
Guiding a Colony of Black-box Fuzzers
with Chemotaxis

Konstantin Böttinger
Fraunhofer Institute for Applied and Integrated Security

85748 Garching, Germany

Email: konstantin.boettinger@aisec.fraunhofer.de

Abstract—We present a bio-inspired method for large-scale
fuzzing of binary executables to detect vulnerabilities. In our
approach we deploy a small group of feedback-driven explorers
that guide a colony of black-box fuzzers to promising regions in
input space. We achieve this by applying the biological concept
of chemotaxis: The explorer fuzzers mark test case regions that
drive the target binary to previously undiscovered execution
paths with an attractant. This allows us to construct a force of
attraction that draws the black-box fuzzers to high-quality test
cases. We implement a prototype and evaluate our presented
algorithm to show the feasibility of our approach.

I. INTRODUCTION

The constant proliferation of serious software vulnerabilities

states a major threat against the technologies that surround

us. As critical infrastructures of modern society increasingly

depend on the functioning of software we face the severe

challenge to harden our core systems. This often boils down to

finding vulnerabilities before the adversary does. Undisclosed

security-critical bugs known as zero-days will continue to

emerge on the surface of black markets to attract players of

a variety of backgrounds. A common strategy to decrease

the risk of being successfully attacked is to increase the

effort it takes to compromise our assets. This points us to

research automated methods that allow us to systematically

perform vulnerability analysis of software. The nowadays most

effective way to proceed in this direction is random testing

of target binaries, also called fuzzing. State-of-the-art fuzzing

frameworks all share one overall goal: Generating and pitching

suitable program inputs (also called test cases) into the target

in order to eventually trigger an exploitable bug. For suchlike

bug hunting there is a straight forward track: The more input

we generate to test a binary target the more code coverage we

achieve during program execution and the more likely we will

find what we are looking for. This results in parallel large-scale

testing by running distributed fuzzer instances on a computer

cluster.

However, state-of-the-art in distributed large-scale fuzzing

basically reduces to pure parallelization. Recent research fo-

cuses on advancing single fuzzers [1], [2], [3] and optimal

scheduling of fuzzers, test case corpora, and targets during

fuzzing campaigns [4]. But how can we optimize the in-

teraction between fuzzers? How can we transform a cluster

of isolated fuzzers into a colony that works together and

collectively adapts to the binary under test?

Inspired by biology two observations in particular guide

our research presented in this paper: Colonies with dedicated

explorers and the concept of chemotaxis.

a) Colonies with Explorers: Several species such as

honeybees, ants, rats, and bats reveal dedicated exploring be-

havior of colony individuals that primarily function as scouts.

Investigation of the environment by just a small fraction of

explorers seems to be an efficient way for some colonies to

gain information regarding the surrounding territory. In case

the explorer found an interesting spot (for example a source of

food during foraging) it reports its findings back to the colony.

The famous dance of the honeybees [5] is just one example

for this behavior. Hence we define a dedicated subgroup of

explorer fuzzers that guide the majority of worker fuzzers.

In fact, we can divide modern fuzzing frameworks into two

categories, namely (1) feedback fuzzers that instrument their

targets in order to gain runtime information during program

execution and (2) black-box fuzzers that are blind to what

happens during execution and only see program crashes in

case of a triggered bug. While fuzzers of the first category

(including white-box and evolutionary fuzzers) are relatively

slow they nowadays achieve similar levels of code coverage

compared to traditional fast executing black-box fuzzers. Both

categories, the relatively slow feedback driven explorers as

well as the fast and efficient black-box worker fuzzers have

their right to exist in modern fuzzing campaigns and both

provide comparable results. Inspired by colony behavior in

biology, is there a way to combine the explorer sight into

runtime (gained by dynamic instrumentation) with the speed

of black-box worker fuzzers? How can we achieve guidance

by the explorers and transfer information to the blind black-

box fuzzers? This brings us to the second observation found

in biology.

b) Chemotaxis: Regardless if we look at bacteria, mold

fungus, termites, ciliates, or algae, all those species have one

thing in common: They make use of chemical substances

to transmit information between individuals of the colony

in order to trigger collective behavior. The movement of

organisms responding to chemical stimuli is called chemotaxis.

Positive chemotaxis causes the individuals to move towards

regions of higher concentration of an attractant. Ant colonies

[6] coordinating their foraging behavior using attracting trail

pheromones impressively illustrate the power of chemotaxis.

