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Abstract—We present a parallel algorithm to compute promis-
ing candidate states for modifying the state space of a pseudo-
random number generator in order to increase its cycle length.
This is important for generators in low-power devices where
increase of state space is not an alternative. The runtime of
the parallel algorithm is improved by an analogy to ant colony
behavior: if two paths meet, the resulting path is followed
at accelerated speed just as ants tend to reinforce paths that
have been used by other ants. We evaluate our algorithm with
simulations and demonstrate high parallel efficiency that makes
the algorithm well-suited even for massively parallel systems
like GPUs. Furthermore, the accelerated path variant of the
algorithm achieves a runtime improvement of up to 4% over
the straight-forward implementation.

I. INTRODUCTION

Pseudo-random numbers are an important ingredient in

a wide range of cryptographic protocols and applications,

including applications in resource-constrained environments

such as RFID chips or Internet of Things. There, the pseudo-

random number generators (PRNGs) can only use little energy,

i.e. use simple algorithms, but still must provide a decent level

of security. One of the important criteria for a PRNG is the

cycle length, i.e. the number of outputs until the sequence

of outputs will repeat, but there are more criteria such as

good statistical properties of the output sequence, forward and

backward secrecy to name a few. Hence it is quite complicated

to design a PRNG with a moderate state space size (because

of resource constraints such as energy from a battery) that

can provide these properties. For a PRNG that has already

been investigated with respect to above criteria but where an

increase in cycle length is desirable, we have proposed in

previous work a method that only modifies a small number of

state transitions to increase cycle length notably [1]. In order

to find which state transitions to change, the state space of the

PRNG has to be sampled, which is computationally intensive,

and thus calls for the use of parallel computing.

In this work, we present a parallel algorithm to find promis-

ing states, called candidate states, for the modification of state

transitions. The parallel algorithm is inspired by the behavior

of ants, that tend to follow trails where other ants have already

passed. We demonstrate the advantage of our algorithm over a

straight-forward parallel implementation by simulation. While

the asymptotic parallel efficiency of the parallel algorithm

is highly dependent on the structure of the state transition

graph, experiments indicate a good parallel efficiency (70%)

in practice even for 1000 threads. Thus, together with its

regular structure, the algorithm is suited for massively parallel

computing engines like GPUs.

The remainder of this paper is organized as follows. In

Section II we summarize background information on PRNGs.

In Section III we present a parallel algorithm to identify

promising candidate states for transition modification. In Sec-

tion IV we demonstrate the suitability of our parallel algorithm

by simulation experiments, and Section V gives conclusions

and an outlook to future research.

II. BASICS

Pseudo-random number generators (PRNGs) are used to

generate (pseudo-)random numbers that are frequently used

in communication protocols, be it as a nounce, a challenge,

or for some other purpose. Between seedings, and while no

additional entropy bits are input to the PRNG, on each call

it outputs a value that depends on the current state, and

transitions to a follow-up state by applying a state transition

function on the current state. Thus, it works like a finite state

automaton without input. A hash chain, i.e. a cryptographic

hash function repeatedly applied to some initial value, is also

used in cryptographic protocols, e.g. in Lamports authentica-

tion protocol [2]. After hashing the initial value once, the hash

function works on the set of hash values much like the above

transition function on the set of states. Other cryptographic

primitives such as stream ciphers might be modelled in this

manner as well.

PRNGs in resource-constrained systems such as mobile

sensors typically use a state space of moderate size, because

e.g. in 8-bit systems the increase of the state space by 8

bits leads to one more instruction for each addition or logical

operation, which in turn increases the energy consumption per

cryptographic operation, and thus puts a load on the battery.

Hence we see hash functions with low computational load and

64-bit output like SipHash1 or BLAKE2s2, and PRNGs with

state spaces of similar size, such as AKARI [3].

There are a number of general security requirements for

cryptographic primitives like forward secrecy and backward

1https://131002.net/siphash/siphash.pdf
2see RFC 7693
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secrecy [4] and PRNG-specific models such as [5] and [6], or

suites that test the output of PRNGs for randomness such as

the Marsaglia suite of Tests of Randomness [7] and the NIST

test suite [8]. Still, if the cycle length of the primitive is short,

patterns of output bits can be stored and repetition detected.

A practical example for this is the attack on A5/1 (cf. [9],

[10]). Thus, a long cycle length is a prerequisite for enabling

forward secrecy.

