
IDE Plugins for Detecting Input-Validation Vulnerabilities

Aniqua Z. Baset

University of Utah
aniqua@cs.utah.edu

Tamara Denning

University of Utah
tdenning@cs.utah.edu

Abstract—Many vulnerabilities in products and systems
could be avoided if better secure coding practices were in place.
There exist a number of Integrated Development Environment
(IDE) plugins which help developers check for security flaws
while they code. In this work, we present a review of these
plugins. We specifically focus on the plugins that detect input-
validation-related vulnerabilities. We list salient features such
as their supported IDEs, applicable languages and specific
types of vulnerability checks. We believe this work synthesizes
information useful for future research on IDE plugins for
detecting input-validation-related vulnerabilities.

I. INTRODUCTION

Many vulnerabilities in today’s systems and applications

result from common, well-documented coding errors. The

most common form of such vulnerabilities arise when

developers do not validate inputs from external entities

(e.g., human user, computer or network component) before

use, allowing adversaries to construct malicious inputs to

compromise the system or application. It is possible to detect

these types of vulnerabilities during software development.
Both static and dynamic analysis tools have been devel-

oped to detect security flaws in code (e.g., [1], [2], [3], [4]).

These tools normally come with their own command-line

or graphical interfaces to run analyses and display results.

This requires developers to move back and forth between

their coding environment (e.g., IDE) where they program,

and the tool’s interface, where they separately check for

security problems. This overhead oftentimes contributes to

lower adoption of security tools [5]. In recent years static

analysis for security has become available via IDE plugins,

providing a more seamless experience. These plugins allow

developers to check security flaws in their code from within

their IDE, since they present their results in the IDE like

regular compiler errors. This in-situ security analysis and

feedback can help developers detect flaws in the earlier

stages of software development.
In this work we synthesize information on IDE plugins

that provide security functionality. We specifically focus

on plugins that provide support for input-validation-related

vulnerabilities, namely: Improper input validation (CWE1

20), Command injection (CWE 77), OS Command injection

(CWE 78), Cross-site scripting (CWE 79), SQL injection

1Common Weakness Enumeration (CWE) is a listing of software weak-
nesses and vulnerability types [6].

(CWE 89), LDAP injection (CWE 90), XML injection

(CWE 91), Unsafe reflection (CWE 470), and XPath in-

jection (CWE 643). We intentionally approach our data

collection from the perspective of a developer, which we

believe allows us to better understand the obstacles faced by

a security-conscious developer. We find that there is a lack

of information on these plugins about specific vulnerability

checks and detection accuracy, which may contribute to

lower adoption among developers. We believe that this paper

lays the groundwork for future research in this area by

synthesizing the information necessary to orient researchers

choosing to tackle this underexplored space.

II. IDE PLUGINS FOR INPUT VALIDATION

We gathered security plugin information in four ways.

First, we searched the plugin lists and marketplaces for four

of the most prominent IDEs: Eclipse, IntelliJ IDEA, Visual

Studio, and Netbeans IDEs. Second, we looked for plugins

in forum discussions like StackExchange. Third, we checked

lists of static security analysis tools (e.g., [29], [30]) to deter-

mine whether any of them have support for IDE integration.

Fourth, we searched for security plugins developed in the

academic literature. Finally, we checked the vulnerability

documentation of each found plugin to determine whether

it checks for input-validation-related vulnerabilities in code.
We list the available IDE security plugins in Table I.

We exclude some IDE plugins from our list that do not

present results within the IDE. For example, the Eclipse

plugin for Coverity uploads the code to a server; once the

server-side analysis is complete the result is presented via

the developer’s online account. In contrast, we do include

Checkmarx CxSAST, Fortify, and Veracode: while the anal-

ysis is performed on a server, the results are presented in

the IDE similar to the other listed plugins. We also exclude

Cppcheclipse [31] from our list since it does not support the

input-validation-related vulnerabilities that we are interested

in for this work. However, we include some plugins (e.g.,

Codepro AnalytiX, SensioLabsInsight, SSVChecker) that do

not have a full list of vulnerability checks publicly available,

as they might have support for input vulnerabilities. We also

exclude Contrast since the Eclipse plugin version of it has

been discontinued [32].