Can we mimic social behavior of biological colonies using the

2017 IEEE Symposium on Security and Privacy Workshops

© 2017, Konstantin Böttinger. Under license to IEEE.

DOI 10.1109/SPW.2017.10

11

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 05:08:02 UTC from IEEE Xplore. Restrictions apply.

concept of chemotaxis?

In this paper, we construct an algorithm for distributed large-

scale fuzzing that equips feedback-driven explorer fuzzers with

the ability to attract black-box worker fuzzers by marking

regions in the input space with an attractant. By controlling

the attractant concentration among promising test case regions

the seeing feedback-driven explorers guide the colony of

blind (but fast) black-box fuzzers in order to maximize code

coverage.

In summary, we make the following contributions:

• We introduce a novel method for distributed large-scale

fuzzing in computer clusters based on the biological

concept of chemotaxis in order to maximize coverage of

execution paths in the target under test.

• We construct a mechanism for distributing attractants

in input space and define the resulting force field of

attraction exerted on black-box fuzzers.

• We implement and evaluate our presented algorithm to

show the feasibility of our approach.

The remainder of this paper is organized as follows. In Sec-

tion II we discuss related work. In Section III we present our

algorithm for guided fuzzing. We implement and evaluate our

approach in Section IV and discuss properties, modifications,

and expansions of the proposed algorithm in Section V. The

paper concludes with a short outlook in Section VI.

II. RELATED WORK

The fuzzing discipline has evolved from its very beginnings

[7] in 1990 to an active area of research providing advanced

testing frameworks [3], [8], [1], [2], [9]. Beyond generational

(format-aware) and mutational (format-blind) fuzzers we can

generally distinguish between feedback-driven and black-box

fuzzers. The first category makes use of instrumentation frame-

works (such as Pin, Valgrind, DynamoRIO, Dyninst, DTrace,

QEMU, and the like) to gain detailed information regarding

program execution. For example, the fully self-adaptive fuzzer

presented in [3] and [8] adjusts its parameters according to

code coverage feedback from dynamic instrumentation of the

target binary. Further, evolutionary and white-box fuzzers such

as AFL, Driller (enhancing AFL with symbolic execution),

EFS, Sage, Choronzon, Honggfuzz, libFuzzer, Kasan, Kcov,

and BFF belong to this category. While binary instrumentation

provides advanced test case generation based on runtime

feedback, it comes with relatively high overhead (see [10] for

a benchmark) and resulting moderate test case throughput. In

contrast, black-box fuzzers (such as zzuf, Peach, and Radamsa)

pitch test cases into the targeted binary without gathering

feedback from dynamic instrumentation, which makes them

significantly faster compared to feedback-driven fuzzers. We

refer to [11] and [12] for a detailed and comprehensive account

on random testing. Attempts to optimize black-box fuzzing

[13], [4] often neglect the distributed nature of parallel large-

scale fuzzing campaigns. Up to now it is unclear how to

effectively organize and guide a large set of black-box fuzzers

in order to maximize code coverage.

III. GUIDED FUZZING

In this section we present the overall algorithm for collective

random testing of binary targets by a colony of fuzzers guided

by dedicated explorers.

Our final goal is to optimize massively parallel large-

scale fuzzing in computer clusters to find vulnerabilities in a

binary target. Let Ḟ denote the set of feedback-driven fuzzers

and F the set of fast non-instrumenting black-box fuzzers,

respectively. Inspired by biology we refer to Ḟ as the explorers

and to F as the worker individuals. The explorers receive in-

formation from dynamic instrumentation (e.g. regarding code

coverage) and therefore see what happens during execution

of the target. As motivated in the introduction we present

a guidance mechanism that enables the seeing explorers to

transfer information to the blind black-box worker fuzzers

by mimicking the concept of chemotaxis. We achieve this by

constructing explorer traces in the target input space to attract

the workers F . In the following we first formalize how to

construct such traces and then define the force of attractivity

and resulting colony movement analog to chemotaxis.