A PRNG can be modelled as a deterministic state transition

function f : M → M mapping a finite state space of size

n = |M | to itself. If a single state is interpreted as a node

and the transition between a state and its unique successor

state is interpreted as an edge, the result is a directed graph

Gf = (V ;E) with V := M and E := {(x, f(x)) |x ∈ M},
where each node has exactly one outgoing edge (deg-1 graph).

The structure of the generated graph provides information

about the behavior of the primitive. For non-bijective tran-

sition functions, the graph typically consists of several weakly

connected components. Each of these components consists of

one cycle and generally several trees with roots located on the

cycle. The trees tend to be very ragged. Figure 1 depicts the

structure of a component.

Fig. 1. Typical connected component of a state transition graph, taken from
[11].

Properties of the graph include the number and sizes of the

connected components, length of the cycles and maximum

depth of the trees. In order to identify all connected com-

ponents of a graph, the complete state space would have to

be analyzed, e.g. by a depth first search (DFS). The cycles

can be detected by starting from the unique back edge in

each component. If the state space is too large for complete

exploration, a part of the state space can be analyzed, accepting

the fact that one or several components might be missed.

Still, this approach can provide valuable information about

the expected state space structure. The typical approach is to

randomly select nodes as starting points, and to follow the path

from each starting point until a cycle is reached. The number

of followed paths, which influences analysis time, does not

need to be very large: as the expected number of components

is small (see below), already a small number of sample paths

through the state graph will hit all of the larger components,

and provide their cycle lengths. Please note: as the components

are much larger than their cycles, a short cycle in such a

component affects many seed states in the state graph.

In [12] an analysis method of the state space is presented

that avoids the large memory requirements of depth-first

search, where each node must be marked as visited, which

is clearly impossible if n ≥ 240. The idea is to only store

certain nodes while traversing the tree. If only the nodes are

stored that are reached after 2, 22, 23, . . . steps taken since the

start value (so called anchors), the required memory usage is

logarithmically in the number of steps, i.e. O(log n), and thus

very low. A cycle is reached if the newest anchor is reached

again. Figure 2 illustrates the process of cycle detection. The

low memory requirement comes with a time overhead: the

algorithm might need twice as long as would be needed in the

optimal case.

Fig. 2. Cycle detection.

This runtime can be improved by spending more memory,

but less than 1 bit per node. One can store the nodes reached

after k, 2k, 3k, . . . steps, and check in each step if one of the

stored nodes is reached again. This reduces the overhead to

at most k additional steps, but requires a search data structure

of size M = O(m/k) for a path of length m, which must be

queried in each step. Hence, the query time must be constant

(at least if amortized over many queries), for example by using

a hash table with low utilization. The parameter k can be

chosen given the path length m and the memory size M . While

the latter is known for the computer to be used, the path length

can only be guessed. For a randomly chosen state transition

function, the expected path length is O(
√
n) [13]. However,

there is no guarantee for this, so if the data structure runs

out of memory, it must adapt dynamically by throwing away

every other node stored, and increasing k to twice its former

value. The data structure can be used to shorten the time for

sampling further paths: if one keeps the nodes stored from

previous paths, then one can stop following a further path

if one of these stored nodes is reached. Because of the tree

structures in the components (cf. Fig. 1) the paths meet sooner

or later in the tree. At least, if two paths are in the same

component, another complete walk around the cycle can be

avoided for the second path. As both the expected tree path3

and cycle lengths are O(
√
n) with comparable constant factors

3The tree path is the path from the start node until the entry into the cycle.
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Fig. 3. Breaking up a cycle to increase cycle length.

[13], this on average should reduce the length by a factor of 2.

As the number of weakly connected components is expected

to be small (0.5 · log n, see [13]), many paths will be in the

same components, and thus it normally pays off to increase k
to be able to store nodes from all paths sampled so far.

The runtime of this algorithm is proportional to the average

length of the paths and the number of starting points. As

a small number of starting points suffices, the average path

length can be around 240 and still yield reasonable analysis

time. This restricts n to 280 if path lengths are around
√
n (see

above), which allows analysis of PRNGs or hash chains on a

64-bit state space. The resulting tree and cycle structure for

these samples might provide valuable insights with respect to

the security of the algorithm. Also, the sizes of the connected

components can be guessed from the fractions of starting

points belonging to each component, within a confidence

interval. Please note that there are comparable approaches for

bijective functions, notably Knuth’s algorithm [14] with an

expected runtime of O(n log n), which can be made linear in

time by using 1 bit per node, or improved by using stored

nodes as described above.

