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Abstract—The efficient management (placement and orienta-
tion) of security cameras within a floor plan is a well-known and
difficult problem that has gained attention recently. The objective
is to locate the minimum number of cameras in the space to
ensure all walls are within the view of at least one camera.
Heuristic-based approaches have been developed for this NP-
hard problem; unfortunately, most are only applicable to static
situations. In modern applications, surveillance management
must be resilient, and adapt if the environment changes.

This paper introduces evolutionary-based approaches for ac-
tive surveillance camera management. Using an evolutionary-
based approach, a surveillance configuration (camera locations
and orientations) is encoded as a chromosome and evolutionary
processes are applied to identify better solutions over successive
generations. The approach has the ability to identify efficient
surveillance configurations (minimum number of cameras with
maximum coverage); however, another advantage is the ability
to adapt if the environment unexpectedly changes. Simulation re-
sults demonstrate this type of approach can manage surveillance
cameras under dynamic conditions such as camera loss and the
introduction obstacles better than traditional search methods.

Index Terms—surveillance systems; security; cameras; re-
siliency; art gallery problem; genetic algorithm;

I. INTRODUCTION

The availability of low cost cameras and the growing

demand for surveillance applications has renewed the interest

in how to best manage camera-based surveillance systems [9].

For example surveillance systems can be used to improve

the security of an industrial complex or to detect accidents

within a manufacturing site [9]. Given the low cost of cameras

there are possibly thousands of cameras available at a site;

however, only a small set of cameras is actually needed to view

(cover) the locations of interest. The management objective

is to maximize the coverage (ensure locations of interest are

under surveillance) while minimizing the number of cameras

in use. Coverage is important to achieve the operational goal

of the system (e.g. deter crime), while minimizing the number

of cameras reduces energy consumption, which is especially

important if batteries are in use.

The problem of determining the location and orientation

of cameras to cover a polygon space was first introduced by

Victor Klee in 1973 [8]. This original problem was known

as the Art Gallery Problem (AGP) and sought to locate

guards (cameras) in an art gallery such that every interior

wall was observed by at least one guard. Algorithms exist

to identify camera locations and orientations (cameras are

typically located at the polygon interior vertices); however,

finding the minimum number of cameras to provide coverage

has been proven to be NP-hard [7]. Since AGP was origi-

nally introduced, several variations of the problem have been

proposed. Most are equally as difficult as the original, but

are perhaps more applicable to a realistic situation. Given the

proven difficulty of AGP, several heuristic-based approaches

have been proposed. For example in [1], the floor plan, which

is know in advance, is partitioned into smaller polygons

and cameras are located within these smaller pieces. While

many of these approaches provide good solutions to AGP-

type problems, most assume the environment is static. In more

modern application, it is expected that cameras will be added

or removed for various reasons (e.g. unexpected failures).

In addition, obstacles may appear and disappear at random

times (e.g. cart moving through a warehouse). As a result,

these approaches must recalculate solutions based on the new

environment, which may be computationally expensive.

This paper investigates the use of evolutionary algorithms

for managing cameras within a polygon space. An evolution-

ary approach can identify good solutions and adapt if the

environment changes. Assume a set of cameras is located,

perhaps randomly, within a polygon space. The location of

each camera is fixed, but each can swivel 360 degrees to point

towards any direction. Therefore this AGP variation seeks to

determine the minimum set of cameras to use (turn on or off)

and their orientation (swivel position) to maximize the wall

cover. The approach encodes the on/off and swivel for each

camera as a chromosome, then applies a series of evolutionary

processes to find better solutions over successive generations

(iterations). Simulation results with 40-sided polygons show

the approach can identify good solutions under static and

dynamic conditions. The continual searching nature of the

approach allows the identification of good solutions if cameras

are added or removed, as well as if obstacles are introduced

in the space.

The remainder of this paper is structured as follows. Section

II discusses surveillance management problems and the spe-

cific problem variation addressed in this paper. Evolutionary

algorithms, fitness, and processes are reviewed in Section III.

Simulation results of dynamic surveillance environments are
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discussed in Section IV, while Section V reviews the paper

and discusses some future areas of research.