A. Attractant Trace Generation

We assume the inputs of the target binary under test to

be bit strings of length N and denote the input space as

I = {0, ..., 2N}. Each fuzzer provides a corpus C ⊂ I of

current test cases. During a fuzzing campaign the individual

fuzzers constantly update their set of current test cases, which

generates a trace in input space for each fuzzer. Inspired

by chemotaxis we want the explorers to leave behind an

attractant on their way through input space. More formally,

assume we have nE explorers Ḟ i each starting with a set of

seed inputs Ċt0 . After some time t1 of fuzzing, each Ḟ i has

updated its initial seed inputs to the current working corpus

Ċi
t1 . During the fuzzing campaign, the Ḟ i generate corpora

Ċi
t1 , Ċ

i
t2 , ... ⊂ I. To construct a trace of Ḟ i in I, we calculate

the center of each intermediate corpus of test cases and then

mark these centers with an attractant.

a) Trace Generation: We first need to define the center of

a corpus Ċ ⊂ I of test cases. Instead of the arithmetical mean

we are interested in the bit string ĉ that is most similar to all

of the strings in Ċ. This choice is justified by the following

example: Consider a corpus Ċ of bit strings each of which

respects the input format of a given target. The arithmetical

mean of Ċ might be a bit string with corrupted file format

including wrong headers and metadata. Therefore, we define

the center ĉ of Ċ to be the string of length N that coincides

with the majority of inputs in Ċ in each bit position. The

complexity of this calculation is bound by O(n2). Periodically

extracting the corpus of current test cases of the explorers Ḟi

and calculating their centers ĉi yields a trace

T i :=
(
ĉi
)
τ∈T :=

(
ĉiτ0 , ĉ

i
τ1 , ĉ

i
τ2 , ...

)
(1)

where T = {τ0, τ1, τ2, ...} indicates the extraction times

during the fuzzing campaign.

12

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 05:08:02 UTC from IEEE Xplore. Restrictions apply.

b) Attractant Spraying: Now that we have a trace T i for

each explorer Ḟ i we can spray this trace with an attractant

in order to draw the black-box worker fuzzers F i. In this

step we augment each center of trace T i with an attractant

concentration that decreases over time. Naturally, the most

recently generated corpus of an explorer should have a higher

concentration of attractant than a previously generated corpus.

This correlates to diffusivity and resulting fall in concentra-

tion of real chemical attractants in biological chemotaxis. To

realize this we define a monotonically decreasing function

f : R≥0 → R≥0 to yield the sprayed trace

T̄ i :=
((

ĉiτ0 , f(t− τ0)
)
,
(
ĉiτ1 , f(t− τ1)

)
, ...

)
(2)

=
(
ĉiτ , f(t− τ)

)
τ∈T (3)

for i = 1, ..., nE , where t denotes the current time of the

fuzzing campaign. In our implementation (see Section IV) we

generate the sprayed traces periodically after a fixed amount of

time so we can assume without loss of generality the discrete

time indexing set T = N. The choice of spraying function

f determines attractant concentration of explorer traces over

time. If f decays fast, the explorers will leave only a short

attracting trace in time, whereas a slower decay yields longer

attracting traces. To avoid persistent attraction of already

extensively explored regions we must construct f such that

attractant concentration decays to zero after some time, i.e.

limt→∞ f(t) = 0. Moreover to keep computing complexity

in subsequent steps low we define f to map identical to zero

after time tz , i.e.

∀t ≥ tz : f(t) = 0. (4)

We discuss different choices of f and resulting attracting

behavior of the black-box worker fuzzers in Section IV.

B. Positive Chemotaxis

Next, we construct an attraction mechanism for the sprayed

traces T̄ i left behind by the explorers Ḟ i (i = 1, ..., nE).
The traces T̄ i should attract the black-box worker fuzzers

F j (j = 1, ..., nW). Again, we refer to the position of

an Ḟ i as the center ĉi ∈ I of its current corpus of test

cases Ċi ⊂ I. Mathematical modeling of chemotaxis usually

makes use of partial differential equations [14], [15], which

describes movement and emerging spatial pattern formation

accurately in terms of biology. Since we are more interested in

computational efficiency than in biological accuracy, instead

of simulating our colony of fuzzers with partial differential

equations we define a lightweight attracting function g that

acts as a force of gravity on the corpora of black-box fuzzers

F j . While f (as described above) determines the distribution

and decay of attractant concentration of traces in input space

I, g determines the force of attraction dependent on both the

distance and the concentration of the attractant. Therefore,

g : R2
≥0 → [0, 1] is a function of two variables. We discuss and

evaluate different choices of g and resulting attracting behavior

in Section IV.