III. ALGORITHMS

For a PRNG with a short cycle, our strategy to increase

the cycle length is to cut the cycle at some node (which

we will call a special state in the following) by modifying

the transition function to divert to a node somewhere deep

in the tree [1], as illustrated in Fig. 3. There, the outgoing

edge (ui, wi) of cycle node ui is modified, and tree node vi
becomes the new successor of ui. The resulting cycle length

will be the sum of the previous cycle length and the length of

the tree path from vi to wi.

This can be done for each component of notable size, and

even multiple times within each component to achieve a larger

increase of the cycle length4. As the number of components is

expected to be small, with only a few components of notable

size (see previous section), the total number of modified edges

4Also other modifications can be applied: if e.g. a component of notable
size has a short cycle and the trees are rather flat, then instead of enlarging
this cycle it might be more advantageous to cut the cycle and modify the edge
towards a deep tree in another component with a longer cycle, thus making
the former component a tree of the other component [1].

will be small as well, and can be stored in a lookup table.

The modified PRNG state transition function can then be

implemented as given by Alg. 1.

Algorithm 1 Modified state transition function.

Precondition: s is the current state of the PRNG, TRANS is

the original state transition function

1: function MODTRANSITION(s)

2: if s is special state then � access to lookup table

3: snext ← new successor of s from lookup table

4: else
5: snext ← TRANS(s)

6: return snext

Please note that the time spent in the lookup table still

increases the execution time of the transition function, which

could increase the energy consumption. Hence, we split the

test — which will fail most of the time, because there are only

few special states — into two parts: a very fast test, that fails in

most cases, and a followup-test, that does the exact check but

is executed only seldomly. The first test uses a property that is

easily testable, e.g. that some bits of the state representation

have a certain bit pattern. We call these nodes candidates. The

only restriction imposed by this test is that states where the

transition function shall be altered must be candidates, which

is however no serious restriction, cf. [1].
The difficult task is to find a small number of special

states and new edges going out from these special states. This

must be done such that cycle lengths are increased and other

properties like statistic behaviour of output is not harmed.

While this has to be done only once, i.e. is an offline task,

it requires to sample the state graph (see previous section),

i.e. it might require 240 executions of the the state transition

function if the average path length is 232 and 28 starting points

are chosen. To do this in a reasonable time calls for a parallel

algorithm.
If we ignore the case of encountering a component without

a candidate (that case can be handled by additionally using

anchors, cf. Sect. II), then the selection of special states can

be done using the construction of the candidate graph, i.e.

the graph of all candidate nodes reachable from the chosen

starting points. An edge in the candidate graph between two

candidate nodes ci and cj represents the unique path in the

state graph vom ci to cj , and is annotated with the length of

this path. When the candidate graph has been computed, the

cycle lengths and the tree depths can be computed by DFS, and

the special states can be chosen by changing edges such that

the increase in cycle length is maximized. This can be repeated

until all candidates of a connected component of the candidate

graph are on a cycle, or a maximum number of special

transitions is achieved. For details about the determination of

special states from the candidate graph, we refer to [1].
The computation of the candidate graph follows a simple

paradigm: the paths originating from the starting points are

followed, and if two paths meet, only one of them is followed
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further. While we are following a path, we record all candi-

dates that we visit. This leads to the following basic parallel

algorithm, cf. Alg. 2.

Algorithm 2 Parallel algorithm to compute candidate graph.

Precondition: S is the set of starting points, m = |S|,
ISCAND checks if a state is a candidate.

1: function COMPCGRAPH(S)

2: for all i← 1 to m do � Parallel Loop

3: pi ← si ∈ S
4: repeat
5: repeat
6: pi ← TRANS(pi)
7: until ISCAND(pi) � Reached next candidate

8: ADDEDGE(pi)
9: until pi is already visited by other path

Each thread follows a path from one candidate to the next.

Then it checks if that candidate has been already visited by

another thread. If so, then the thread stops, and the other thread

continues. If not, then the thread follows this path further in

the next round. If two threads reach a candidate in the same

round, then the one with the smaller ID continues. Please note

that we hide some details here. First, to construct the candidate

graph, not only nodes but also edges with distances must be

added. Also, one thread will reach the cycle and there meet a

candidate visited earlier by itself, which must also be detected.