Supported IDEs and Platforms. As evident from Table I,

security plugins are available for most mainstream IDEs and

2017 IEEE Symposium on Security and Privacy Workshops

© 2017, Aniqua Z. Baset. Under license to IEEE.

DOI 10.1109/SPW.2017.37

143

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 05,2024 at 06:04:47 UTC from IEEE Xplore. Restrictions apply.

Table I: IDE plugins available for security checks
Plugin IDE Language and/or Platform Availability Source Introduced Last update

Android Lint [7] AS, Eclipse Java, XML, Android Free Open — —

ASIDE [8], [9] Eclipse Java, PHP Free Open Feb’13 Sept’14

CodeDX* [10] Eclipse, VS Java, .NET, Android Commercial Closed Jan’15 Feb/Mar’16

Codepro AnalytiX [11] Eclipse Java, JSP, XML Free — Feb’05 Oct’10

Checkmarx CxSAST§ [12] Eclipse, VS, IntelliJ Java, .NET, Python, Ruby, C/C++, C#, JS Commercial Closed — —

ESVD [13], [14] Eclipse Java Free Closed July14 Nov’16

Findbugs [15] Eclipse, NB, IntelliJ, AS Java, Android Free Open — —

Fortify [16] Eclipse, VS C/C++, Java, .NET, PHP, JS, Python Commercial Closed — Feb/Mar’17

FxCop [17] VS .NET Free Closed — —

Goanna Studio [18] Eclipse, VS C/C++ Commercial Closed — —

Klocwork Insight‡ [19] Eclipse, IntelliJ, VS Java, C/C++, C# Commercial Closed — —

LAPSE+ [20], [21] Eclipse Java Free Open Mar’11 Mar’11

SecureAssist [22] Eclipse, VS, IntelliJ Java, PHP, .NET Commercial — — —

SensioLabsInsight [23] PHPStorm PHP Both Closed Oct’14 Jan’17

SonarLint [24] Eclipse, VS, IntelliJ Java, JS, PHP, .NET, Python Free Open Oct’15 Feb’17

SSVChecker* [25], [26] Eclipse C/C++, Python, PHP Free Closed May’10 Nov’16

Veracode [27] Eclipse, VS, IntelliJ Java, C/C++, C#, .NET, Python, Ruby, JS,
PHP, Android

Commercial Closed — Feb’17

VS = Visual Studio, IntelliJ = IntelliJ IDEA, NB = NetBeans, AS = Android Studio, JS = JavaScript
*Runs multiple analysis tools and present the combined results, §Previous version: CxSuite, ‡Previous version: Klocwork Solo
ASIDE, ESVD, LAPSE+, and SSVChecker are academic. The standalone version of Findbugs is also from academic work [28].

languages/platforms, with the partial exception of Ruby and

Android. We find only two plugins for Ruby (Checkmarx

CxSAST, Veracode) and among all the plugins only Lint and

FindBugs are available for Android Studio. We failed to find

plugins for text-based editors such as Vim and Sublime.

Developer Experience. After installing a plugin, developers

can initiate the security analysis by clicking on the compile

(or similar) button. Much like regular compiler errors and

warnings, these plugins display a list of identified flaws in

an informational pane as well as indicate problematic code

lines with markers in the code editor pane. This just-in-place
reporting style is familiar to developers and allows them to

make required changes in the code while viewing their result.
We have observed differences in quality and thorough-

ness in analysis reporting among plugins (as presented in

Table II). Some plugins provide details in their report such as

possible attacks, how the problem in code can lead to those

attacks, examples of vulnerable and secure code, and risk

ratings. Other plugins only mention the name of the possible

attack or provide brief description of the attack. Besides

pointing out the problem areas, some plugins also suggest

possible mitigation strategies. However, in most cases these

detailed reporting techniques serve to educate the developer

on the identified attack and are not quick fixes specific to the

code. To provide flexibility, some plugins also allow users to

temporarily turn off particular warnings or to select/unselect

specific vulnerability checks. Prior research suggests that

such customization options make plugins more usable [5].