II. SURVEILLANCE MANAGEMENT

Surveillance management seeks to identify the location and

orientation of cameras within a space such that all inter-

ested/targeted areas within that space are always observed by

at least one camera. As described in the Introduction, this is

similar to the Art Gallery Problem (AGP) which sought to

place guards within a floor of a museum to ensure all walls

are watched. The objective, which can be difficult to achieve, is

to find the minimum number of cameras required for coverage

(observe the targeted areas). The number of cameras that is

always sufficient has been loosely bounded; however, this is

not necessarily the minimum number [8].

For this paper, assume the polygonal space is initially

populated with cameras, where each camera has the same

view angle α. The camera locations can determined via an

algorithm (based on a grid layout) or be random within the

space as done with smart dust devices [3]. Although the

camera locations are predetermined, every camera has the

ability to swivel 360 degrees about their location. Let the

specific orientation angle for camera i will be βi. Furthermore,

each camera has a binary activation state ai that indicates if the
camera is turned on or off; therefore, each camera i has two

configuration settings (ai, βi). A surveillance configuration

s is then a list of camera settings, one per camera, within

the polygon space. In the example given in Figure 1, the

surveillance configuration for the three cameras A, B, and

C would be s = {(1, βA), (0, βB), (1, βC)}. Note camera B
is not activated in this example.

A. Surveillance Objectives

The objective of this problem is to find surveillance config-

urations that maximizes the wall coverage using the minimum

number of cameras, and as a result is considered a multi-

objective problem [2]. The management approach must deter-

mine which cameras to activate (ai state) and their orientations

(βi angle). This problem is similar to the AGP variant called

the Floodlight Set Problem (FSP) [8], where floodlights are

positioned to ensure the maximum wall space is covered. The

additional requirement for proper surveillance management

considered in this paper is to constantly maintain maximum

coverage using the minimum cameras as the environment

changes.

As described in the Introduction, a surveillance management

approach must content with the loss or addition of cameras.

The loss could be the result of battery outages or network

disruption, while an addition could be the installation of

cameras to improve coverage or to provide redundancy. The

other environment change is the introduction of obstacles

(an m-sided polygon) within the space. An obstacle can be

considered a hole, which means the obstacle itself is not to be

monitored. For this paper the obstacle must also be covered

along with the walls of the space. As with the addition and

removal of cameras, a camera management approach must

C
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Fig. 1. Example 6-sided polygon floor space with three cameras (labeled
A, B, and C). Each camera has the same view angle α and an individual
orientation (swivel) angle βi. In this example cameras A and C are activated
(turned-on), while camera B is not activated (turned-off).

contend with the introduction and removal of obstacles over

time.

III. AN EVOLUTIONARY APPROACH TO SURVEILLANCE

MANAGEMENT

Identifying good surveillance configurations (camera activa-

tions and orientations) can be considered a search problem that

attempts to locate configurations that maximize coverage with

the smallest number of cameras. Given the size and complexity

of the search space, search heuristics, such as Evolutionary

Algorithms (EAs), are often used for this type of problem.

In addition, EAs have the benefit of constantly searching for

solutions. This search characteristic is helpful for problems

where the search space may dynamically change [6].

EAs naively mimic evolution to find better (more fit) surveil-

lance configurations by discovering, recombining, and altering

portions of current configurations to generate new ones. This

is achieved by maintaining a set of solutions (referred to as

a pool) rather than a single solution. Before an EA can be

applied surveillance management, a genetic representation of

the problem domain, methods of determining feasibility, an

understanding of configuration fitness, and the design of EA

operators must be carefully addressed.

A. Camera Configurations and Fitness

EAs represent potential solutions as a chromosome consist-

ing of multiple traits, or parts of the solution. As described

in Section II, each camera has two settings (ai, βi). The first

setting is a binary value indicating if the camera is active or

inactive (or or off) and the second is the orientation angle. A

surveillance configuration s is then a list of camera settings,

one per camera. Using the chromosome representation, the

settings for a specific camera are a trait or gene, while the

surveillance configuration is a chromosome.