Finally, it is not guaranteed, that a path contains a further

candidate (although this is unlikely), so that in addition, other

measures are necessary to detect if a cycle has been reached

(cf. Sect. II).

The parallel algorithm partitions each tree in the graph into

chains that correspond to the paths that the threads follow.

A chain always starts in a starting point si and ends in a

candidate reached by more than one path and where si is not

the closest starting point. Put otherwise, when the path from

si reaches the candidate, it has been visited before by another

thread. Figure 4 illustrates this with five starting points A to

E, where the paths starting in A and B meet in candidate X ,

and only the path from A is followed further. Similarly, the

paths starting in C, D and E meet in candidate Z, where only

the path from C is followed further until candidate Y , where

it meets the path from A, that is followed further around the

cycle. The different chains are indicated by different colors.

The runtime of the algorithm is then determined by the

longest chain, i.e. by the longest sequence of candidates found

from this set of starting points, multiplied with the average

distance between candidates. The average distance between

candidates is n/c if there are n possible states and c candidate

states, assuming that the transition function is random enough

that the deterministic choice of the candidates makes their

distribution in the graph similar to a random distribution. The

standard deviation is high, however, so that the maximum

distance occurring in one round can be much higher than the

average, leading to load imbalance and idling threads. In order

Fig. 4. Parallel sampling of paths.

to avoid this, each thread follows several paths in each round,

so that the resulting runtime better approaches the average. In

addition, this occurs quite naturally as the number of followed

paths m can be larger than the number p of threads available,

even considering a massively parallel environment like a GPU

with several thousand hardware threads. The technique to

follow multiple paths per round with subsequent query for

visited candidates has been used before in a parallel program

[15], although with a different intention: by bundling multiple

queries and querying more seldomly, the high communication

cost in a message-passing maching could be amortized. This

does not play a role in our current research as the graph is

small enough to be kept in a shared memory. Still, in a GPU

the access to the global memory is slow, so that infrequent

coordinated access helps performance.

If the number of followed paths gets smaller after some

time, a load balancing can be performed to maintain load

balance as far as possible. As soon as the number of fol-

lowed paths gets smaller than the number of threads, a load

imbalance necessarily occurs. This load imbalance hurts if

the difference between the maximum chain length and the

majority of chain lengths is large. As the small example in

Fig. 4 illustrates, after two rounds only two of the five chains

are left, and after three rounds only one chain is left, which

continues for another four rounds.

The runtime could be improved if such long chains could

progress faster relative to other paths. Note that this is possible

as a thread follows several paths in each round, so that instead

of advancing t paths to the next candidate, the thread could

advance t− 2 paths to the next candidate and one path to the

next but one candidate. Thus, the latter path would progress

twice as fast as the other paths. As the thread now only handles

t− 1 instead of t paths, a different distribution of paths onto

threads is necessary, but presents no problem. Unfortunately,

the long chains are only known at the end of the algorithm,

so it is not clear which path should progress faster than the

others.

In order to still improve load balance, we borrow an analogy

from nature: when an ant meets the path of other ants, it tends

20

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2024 at 00:20:47 UTC from IEEE Xplore.  Restrictions apply. 



to follow this path, thus strengthening this path by placing

further pheromone. Ant colony algorithms have successfully

been used to solve problems related to graph theory, e.g. in

[16]. Here, if a path meets a candidate that has been already

visited by another path, it strengthens that path by “donating”

its own time slot to the other path, which is possible as the first

path need not be followed further. Hence, if the other path is a

long chain, it will progress faster. While this simple heuristic

will not help a long chain where no other paths end, that

situation is unlikely due to the ragged structure of the trees

in random deg1-graphs. Obviously, this donation cannot be

continued long in a linear fashion, because each thread follows

at most m/p paths in one round, and therefore an acceleration

of a path that got donations from more than m/p others would

slow down a round. Hence, the most advantageous form of

acceleration must be found out by experiments, as the optimum

acceleration cannot be determined at runtime. Furthermore, the

donation can be transitive, i.e. a path that got donations from

other paths, and donates its own time to another path, would

also donate the time it got itself from others. The experiments

in Section IV will illustrate that simple strategies are sufficient

to turn this nature-inspired analogy into a real advantage.