Documentation and Available Information. In Table III

we include references to documentation on the supported

vulnerability checks, categorized by the level of available

Table II: Feedback styles
Plugin Vuln. description Mitigation Other options

Android Lint Short — Auto run when build,
Select/unselect checks,
Suppress warnings

ASIDE Detailed Quick fixes —

CodeDX Short — Suppress warnings

Codepro AnalytiX Detailed Quick fixes —

Checkmarx Detailed — Data flow viewer

ESVD Just vuln. name — —

FxCop Short General Suppress warnings

Findbugs Detailed — —

Fortify Detailed General —

Goanna Studio Detailed General Select/unselect checks,
Suppress warnings

Klocwork Insight Detailed General —

LAPSE+ Just vuln. name — —

SecureAssist Detailed General —

SensioLabsInsight Short — —

SonarLint Short — —

SSVChecker Short — Suppress warnings

Veracode Detailed General —

Note: all the plugins show risk rating for detected vulnerabili-
ties except Android Lint and LAPSE+

information. As can be seen from the table, the full lists

of vulnerability checks are not publicly available for several

plugins, making it harder for interested developers to com-

pare and choose which plugin to use. We find that none of

the plugins provides information about detection accuracy2.

2Contrast reports its results against OWASP benchmarks [33] but we
excluded it from our study since the plugin version of it has been
discontinued.

144

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 05,2024 at 06:04:47 UTC from IEEE Xplore. Restrictions apply.

Table III: Vulnerability check documentation
Documentation type Plugins

List of the checked vulnerability
names or potential attack names,
e.g., SQL injection, Cross-site
scripting, etc.

ASIDE [9], ESVD [13], Klocwork
Insight [34], LAPSE+ [20],
Checkmarx‡ [35], SecureAssist‡ [36]

List of checked rules, i.e., the
patterns that the plugins check for
to determine potential vulnerabil-
ities§

Android Lint [37], SonarLint* [38]
(categorized by supported languages),
SensioLabsInsight [39]‡, FxCop [40],
Findbugs* [41], Goanna Studio* [42]

List of supported analysis tools
that are used for the checks. No
combined vulnerability checklist
available

SSVChecker [26], CodeDX [43]

No list of checked vulnerabilities
or rules is available

Codepro AnalytiX, Fortify, Veracode

‡Full list is not available, only some examples
*With mappings to CWE, CVE entries
§For example: Android Lint lists ‘addJavascriptInterface called’
as a rule to flag potential unsafe reflection. FxCop uses the
‘CA2100: ReviewSqlQueriesForSecurityVulnerabilities’ rule to
flag possible SQL injection attacks when a method sets the
IDbCommand.CommandText property using a string that is built
from a string argument to the method.

Table IV: Input-validation related vulnerability checks

Vulnerability checks CWE A
n
d
ro

id
L

in
t

A
S

ID
E

C
h
ec

k
m

ar
x

E
S

V
D

F
in

d
b
u
g
s

F
o
rt

if
y

F
x
C

o
p

G
o
an

n
a

S
tu

d
io

K
lo

cw
o
rk

In
si

g
h
t

L
A

P
S

E
+

S
ec

u
re

A
ss

is
t

S
o
n
ar

L
in

t

V
er

ac
o
d
e

Improper input validation 20 - � - - � - - - - - - - -

Command injection 77 - - � � � - - � - � - - -

OS Command Injection 78 - - � - � - - � - - - - -

Cross-site Scripting 79 - - � � � � � - � � - - -

SQL Injection 89 - - � � � � � - � � � � �
LDAP injection 90 - - � � � - - - - � � - -

XML injection 91 - - - - - - - - - � - - -

Unsafe Reflection 470 � - - � - - - - - - - - -

XPath injection 643 - - � � � - - - - � � - -

Vulnerability Checks. Table IV presents the input-

validation-related vulnerabilities and corresponding plugins

that support such checks. Some plugins are not present in

Table IV because their vulnerability checking list is not pub-

licly available (e.g., Codepro AnalytiX, SensioLabsInsight).
As evident from Table IV, most of the plugins check for

the most common input validation vulnerabilities for web

applications: SQL injection and cross-site scripting attacks.

No plugin appears to check for all the 9 vulnerabilities that

we were interested in. Only three plugins (ESVD, Findbugs,

and LAPSE+) check for 6 or more of the vulnerabilities.

Our analysis of the vulnerability coverage offered by plugins

is based on their own descriptions; we did not run an

independent verification. While there are disadvantages to

not independently verifying the plugins, the information that
we are using is the same information that a developer or
member of the public would have when deciding whether to

use a plugin.