A measure of fitness is also important for evolutionary

algorithms to ensure fitter chromosomes are more likely to

survive and influence the next generation. For surveillance

management, the fitness of a chromosome (surveillance con-

figuration) is multi-objective since the approach seeks the

maximum coverage using the fewest cameras [8]. Several
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Fig. 2. Flow chart of the tasks used for identifying surveillance configurations. Tasks within the outermost dashed box create a new chromosome pool (p or
p∗) per generation, while tasks within the innermost dashed-dotted box create one configuration (s).

approaches exist for measuring the goodness of multi-objective

problems, for example the simplest and perhaps most widely

used approach is the weighted sum method. This approach

scalarizes the objectives into a single objective by multiplying

each objective with a specified weight. This is more easily

done if the objectives are all maximizations or minimiza-

tions [5]. Therefore the surveillance problem objectives would

become maximizing coverage while maximizing the number

of cameras not in use. Weights are chosen in proportion to the

relative importance of each objective. An issue with weighted

sum is that not all multi-objective problems can be easily

scaled (no clear trade-off for improving one objective at the

expense of an other). Therefore problems can occur if the opti-

mal solution distribution is not uniform and optimal solutions

in non-convex regions are not detected [5]. These issues were

observed in surveillance management using simulation.

An alternative multi-objective fitness measure is based on

the Pareto Front. Essentially, a solution (chromosome or

surveillance configuration) is said to be strictly Pareto optimal

for a multi-objective problem if it is not dominated by all

other solutions (currently considered) [5]. A surveillance con-

figuration si said to dominate the other solution sj , if both the

following conditions are true. First, the solution si is no worse

than sj in all objectives. Second, the solution si is strictly

better than sj . All the points that are not dominated by any

other points in the space together form the Pareto Front in the

current space. The points in the front are then removed and

the front of the rest of the points can be found. Using this

approach, solutions in one generation can be separated into

different levels.

For example, consider five different surveillance config-

urations for the same polygonal space. Each configuration

has two performance measures, the coverage percentage and

the percentage of inactive cameras. Recall the objective is to

maximize both percentages. Assume the performance values
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Fig. 3. Example Pareto ranking of five different surveillance configurations.
Better performance occurs with higher coverage and inactive cameras per-
centages. The first group performs the best, second is second best, and the
third group ranks the worst.

for the surveillance configurations are (80%, 50%), (65%,

10%), (75%, 30%), (85%, 40%), and (70%, 40%), where

the first number is the coverage percentage and the second

is the percentage of inactive cameras. For this example the

Pareto rankings are depicted in Figure 3, where configurations

closer to the upper righthand corner are considered better. The

first level contains (80%, 50%) and (85%, 40%) as there are

no other solutions that are strictly better than either (having,

better coverage with more inactive cameras). The solutions

in the second level are (75%, 30%) and (70%, 40%) since

both of them are dominated by the configurations in the first

level. The last level (worst surveillance configuration) is (65%,

10%). These rankings can then be used to identify better

configurations.
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For this application, a combination of weighted sum and

Pareto ranking was used to determine the fitness of config-

urations (chromosomes). A variation of the weighted sum

method, which can change based on the objectives, was

used to compute an initial fitness value per configuration.

The average distance between Pareto levels, which contains

the least wanted solutions, was then used to create relative

weights. The weight for each level was then multiplied with

the initial fitness value to create the final fitness. As a result,

solutions are clustered by similar within-level fitness values

and different between-group fitness values.

B. Evolutionary Processes

As mentioned at the beginning of this section, an EA

progresses by updating, and hopefully improving, a set of

solutions called the chromosome pool. A new pool of surveil-

lance configurations is created for each generation based on the

previous generation using a series of reproduction, recombina-

tion, and mutation processes (mimicking processes observed

in nature) [4]. The set of task used to find surveillance

configurations is depicted in Figure 2.

Consider generating one new surveillance configuration that

would initially contain an empty activation state and orienta-

tion angle per camera. For each camera in the new configu-

ration, a configuration is selected from the current pool. This

is done using roulette selection, where the fitness level of the

chromosome is used to associate a probability of selection. In

this case weights are assigned so more fit (higher performing)

configurations will be more likely selected. The corresponding

camera settings in the selected configuration are then copied

to the new configuration. This type of selection also incor-

porates the second evolutionary process call recombination

(also known as crossover in the Genetic Algorithm literature).