To determine the force of attraction that an explorer trace

exerts on a black-box worker fuzzer F j (j = 1, ..., nW) we

need the attractant concentration of its trace as well as the

distance between centers of the trace T̄ i and the corpus Cj

of F j . The individual centers ĉi ∈ I of explorer traces T̄ i

have already assigned a concentration as given in Equation

(2). For the metric we choose Hamming distance δ in I: Two

bit strings x = (x1, ..., xN) and x′ = (x′1, ..., x
′
N) then have

distance

δ(x, x′) :=
∣∣{j ∈ 1, ..., N | xj �= x′j}

∣∣. (5)

For a single test sample x ∈ I function g then gives the force

of attraction a ∈ [0, 1] that a center ĉi exerts on x at time t:

a = g
(
f(t− τi), δ(ĉ

i, x)
)
. (6)

Now that we have defined the force a of attraction on x ∈
I, we construct a movement of x analog to chemotaxis. We

can move x towards ĉi in the Hamming distance if we flip

bits in x to match the corresponding bits in ĉi. Therefore, let

a ∈ [0, 1] be the fraction of bits in x that we flip to match bit

string ĉi, where the bit positions to be flipped are randomly

chosen among 1, ..., N . For example, a = 1 causes all bits in

the mutated version x′ of x to match those in ĉi resulting in

δ(ĉi, x′) = 0. An attracting force of a = 0 on the other hand

leaves x unchanged.

Finally, an explorer Ḟ i draws a black-box worker F j by

letting its trace T̄ i (i.e. all centers ĉi of its trace with nonzero

attractant concentration) simultaneously attract all test cases

in the current corpus Cj ⊂ I of F j .

C. Overall Algorithm

The overall algorithm for guiding a colony of black-box

fuzzers is depicted in Figure 1.

The first two loops initialize the nE explorers as well as

the nW black-box worker fuzzers. The seed input corpora

Ċi
t0 , C

j
t0 ⊂ I are sets of bit strings of length N . They

can be generated randomly or alternatively may originate

from a previous fuzzing campaign, but we don’t assume any

constraints on them (e.g. validity regarding the input format).

After initialization phase we enter the process of attractant

trace generation, positive chemotaxis, and fuzzing. This main

iteration is repeated until a tester stops the fuzzing campaign.

The first loop in the main iteration extracts the test case

corpora Ċi of explorers Ḟ i, calculates their centers ĉi, appends

them to the respective traces T i and sprays the traces with the

attractant according to the choice of f . Next, the centers ĉi of

the sprayed traces T̄ i attract all nW test case corpora Cj of

black-box worker fuzzers F j . This force of attraction results

in positive chemotaxis and is regulated by function g as given

in Equation (6).

Next, we reinitialize the black-box worker fuzzers F j with

the updated respective test case corpora and let the whole

colony of fuzzers perform random testing for a fixed amount

of time t′.
Regarding computational complexity of the proposed al-

gorithm we constructed each step to be efficient. The cost

13

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 05:08:02 UTC from IEEE Xplore. Restrictions apply.

Input: f, g, nE , nW , t′

for i = 1, ..., nE :
Ċi

t0 ← Seed()

Ḟ i ← Initialize(Ċi
t0)

for j = 1, ..., nW :
Cj

t0 ← Seed()

F j ← Initialize(Cj
t0)

do:
for i = 1, ..., nE :

Ċi ← Corpus(Ḟ i)
ĉi ← Center(Ċi)
T i ← Trace(ĉi)
T̄ i ← Spray(T i, f)

for j = 1, ..., nW :
Cj ← Corpus(F j)

for ĉ in T̄ i :
Cj ← Attract(ĉ, Cj , g)

for j = 1, ..., nW :
F j ← Initialize(Cj)

Fuzz(t′)

while (true)

Fig. 1. Overall algorithm for guided fuzzing with input functions f , g and
parameters nE , nW , and t′.

of center calculation is bound by O(n2), which is tractable

considering that we only process the working set of cur-

rent test cases of an explorer. Spraying the traces T i with

an attractant as indicated by Equation (2) is a lightweight

operation on a two-dimensional array that holds for each

calculated center ĉi the corresponding attractant concentration

given by f . Calculation of the force of attraction as defined in

Equation (6) requires computing the Hamming distance, which

requires low overhead. Further, we carefully bound the time

for computing the force of attraction that the explorer traces

T̄ i (i = 1, ..., nE) exert on the corpora Cj (j = 1, ..., nW)
by limiting the number of centers with nonzero attractant

concentration, as guaranteed by Equation (4). Finally, we

process these steps that lead to repositioning of the corpora

of F j only once for each time interval t′. During the fuzzing

step (denoted by Fuzz(t′) in Figure 1) all fuzzer instances of

both the explorers and the black-box workers run unaffected.