Plugin Uptake. Among the plugin listings we encountered

for different IDEs, only the Eclipse marketplace reports

on number of installations. Table V shows a summary of

Eclipse’s install statistics sorted by rank (as collected on

3/30/2017).3 It is to be noted that there are total 1285 ranked

plugins in the Eclipse marketplace.

Table V: Installation statistics of Eclipse security plugins
Plugins Findbugs SonarLint ESVD SSVChecker Codepro

Installs 443600 114551 1355 923 69

Rank 13 28 577 652 1038

As can be seen from Table V, Findbugs has very high

installation numbers and is ranked #13 in the Eclipse mar-

ketplace in terms of installation numbers. We posit that this

high popularity is due to the variety of features it offers

beyond input-related vulnerability checking. Considering the

installation numbers and their ranks in the marketplace, other

plugins do not seem as popular as security researchers might

hope.
Although the IDEs list available plugins under different

categories, only Visual Studio has a security-specific cate-

gory (primarily intended for code obfuscation and managing

group code access in an organizational setting). As for other

IDEs, the absence of any security category is not due to

having too few categories (Eclipse=51, IntelliJ IDEA=50,

Netbeans=24); they have more categories than that of Visual

Studio (22).

III. DISCUSSION

As evident from previous studies on security tools, it is

cumbersome and demotivating for developers to evaluate

different tools on their own [44]. This problem should

also hold for the security plugins: not all plugins provide

much detail about their checking capabilities (see Table III).

It is important that more information be made available

about these plugins (be that by manufacturer or independent

researchers) such as: the accuracy of their vulnerability

checks—what percentage of the detected vulnerabilities are

true positives, what percentage of vulnerabilities are false

negatives—incurred overheads, initial setup complexity, and

similar. One place to start with collecting such statistics

in a consistent manner would be to make use of existing

benchmark suits (e.g, OWASP benchmark4).
As described earlier, different plugins take different ap-

proaches to feedback. It is inevitable that these varying

styles will impact developers differently. Further research

is needed on the effectiveness of different feedback styles

3Some of the plugins we found that support Eclipse are not available via
the marketplace, and thus installation numbers are not available.

4The Open Web Application Security Project (OWASP) is a non-profit
organization that works for the improvement of web application security.
It has developed a “benchmark” project for evaluating the speed, coverage,
and accuracy of tools that check web application-related vulnerabilities [33].

145

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 05,2024 at 06:04:47 UTC from IEEE Xplore. Restrictions apply.

among different developer populations. It is also unclear if

and how security feedback should be different from other

forms of source code-related feedback.

IV. CONCLUSION

IDE plugins that check for input-validation vulnerabilities

can help increase the security of code. Overall, there is a low

adoption rate of security plugins. We have generally found

a lack of information available about the checks performed

by these plugins. In addition to more complete information,

we would like for security benchmarking information to

be made available for each plugin so that the developer

and security communities at large can better evaluate such

plugins.

REFERENCES

[1] “Coverity: Static code analysis. https://www.synopsys.com/
software-integrity/products/static-code-analysis.html#.”

[2] “Cppcheck. http://cppcheck.sourceforge.net/.”

[3] “Purifyplus. http://teamblue.unicomsi.com/products/
purifyplus/.”

[4] “Valgrind. http://valgrind.org/.”

[5] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge,
“Why don’t software developers use static analysis tools
to find bugs?” in Software Engineering (ICSE), 2013 35th
International Conference on. IEEE, 2013, pp. 672–681.

[6] “Cwe. https://cwe.mitre.org/.”

[7] “Lint. https://developer.android.com/studio/write/lint.html.”

[8] “Aside. https://www.owasp.org/index.php/OWASP\ ASIDE\
Project.”

[9] J. Xie, B. Chu, H. R. Lipford, and J. T. Melton, “Aside:
Ide support for web application security,” in Proceedings of
the 27th Annual Computer Security Applications Conference.
ACM, 2011, pp. 267–276.

[10] “Codedx. http://codedx.com/ide-integration-helps-
developers-adopt-application-security-testing-tools/.”

[11] “Codeproanalytix. https://developers.google.com/java-dev-
tools/codepro/doc/.”

