as follows:

C(r) =

{
0, r ≤ ||(Xi)− (Xj)||
1, r ≥ ||(Xi)− (Xj)||

(11)

Thus, it is important to choose an appropriate r. When r → 0,
the following equation gives the correlation dimension dc:

dc = lim
r→0

lgC(r)

lg(r)
(12)

Therefore, the embedding dimension d can be obtained by d =
⌈(2dc + 1)⌉ as mentioned in (8).

2) The time delay τ :
To estimate the best selection of the time delay τ , average

displacement is adopted.
The vector si, i = 1, ..., q in the phase space can be

constructed by the time series s(t) according to (6). Thus, the
average distance of two adjacent points can be defined as:

Dd(τ) =
1

q

q∑
i=1

||si+τ − si|| (13)

Then the formula of average distance can be obtained:

Dd(τ) =
1

q

q∑
i=1

d−1∑
j=1

(si+τ − si)2
 1

2

(14)

With the gradual increase of τ , Dd(τ) will increase linearly un-
til getting saturated when ∂Dd/∂τ = 0 . The τ corresponding
to the end of its linear region is the best time delay.

D. Local prediction (LP) method

The first step of LP method is to select a set of nearest
neighbours with high similarity to the forecast sample in the
phase space. Take one point sr as an example. Searching for the
k-neighborhood of sr is to find all the points in the δ region.
The δ region is a hyper sphere with sr as the center and δ as
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the radius. The k-neighborhood of sr is labeled as sr(j), where
j = 1, 2, ..., k and sr(j) must satisfy the following inequality:

||sr − sr(j)|| < δ (15)

||sr−sr(j)|| stands for the Euclidean distance in the phase space
which is defined as:

||sr − sr(j)|| =

√√√√ N∑
t=1

[sr(t)− sr(j)(t)]2 (16)

The training set Tr used to obtain the forecast model by training
SVR model can be constructed as:

Tr = [sr(1), sr(2), ...sr(k)] (17)

After that the forecast results can be got easily.

IV. CASE STUDIES

A. Data used in this paper
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Fig. 3: Data from the two data sets: (a) Sydney; (b) Elia.

Simulation studies are conducted using two data sets from
AEMO located in Australia and Elia located in Belgium, re-
spectively. The former data set sampled once every 30 minutes
from 1st January, 2006 to 1st January, 2011 is labeled as Set
1. As weather condition such as temperature has great impact
on the load especially in summer, weather data should also
be employed for load forecast. Therefore, Set 1 includes the
weather data provided by Sydney Observatory from the BOM
including humidity, the dry bulb, the wet bulb, the dew point
temperature. The latter data set sampled once every 15 minutes
from 1st January, 2013 to 1st April, 2017 is labeled as Set 2. In
order to verify the performance of the forecast models, the load
data in January, March, May, July, September and November
are forecasted and compared with actual data. The load data of
the two data sets are illustrated in Fig. 3.

B. Performance qualification

To evaluate the performance quality of MFLP model, the
mean absolute percentage error (MAPE) and the normalized
mean absolute error (NMAE) are applied in this paper. Both
of them assess the forecast accuracy by comparing the forecast
value and the actual value, and smaller MAPE and NMAE
indicate better forecast results. These two evaluation measures
are defined, respectively, as follows:

MAPE =
1

N

N∑
i=1

|yi − ŷi|
yi

× 100% (18)

NMAE =
1

N

N∑
i=1

|yi − ŷi|
Pinst

× 100% (19)

where N is the size of the forecast set, yi denotes the actual
value, ŷi stands for the forecast value, and Pinst is the maximal
value of the historical data.

C. Models employed for comparison

For the purpose of comparing the forecast results, simulation
studies are conducted with the Per., BPNN, and SVR models.

The Per. model takes the last measured value as the forecast
one. Since its apparent simplicity, the Per. model is usually used
as a benchmark for reference. However, its mechanism is non-
intelligent. Due to high complexity of the load characteristics,
the Per. model is not applicable in practical application in fact.

The BPNN model has been widely used in machine learning
and shows good performance in the field of forecast [18]. But
the forecast accuracy and stability relies on large amount of
data to a great extent.

The SVR model is also widely used in prediction and
performs well in many cases. However, the process of searching
for the optimal parameters is very time consuming [19], which
limits its application especially in short-term forecast.

These three models are mature and recognised by the
researchers. Therefore, they are employed in this paper for
comparison. Besides, in order to test the effect of the proposed
filter, simulation studies are also conducted in comparison with
the SVRLP model. The SVRLP model combines the SVR with
LP, which improves the forecast speed greatly. However, the
nearest neighbors selected by the SVRLP model are original
data without filtering out the stochastic component. As a result,
the nearest neighbours in the SVRLP model may not have such
high similarity as those in the MFLP model.