D. Choices for f and g

In choosing the spraying function f and the attraction

function g we are guided by the following considerations.

f determines the actual attracting fraction of the explorer

traces. As determined by Equation (2) a fast decay of f
leads to short attracting traces and vice versa. In the extreme,

f distributes the attractant nowhere on the explorer trace

except on the most recently computed center (corresponding

to f(0) �= 0 and f(t) = 0 for all t > 0). For simultaneous

strong force of attraction such a choice is almost equivalent to

direct corpus synchronization. However, we want the black-

box workers F j (j = 1, ..., nW) to be guided along the

explorer paths for two reasons: Close proximity to actually all

regions roamed by the explorers and enough time for black-

box worker exploration. To be more precise, for large periods

t′ of pure fuzzing (as indicated in Figure 1) corpus extraction

provides only discrete snapshots of current explorer positions

in time. During fuzzing for time t′ the workers also diffuse

their corpora through input space. Too high attractivity of the

most currently generated explorer corpus would tend to ignore

fuzzing the whole path between extracted corpus snapshots.

Since we want the black-box workers to follow the explorer

paths as closely as possible while simultaneously give them

enough time to generate corner cases not discovered by the

explorers, we distribute the mass of f accordingly. As shown

in our evaluation in Section IV we achieved good results with

different Gaussian functions for f . Regarding the attracting

function g in Equation (6) we borrow from the law of gravity

and propose higher attraction forces for higher concentrations

and closer distances. We implement a sigmoid function made

of two logistic functions in Section IV.

IV. IMPLEMENTATION AND EVALUATION

To show the feasibility of our approach we implemented

a prototype of the algorithm as depicted in Figure 1. In this

section we first present our choices for functions f and g, and

subsequently evaluate our method.

For spraying function f we implemented Gaussian functions

f (t) =

⎧⎨
⎩
c1e

− (t−c2)2

2c23 0 ≤ t < tz

0 t ≥ tz
(7)

parameterized by c1, c2, c3 ∈ R>0. While c1 determines the

total amount of attractant, c3 controls the decomposition rate

of attractant concentration on the traces T i. A nonzero value of

c2 > 0 translates to an attractant that unfolds its full attractive

potential only with a time delay, but we set c2 = 0 for the

following benchmarks.

Function g assigns the force of attraction dependent on

attractant concentration and distance to the attractant. Shorter

distance and higher concentration should result in stronger

attraction. We implemented g : R2
≥0 → [0, 1] as

g(f, δ) =
((

1 + a1e
a3−a2f

) (
1 + d1e

d2δ−d3
))−1

, (8)

where (f, δ) =
(
f(t− τi), δ(ĉ

i, x)
)

denote attractant concen-

tration and distance, respectively, and a1, a2, a3 ∈ R>0.

As testing target we chose the command line tool djpg for

decompressing JPEG files to image files (in BMP and GIF
format). All explorers are slow moving versions of the fuzzer

presented in [3] and [8]. We initialized both the explorers and

black-box workers with seed corpora containing image files of

14

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 05:08:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Attraction of a single explorer (nE = 1) within the first 100 iterations,
resulting in a decrease of δ from averaged 400 kbit down to 330 bit, where
mutation ratio for the measured black-box fuzzer is r = 4∗10−5. Increasing
d2 from 4 to 14 causes a significant stronger attraction.

size 100 kB. Then we measured the distance δ between most

recently generated centers (corresponding to the end of trace

T̄) of a selected explorer and the respective corpus centers of

a successfully attracted black-box worker.