[12] “Checkmark cxsast. https://www.checkmarx.com/technology/
static-code-analysis-sca/.”

[13] “Esvd. https://marketplace.eclipse.org/content/early-security-
vulnerability-detector-esvd.”

[14] L. S. M. de Souza, “Early vulnerability detection
for supporting secure programming,” Master’s
thesis, Departamento de Informtica, Pontifcia
Universidade Catlica do Rio de Janeiro, 2015.
[Online]. Available: http://thecodemaster.net/wp-
content/uploads/2015/06/early-vulnerability-detection-
for-supporting-secure-programming.pdf

[15] “Findbugs. https://androidbycode.wordpress.com/2015/02/
13/static-code-analysis-automation-using-findbugs-android-
studio/.”

[16] “Fortify. https://marketplace.eclipse.org/content/hpe-security-
fortify-demand-plugin.”

[17] “Fxcop. https://msdn.microsoft.com/en-us/library/
bb429476(v=vs.80).aspx.”

[18] “Goanna studio. https://marketplace.eclipse.org/content/
goanna-studio-static-analysis-cc.”

[19] “Klockwork. http://www.klocwork.com/products-
services/klocwork/static-code-analysis.”

[20] “Lapse+. https://code.google.com/p/lapse-plus/.”

[21] P. M. Pérez, J. Filipiak, and J. M. Sierra, “Lapse+ static
analysis security software: Vulnerabilities detection in java ee
applications,” in Future Information Technology. Springer,
2011, pp. 148–156.

[22] “Secureassist. https://www.cigital.com/resources/datasheets/
secureassist-datasheet/.”

[23] “Sensiolabsinsight. https://plugins.jetbrains.com/plugin/7589?
pr=.”

[24] “sonarlint. http://www.sonarlint.org/eclipse/index.html.”

[25] “Ssv checker. https://marketplace.eclipse.org/content/
ssvchecker.”

[26] J. Dehlinger, Q. Feng, and L. Hu, “Ssvchecker: unifying static
security vulnerability detection tools in an eclipse plug-in,”
in Proceedings of the 2006 OOPSLA workshop on eclipse
technology eXchange. ACM, 2006, pp. 30–34.

[27] “Veracode. https://www.veracode.com/.”

[28] “Findbugs. http://findbugs.sourceforge.net/.”

[29] “List of tools for static code analysis. https://en.wikipedia.
org/wiki/List of tools for static code analysi.”

[30] “Owasp: Static code analysis. https://www.owasp.org/index.
php/Static Code Analysis.”

[31] “Cppcheclipse. https://marketplace.eclipse.org/content/
cppcheclipse.”

[32] “Contrast. https://marketplace.eclipse.org/content/contrast-
eclipse.”

[33] “Owasp benchmark project. https://www.owasp.org/index.
php/Benchmark.”

[34] “Klockwork: Application security. http://www.klocwork.com/
products-services/klocwork/application-security.”

[35] “Checkmarx: Vulnerability coverage. https://www.checkmarx.
com/technology/vulnerability-coverage/.”

[36] “Secureassist 3.0. https://codiscope.com/deeper-reporting-
broader-compatibility-with-secureassist-3-0/.”

[37] “Android lint checks. http://tools.android.com/tips/lint-
checks.”

[38] “Sonarlint: List of rules. http://www.sonarlint.org/intellij/
rules/index.html#version=2.8.”

[39] “Sensiolabsinsight: What we analyze. https://insight.
sensiolabs.com/what-we-analyse.”

[40] “Security warnings. https://msdn.microsoft.com/en-us/library/
ms182296%28v=vs.140%29.aspx.”

[41] “Find security bugs: Bug patterns. http://find-sec-bugs.github.
io/bugs.htm.”

[42] “Goanna 3.6.4 standards data sheet for cwe. http://archive.
redlizards.com/docs/cwe-datasheet.pdf.”

[43] “Supported application security testing tools and languages.
http://codedx.com/supported-tools/.”

[44] J. Witschey, S. Xiao, and E. Murphy-Hill, “Technical and
personal factors influencing developers’ adoption of security
tools,” in Proceedings of the 2014 ACM Workshop on Security
Information Workers. ACM, 2014, pp. 23–26.

146

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 05,2024 at 06:04:47 UTC from IEEE Xplore. Restrictions apply.