IV. EXPERIMENTS

To quickly assess the advantage of our parallel algorithm

with path acceleration over the straight-forward parallel im-

plementation, we use a simulator. The simulator reads in

a candidate graph that has been produced in our previous

research [1]. It then simulates the threads one by one and

round by round. As the candidate graph structure is already

available, the inner repeat-until loop from Alg. 2, that searches

for the next candidate, can be reduced to one step. Still, as the

distance between succeeding candidate nodes is stored in the

graph, the exact runtime of a round (in terms of maximum

number of calls to function trans per thread) can be given.

The simulator is applied to a graph with paths from

m = 104 randomly chosen starting nodes, using as transition

function the cryptographic hash function MD5 with output

restricted to 64 bits5 The candidate set was defined as the set

of nodes with bits 4 to 25 set to 1.

The simulator is run in several configurations: either with

p = 100, 500 or 1000 threads, to test differing ratios of

m/p. We use two simple donation functions: either linear

or logarithmic in the number of donated time slots (up to

m/p). Additionally, we use the straight-forward implementa-

tion, where no donation occurs. For comparison we also give

the sequential runtime. Please note that by runtime, we mean

the number of edges from one candidate to the next that a

thread follows during the algorithm. We skipped the more

exact measure of calls to function trans in order not to model

the load balancing.

Table I presents the results for the different configurations.

We see that for p = 100, the linear donation strategy brings

5We are aware that MD5 is outdated, and used SHA-3 in [1]. Both graph
structures are quite similar to random deg-1 graphs, and thus should behave
similarly with respect to the parallel algorithm.

TABLE I
SIMULATED RUNTIMES OF PARALLEL ALGORITHM FOR DIFFERENT

THREAD COUNT AND DONATION STRATEGIES.

donation strategy
p no linear logarithmic
1 155,524

100 1,614 1,553 1,598
500 379 371 380

1000 226 225 229

a runtime advantage of 4%, which seems small but is notable

given that less than 100 rounds are done in the parallel

algorithm, so that it will take a while before time slot donation

can show effect. Also, for an algorithm with a sequential

runtime of many hours this increase still saves a minute in the

parallel version. For larger p, the advantage is smaller, as more

edges have already been processed before the donation can

show effect. The logarithmic donation strategy brings a small

advantage for p = 100 but is slightly slower than the straight-

forward implementation without time slot donation. Hence,

the linear donation strategy should be chosen. We also note

that the parallel efficiency of our algorithm is high: still 70%

for p = 1000, demonstrating scalability for massively parallel

computing engines like GPUs. While it would be desirable

to formulate parallel efficiency as a function of p, this is not

possible as it also depends on the structure of the state graph.

We also tested the algorithm with the logistic map f(x) =
a · x · (1 − x) for a = 3.99 and x implemented by double

precision IEEE754-compliant arithmetic, as an example of a

chaotic PRNG [1], but that graph is too small and too flat. It

comprises only 20,295 edges outside cycles for 10,000 starting

points. Thus, no runtime difference between the different

donation strategies could be observed. However, the parallel

efficiency of the algorithm is high: 99% for p = 100 to 88%

for p = 1000.

V. CONCLUSION

We have presented a parallel algorithm for finding promis-

ing candidate states to modify the state transition function

of a pseudo random number generator. Use of these can-

didates allows to increase the cycle length notably, which

is helpful if the state space itself cannot be enlarged due

to resource constraints such as performance and energy in

embedded devices. The inherent load balancing problems of

this algorithm can be resolved by the use of an ant colony-

like strategy: paths that are not followed further because of

meeting another path donate their time to the other path that

can then progress faster. This illustrates once more how nature

can inspire improvements in security-related algorithms. The

resulting parallel algorithm exhibits regular structure and high

efficiency even for large thread count, and thus is suited for

massively parallel computing engines like GPUs.

Our future work will include further experiments to fine-

tune the “donation” of time-slots in order to maximize perfor-

mance, and to transfer our simulation to a real implementation

on a GPU. The performance possible on this massively parallel
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processing device will also enable to tackle larger state spaces.

We would also like to extend our work towards similar

primitives such as stream ciphers. Here Spritz [17] might be

a good candidate, as it would also allow to extend our work

from non-bijective towards bijective transition functions.
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