Figure 2 depicts attraction behavior of a single explorer

(nE = 1). After each of the first 100 iterations of the do-
while loop of our algorithm (as depicted in Figure 1) we

indicate distance δ on the z-axis. After 100 iterations we stop

the fuzzing campaign and increase the force of attraction by

increasing d2. After 10 fuzzing campaigns (d2 = 4, ..., 14)
we receive the surface depicted in Figure 2. For strong forces

of attraction (corresponding to high values of d2) the single

explorer successfully attracts all workers and reduces the mean

distance δ from averaged 400 kbit to 330 bit. Weak forces of

attraction (corresponding to low values of d2) do not lead to

attraction. This is due to the diffusivity of worker corpora

in input space: With a black-box fuzzer mutation rate of

r = 4∗10−5 the workers diffuse their test case corpora stronger

than the explorer attracts them.

In a second experiment we increase the number of explorers

to nE = 5 as well as the black-box mutation ratio to r = 8 ∗
10−4. The resulting benchmark is depicted in Figure 3. Analog

to the previous setting we measure distance δ (on the z-axis)

in each of the first 100 iterations for 10 fuzzing campaigns

with respectively increasing force of attraction d2 = 4, ..., 14.

After successful initial attraction the distance δ reaches an

equilibrium state depending on the force of attraction. We can

successfully reduce the distance and guarantee proximity of

the workers to the explorer traces by increasing the force of

attraction. The equilibrium of distance between an attracted

worker and its explorer guide is caused by three antagonizing

forces: Attraction by its guide, attraction by all competing

explorers, and mutation ratio of the worker. Increasing the

Fig. 3. Attraction for nE = 5 within the first 100 iterations and increasing
d2 = 4, ..., 14, causing a decrease of δ from averaged 400 kbit down to 190
kbit, where mutation ratio is r = 8 ∗ 10−4.

force of attraction simultaneously for all explorers binds the

worker further to its guide (because of the sigmoid form of g
as defined in Equation (8)) and additionally overcomes even

high mutation ratios.

V. DISCUSSION

In this section we discuss characteristics, possible modifi-

cations, and expansions of our approach.

As shown in our evaluation once a black-box worker fuzzer

has joined an explorer it will remain there most probably

for the rest of the fuzzing campaign. However, the attraction

mechanism of the group of explorers after each period of

time t′ brings in a small fraction of valuable fresh input from

the surrounding explorers. This is due to the construction of

our attraction mechanism as described in Section III-B, where

actual attraction is lowering the Hamming distance by flipping

bits to match the attracting center (which is the test case that

matches the majority of test cases of a current explorer corpus

regarding the bit string). Therefore, we achieve mixing of test

cases between essentially isolated explorers.

Further, attraction of the trace of an explorer as sprayed by f
according to Equation (2) guarantees optimal post-processing

of input regions toughed by the explorers. As discussed in

Section III trace attraction gives two vital advantages com-

pared to simple corpus synchronization: Close proximity to

actually all regions roamed by the explorers and enough time

for black-box worker exploration. Since black-box workers

are significantly faster and provide different mutation engines,

their concentration around explorer traces often reveals new

side paths and corner cases that the explorers did not discover.

We put much emphasis on out-of-the-box deployment of

existing fuzzing frameworks to avoid any possibly time-

consuming or (in case of closed source fuzzers) impossible

modifications. However, access to information inside the ex-

15

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 05:08:02 UTC from IEEE Xplore. Restrictions apply.

plorer fuzzers would allow us to adapt attraction behavior for

each explorer individually. Our presented spraying mechanism

as determined by function f in Equation (2) treats each

explorer equally: It assumes the explorer has found a region

of quality test cases (e.g. regarding code coverage), sprays the

corpus center, and lets the concentration descent over time.

If an explorer discovers significantly more new basic blocks

than all other explorers, we should be able to assign a higher

force of attraction to respective test cases. In other words,

comparing the numbers of newly discovered basic blocks

found by the individual explorers would allow us to allocate

higher attractant concentrations to centers of higher quality

corpora, enabling strongest attraction to the currently best

performing explorer. Further, we could introduce a repellent

inducing negative chemotaxis for test cases that for example

consume too much time to process or enter code regions that

are not relevant for testing.

So far we do not provide any feedback from the black-box

fuzzers back to the explorers. This is motivated by the nature

of basically blind black-box fuzzers which do not obtain any

information from the targeted binary during runtime, except a

program crash. But especially this crash information could be

used to mark the corresponding test case as attractive.