D. Experimental results and discussion

Simulation studies are carried out in Set 1. The huge amount
size of data in Set 1 covers five years which ensures the
prediction covers almost all the local situations and increases
the persuasiveness of the model. The prediction results of 4-
step ahead are shown in Fig. 4, where the forecast curve
is almost superposing with the actual curve, indicating an
excellent forecast performance. For the purpose of estimating
the stability of the forecast model in multi-step, simulations
are conducted among the Per., BPNN, SVR, SVRLP and
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TABLE I: PERFORMANCE EVALUATION OF FORECAST MODELS ON SET 1 (%)

Methods 1-step ahead 4-step ahead 12-step ahead 20-step ahead
MAPE(%) NMAE(%) MAPE(%) NMAE(%) MAPE(%) NMAE(%) MAPE(%) NMAE(%)

MFLPW 0.3930 0.3877 0.8271 0.6591 1.9490 1.7026 2.8469 2.4105
MFLP 0.4091 0.3971 0.8330 0.7719 2.2455 1.8510 2.8868 2.4149
SVRLP 0.5564 0.4059 1.2248 0.8796 2.9226 2.0595 3.2196 2.3908

SVR 0.6743 0.4198 2.1225 1.2924 4.0062 2.4897 5.0201 3.1457
BP 0.8210 0.5092 2.9284 1.7889 6.1456 3.8438 6.4763 4.0937
Per. 2.4825 1.6313 4.0176 3.9775 9.0176 7.2657 15.1963 9.2259

TABLE II: PERFORMANCE EVALUATION OF FORECAST MODELS ON SET 2 (%)

Methods 1-step ahead 4-step ahead 12-step ahead 20-step ahead
MAPE(%) NMAE(%) MAPE(%) NMAE(%) MAPE(%) NMAE(%) MAPE(%) NMAE(%)

MFLP 0.3415 0.4083 0.5120 0.6051 1.0661 1.2632 1.6022 1.8935
SVRLP 0.4769 0.5555 0.7703 0.8995 1.7572 2.0335 2.6231 2.9917

SVR 0.6861 0.4008 2.3078 1.3362 4.9821 2.8827 6.4454 3.7135
BP 0.6564 0.3901 1.8566 1.1127 4.5957 2.6869 6.1818 3.5473
Per. 1.1022 0.7853 3.6441 2.6061 9.2916 6.5953 13.1400 9.2421
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Fig. 4: Prediction results of the MFLP model (4-step ahead) on
Set 2

MFLP models. In addition, simulations are conducted on the
multi-variable inputs MFLP model which considers weather
conditions, called MFLPW in this paper. The experimental
results are illustrated in Fig. 5 and Fig. 6. Part of MAPEs and
NMAEs of the Per. model are not shown. As shown in the
figures, the slope of the MAPE and NMAE curves reflects the
performance of the models under an increasing forecast step. A
smaller slope means that although the forecast step is larger, the
accuracy of the forecast model is not degraded much; whereas a
higher slope implies that the forecast error rises as the forecast
step increases. The slope of both MAPEs and NMAEs of the
SVRLP, MFLP and MFLPW models are smaller than that of the
Per., BPNN and SVR models in all multi-step cases, indicating
that the LP is effective in improving conventional models. At
the same time, it is obviously verified that the proposed filter
has a positive impact because the performance of MFLP model
is better than the SVRLP model. Furthermore, the MAPEs
and NMAEs of the MFLPW model are the smallest among
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Fig. 5: The MAPEs of the four models on Set 1
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Fig. 6: The NMAEs of the four models on Set 1

all the models. Thus, the weather condition considered method
improves the forecast performance of MFLP exactly.

Fig. 7 shows the MAPEs of different models in forecasting
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Fig. 7: The monthly MAPE comparison among the Per., BP,
SVR, SVRLP and MFLP models (1-step ahead) on Set 2

the load of several typical months. As can be seen in the
figure, the MAPEs of all the models are stable in these months
while MFLP sustains the lowest level which means the best
performance among the five models in all the months covering
the whole year.

Simulation studies are conducted on the two data sets respec-
tively to verify the performance of MFLP with the results listed
in Table I and Table II. Table I also includes the simulation
results of the MFLPW model. As can be seen from both Table
I and Table II, the MFLP model is superior no matter how long
the forecast step is. In addition, results of the SVRLP model
are not as good as those of the MFLP model, which illustrates
that the morphological filter employed played a positive effect.
Furthermore, as shown in Table I, the forecast results of the
MFLPW model is the best among all the models, which
shows that the consideration of weather conditions improves
the forecast accuracy.

V. CONCLUSION

A forecast model named MFLP has been built in this paper,
which is used to forecast the short-term load. A morphological
filter is constructed to process the original load data, in order
to filter out the stochastic component and reserve the charac-
teristics of the original data. This treatment does great help
to the subsequent work. The model combines the traditional
SVR with the LP. The LP embeds the data into high dimension
and converts the original time series into the phase space.
The training samples, which is a set of nearest neighbours
to the forecast sample, are selected by the LP with minimal
Euclidean distance, which has increased the forecast accuracy
and speed. In addition, weather condition is considered in this
paper, as the characteristics of the load are related closely
to this information. By doing so, the forecast accuracy has
improved greatly. The simulation studies carried out on two
sets of data have demonstrated that the proposed model shows
better performance than other traditional models under up to
20-step ahead conditions.
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