Recombination combines portions of existing configurations

to create a new configuration. Traditional recombination only

occurs with two selected chromosomes; however, the process

used in this paper allows the possibility of recombination

using any of the current configurations. It was observed

experimentally that this approach increased the breadth of the

search, which provides a means to escape from local minima

or maxima.

The last evolutionary process applied to the new surveil-

lance configuration is mutation. Mutation provides the ability

to explore new regions of the problem space by randomly

changing camera settings in the offspring created from the

recombination process. The purpose of mutation is to maintain

diversity across the generations of configurations. Given the

new chromosome, each camera setting will be mutated with a

certain probability. If mutation occurs then the camera setting

is randomly modified using a uniform distribution (done

for the activation and the orientation angle). This series of

selection, recombination, and mutation processes are repeated

until a new pool (set) of surveillance configurations has been

generated, as depicted in Figure 2.

C. Search Refinement Using Beam Search

As previously described, heuristic search algorithms that

maintain multiple solutions, for example EAs, are often well

suited for complex search spaces. Beam search is another

heuristic search method that maintains a population of solu-

tions [10]. The algorithm progresses by exploring only the

best solutions in the current generation (the top x% referred

to as the beam width). These best solutions are mutated

to produce the next generation. This normally repeats over

multiple generations until a goal is achieved, for example

population convergence. Given this design, beam search has

the ability to focus on a certain area of the search space;

however, it can ignore other solutions or solutions that may

be useful if the environment changes. In contrast, EAs can

provide breadth that is useful for changing environments, but

may have limited depth.

It is possible to combine an EA with beam search to

provide the advantages of both techniques. This hybrid ap-

proach can be achieved on a generation basis, where the

EA is employed for multiple successive generations followed

by multiple successive generation of beam search. The best

number of generations for EA and beam can be determined

empirically. The hope is the EA will find good potential

solutions and beam will refine these solutions. Given both

approaches favor good solutions, better solutions should exist

across generations.

IV. EXPERIMENTAL RESULTS

In this section simulation is used to compare surveillance

management using an EA, beam search, and an EA beam

search hybrid (described in Section III-C). Note, the hybrid

approach performed five EA iterations followed by two beam

search iterations. The population size each search algorithm

was 200, the mutation probability for the EA approaches

was 3%, while beam search width was 25%.

Experiments simulated the effect of adding and removing

cameras, as well as the introduction of obstacles within the

floor space. Ten different 40-sided orthogonal polygons were

used as the floor plans for experiments. The camera view

angle was 90 degrees. Each floor space initially contained 80

cameras, where 10 different random camera location layouts

were used. Each camera layout was simulated twice and the

average results for these 200 simulations were then recorded.

An example 40-sided polygon, camera locations, and obstacles

are given in Figure 4. Performance was measured as the

coverage percentage (percentage of the wall space covered

by at least one camera) and the percentage inactive cameras

(based on the number of cameras available). In both cases

higher values are preferred.

A. Dropping and Adding Cameras

The camera drop/add experiments consisted of eight con-

secutive events; four drop events followed by four add events.

Events were space 10 generations apart and started at gener-

ation 300. Waiting until 300 generations was done to ensure

the algorithms had sufficient time to find an initial surveillance

26

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 02,2024 at 16:41:45 UTC from IEEE Xplore.  Restrictions apply. 



290 300 310 320 330 340 350 360 370 380

50

60

70

80

90

100

D AD AD AD A

Generation

A
v
er
ag
e
co
v
er
ag
e
p
er
ce
n
ta
g
e

Coverage during Loss/Add Events

EA

Beam

Hybrid

(a) Polygon coverage.
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Fig. 5. The effect of dropping and adding cameras (four 20% drops followed by four 20% adds, denoted in the graph as “D” or “A” respectively) within
40-sided orthogonal polygons. Drop and add events occurred every 10 generations starting at generation 300.