Finally, we could introduce multiple hierarchies of explorers

by further subdividing our scouts according to their overall

test case throughput. For example, test frameworks enhanced

with symbolic execution functionality (such as [16], [17], [18])

are computationally more complex than more efficient evolu-

tionary fuzzers (see [9] for a recent benchmark). We could

apply our algorithm as depicted in Figure 1 unmodified to

realize guidance of more lightweight feedback-driven fuzzers

by frameworks based on symbolic execution. This would result

in a colony of fuzzers divided into multiple subgroups each

guiding a trailing group and simultaneously drawn itself by the

traces of their respective explorers. Such modifications could

improve the overall fuzzing campaign.

VI. CONCLUSION

Inspired by insect and animal colonies that reveal a rich

diversity of scouts and explorers we introduce the first frame-

work for large-scale random testing of binary executables

based on the concept of chemotaxis. In order to maximize

coverage of execution paths in the target under test we draw

fast and efficient (but blind regarding runtime information)

black-box workers to regions in input space discovered by

feedback-driven explorers. We realize this by constructing a

mechanism for distributing attractants in input space and defin-

ing the resulting force field of attraction exerted on black-box

fuzzers. This approach combines the best of both worlds: The

sight into runtime information from dynamic instrumentation

by the explorers and the speed of black-box worker fuzzers.

We show the feasibility of our approach by evaluating it on

a real-world target with different parameter settings. Further,

we discuss modifications and expansions of our algorithm.

Especially customized testing frameworks would allow us

to distribute attractant concentration significantly more fine-

grained, which probably results in faster code coverage and is

subject to future work.

REFERENCES

[1] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing,” in Symposium on
Network and Distributed System Security (NDSS), 2017.

[2] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS), 2016.

[3] K. Böttinger, “Hunting bugs with Lévy flight foraging,” in IEEE Security
and Privacy Workshops, 2016, pp. 111–117.

[4] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley, “Scheduling black-
box mutational fuzzing,” in Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security (CCS). New
York, NY, USA: ACM, 2013, pp. 511–522.

[5] J. R. Riley, U. Greggers, A. D. Smith, D. R. Reynolds, and R. Menzel,
“The flight paths of honeybees recruited by the waggle dance,” Nature,
vol. 435, no. 7039, pp. 205–207, 2005.

[6] D. J. Sumpter and M. Beekman, “From nonlinearity to optimality:
pheromone trail foraging by ants,” Animal behaviour, vol. 66, no. 2,
pp. 273–280, 2003.

[7] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Communications of the ACM, vol. 33, no. 12,
pp. 32–44, 1990.

[8] K. Böttinger, “Fuzzing binaries with Lévy flight swarms,” EURASIP
Journal on Information Security, 2016.

[9] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Krügel, and G. Vigna,
“SOK: (state of) the art of war: Offensive techniques in binary analysis,”
in IEEE Symposium on Security and Privacy, 2016, pp. 138–157.

[10] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’05. New York, NY, USA: ACM, 2005,
pp. 190–200.

[11] A. Takanen, J. DeMott, and C. Miller, Fuzzing for Software Security
Testing and Quality Assurance, 1st ed. Norwood, MA, USA: Artech
House, Inc., 2008.

[12] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnerability
Discovery, 1st ed. Boston, MA, USA: Addison-Wesley Professional,
2007.

[13] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and
D. Brumley, “Optimizing seed selection for fuzzing,” in Proceedings of
the USENIX Security Symposium, 2014, pp. 861–875.

[14] K. J. Painter and T. Hillen, “Volume-filling and quorum-sensing in
models for chemosensitive movement,” Can. Appl. Math. Quart, vol. 10,
no. 4, pp. 501–543, 2002.

[15] T. Hillen and K. J. Painter, “A users guide to pde models for chemotaxis,”
Journal of mathematical biology, vol. 58, no. 1-2, pp. 183–217, 2009.

[16] K. Böttinger and C. Eckert, “Deepfuzz: Triggering vulnerabilities deeply
hidden in binaries,” in Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA). Springer, 2016, pp. 25–34.

[17] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: automatically generating inputs of death,” ACM Transactions on
Information and System Security (TISSEC), vol. 12, no. 2, p. 10, 2008.

[18] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: whitebox fuzzing
for security testing,” Communications of the ACM, vol. 55, no. 3, p. 40,
Mar. 2012.

16

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2024 at 05:08:02 UTC from IEEE Xplore. Restrictions apply.