Fig. 4. An example 40-sided orthogonal polygon used as a floor plan for
simulations. Circles represent one possible set of initial camera locations and
gray areas are possible obstacles.

configuration using any of the 80 cameras. Each drop event

randomly reduced the number of cameras in the space by 20%,

while each add event allowed 20% more cameras to be active.

Figure 5 depicts the coverage and inactive camera per-

centage once the events begin. All algorithms start with

perfect coverage; however, the EA and beam search have a

lower inactive percentages (uses more cameras for the same

coverage as the hybrid). As each drop event occurs, the

coverage immediately declines. All algorithms also have a

drop in the inactive percentage as the new configurations

are being determined. Note, beam search does experience a

temporarily high inactive percentage, but the coverage is lower.

The evolutionary approaches (EA and hybrid) are able to

recover better, providing higher coverage with fewer cameras.

During the drop events beam search averaged 80% coverage

and inactive cameras, while the EA averaged 83% coverage

and 80% inactive cameras. The hybrid search averaged 82%

coverage and 81% inactive cameras. During the add events

coverage was 85% for the evolutionary approaches and 84%

for beam search. Hybrids also had higher inactive camera

percentages, 73% as compared to 72% for beam search.

The continual search characteristic of evolutionary approaches

provided better management of camera dynamics.

B. Adding Obstacles

Obstacle experiments introduced four 4-sided obstacles into

the 40-sided polygons, as depicted in Figure 4. The obstacles

appear at generation 300 and the objective required the ob-

stacles sides and the interior of the polygon floor plan to be

covered. Therefore, the introduction of the obstacles increased

the overall surface to cover.

The coverage and percent inactive cameras are depicted in

Figure 6. Prior to the introduction of the obstacles, all three

algorithms were able to identify configurations that achieved

approximately 99% coverage; however the hybrid approach

had a higher inactive camera percentage. Beam search had

the next higher percentage, but after 250 generations the EA

inactive percentage was equal to beam search. Once the obsta-

cles are introduced all three approaches have lower coverage

and inactive percentages. Coverage improves at a similar rate

for all three methods; however, the evolutionary approaches

maintain higher inactive percentages, as seen in Figure 6(b).

All three methods have an average 97% coverage after the

obstacles are introduced. The hybrid approach has 63% of

the cameras inactive, the EA has 61% while beam search is

58%. The largest difference occurs around 350 generations

where beam search has 52% inactive and the evolutionary

approaches have 60% inactive. Evolutionary approaches were
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Fig. 6. The effect of adding four polygon obstacles within 40-sided orthogonal polygons at generation 300.

able to manage the introduction of obstacles better (using

fewer cameras) than a beam search.

V. CONCLUSIONS

The availability of cameras and the growing need for

security has resulted in more interest in surveillance systems.

For these types of systems the objective is often to determine

the minimum number of cameras and orientation (direction

the camera is facing) required to cover the interior walls.

Unfortunately determining the best surveillance configuration

is a difficult problem that is only more difficult if the en-

vironment changes. Surveillance system must contend with

the availability of cameras changing (perhaps due to battery

power) as well as the introduction of obstacles in the floor

space.

This paper introduced evolutionary-based approaches for

identifying surveillance configurations that maximize wall

coverage with the fewest number of cameras. Using this ap-

proach, the activation states (on or off) and orientation angles

for the cameras are encoded as a chromosome and a series of

evolutionary processes are applied. Surveillance configurations

are then identified that improve coverage and minimize the

number of cameras required. In addition, evolutionary-based

approaches can adapt if the search space changes. In the case

of surveillance, evolutionary-based management approaches

can quickly adjust if the number of available cameras change

or if obstacles are introduced. Simulation of multiple 40-sided

polygon floor plans indicates the evolutionary approaches

were consistently better than a more traditional search based

approach.

The experimental results indicate evolutionary-based

surveillance management has promise, since the technique

was capable of identifying efficient and effective surveillance

configurations. However, there are several additional related

research areas that warrant addition investigation. For example,

gaining better insight to the best combination of evolutionary

and beam search would be helpful for deployment. The

combined effect of camera additions and losses along with

obstacles would also be of interest. Finally future work is

needed to understand how these types of evolutionary-based

approaches could be made into a distributed management

system, where each camera acts individually based on global

feedback.
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