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Abstract—People change their physical contacts as a preventive response to infectious disease propagations. Yet, only a few

mathematical models consider the coupled dynamics of the disease propagation and the contact adaptation process. This paper

presents a model where each agent has a default contact neighborhood set, and switches to a different contact set once she becomes

alert about infection among her default contacts. Since each agent can adopt either of two possible neighborhood sets, the overall

contact network switches among 2N possible configurations. Notably, a two-layer network representation can fully model the underlying

adaptive, state-dependent contact network. Contact adaptation influences the size of the disease prevalence and the epidemic

threshold—a characteristic measure of a contact network robustness against epidemics—in a nonlinear fashion. Particularly, the

epidemic threshold for the presented adaptive contact network belongs to the solution of a nonlinear Perron-Frobenius (NPF) problem,

which does not depend on the contact adaptation rate monotonically. Furthermore, the network adaptation model predicts a

counter-intuitive scenario where adaptively changing contacts may adversely lead to lower network robustness against epidemic

spreading if the contact adaptation is not fast enough. An original result for a class of NPF problems facilitate the analytical

developments in this paper.

Index Terms—Epidemics, contact adaptation, state-dependent switching networks, multilayer networks, nonlinear Perron-Frobenius

Ç

1 INTRODUCTION

MATHEMATICAL models of infectious diseases transmis-
sion are one of the primary tools for understanding

the propagation of infectious diseases among plant, animal,
or human populations [1], [2], [3]. Understanding how
spreading dynamics are affected by individual-level trans-
mission characteristics and large-scale properties of interac-
tions aids endeavors to control and mitigate epidemics,
making it critical for the public health and security.

In addition to their critical role in public health decision
making [4], infectious disease models are appealing from
complex systems perspective. Take for instance the Suscep-
tible-Infected-Susceptible (SIS) model [3], where each indi-
vidual in the population is either ‘Susceptible’ or ‘Infected’.
The SIS model simply states that susceptible individuals
may become infected when interacting with infected indi-
viduals, and infected individuals will become susceptible
immediately after recovery. Rich dynamics of the SIS model,
such as the phase transition observed between fast die-out
of infections and long-term epidemic persistence [5], exem-
plify the ability of simple individual-level interactions to
give rise to emergent phenomena.

Understanding disease transmission dynamics in human
social networks is particularly challenging [6], partly

because humans take preventive measures and alter their
interactions in response to disease spreading [7], which sub-
sequently change the course of the spreading [8]. As such,
coupled modeling of behavioral change and infection trans-
mission dynamics has seen significant attention recently [8],
[9], [10], [11]. Medical treatments, quarantines, illness man-
agement practices, and individual preventive behaviors are
a few examples of ways society works to reduce disease
spreading.

Common preventive behaviors of individuals to the
emergence of an epidemic are (1) adopting hygiene/phar-
maceutical actions such as wearing a mask, using con-
doms, improving bodily/environmental cleanliness, and
receiving vaccinations, and (2) altering contacts to avoid
infection. In the first case, individuals are intending to
reduce the probability of infection by cleansing themselves
and their environment—or at least placing barriers
between the two [12], [13], [14], [15], [16], [17]. In the sec-
ond case, when individuals change who they come in con-
tact with, the fundamental topology of the network itself is
changing. As individuals remove certain contacts with
people, while possibly creating new ones, the structural
paths available to dynamic processes are being altered,
resulting in rich dynamic interplay between network
topology and the spreading process on top of it [18], [19],
[20], [21], [22], [23], [24], [25], [26].

Existing approaches to incorporate preventive behaviors
in mathematical models of infectious diseases fall into two
general categories. First approach incorporates the effect of
preventive behaviors directly into disease model parameters
[27], [28], [29], [30], [31], [32], [33]. The second approach
introduces additional dynamic states into a disease model to
explicitly distinguish those who have adopted a preventive
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behavior from those who have not [13], [17], [34], [35], [36],
[37], [38]. One example of individual-based models taking
the second approach is the susceptible–alert–infected–
susceptible (SAIS) framework, first introduced in [17].

The SAIS framework adds an ‘Alert’ state to the net-
worked SIS model of [39]. The alert state represents individ-
uals who (similar to susceptible individuals) can potentially
become infected, but has adopted a preventive behavior. In
the original SAIS model [17], alert individuals have a lower
infection rate compared to the susceptible individuals, and
susceptible individuals could become alert in presence of
infection among their local contacts. The lower infection
rate of alert individuals would correspond to their type-1
preventive behaviors (such as wearing masks or using con-
doms). This model predicts possibility of total eradication
of an epidemics through preventive behaviors[34]. In a sub-
sequent study [40], authors considered an information-
dissemination network as an alternative alerting mecha-
nism, and proposed the optimal design solution for an
information-dissemination network based on eigenvector
centralities [41] in the contact network graph. The SAIS
model has been further explored in [42], [43], [44].

In this paper, we introduce theAC-SAISmodel, whereAC
stands for ‘Adaptive Contact’, to model a scenario in which
individuals change their contact neighborhood upon becom-
ing alert. More specifically, each susceptible individual i is in
contact with a given set of individuals ðN S

i Þ, and when she
becomes alert, she switches to another set of individuals
ðN A

i Þ. We will use the terms default neighborhood and adapted
neighborhood to distinguish the two. In ourmodel, we assume
both of these neighborhoods are known a priori. Yet, we do
no make any restrictive assumptions on these neighborhood
sets and deliver our results in themost generic setup. In prac-
tice, the default and adapted neighborhood sets might be
closely related. For example, in a social distancing scenario
[45], the adapted neighborhood would be a subset of the
default neighborhood. Social distancing is not the only possi-
ble scenario of contact adaptation. In the context of sexually
transmitted infections, for example, when a person is noti-
fied that one of his sexual partners is infected, in response, he
may abandon all or some of his set of partners and seek part-
nership from a new venue.

When nodes adapt their contacts to a neighborhood con-
stituting a more robust network, one might intuitively
expect that the robustness of the network against epidemic
spreading increases monotonically with the contact adapta-
tion rate. This is true in the case of social distancing (where
the alert neighborhood is a subset of the default ones) as it
always help mitigating epidemic spreading, and the faster
the social distancing is implemented, the better. However,
when the set of adapted contacts of an individual is not
restricted to be a subset of their default contacts, the net-
work robustness against epidemic spreading can be a non-
monotone function of the contact adaptation rate. Indeed,
our model detects a counter-intuitive scenario where ada-
ptively changing contacts may adversely lead to lower
network robustness against epidemic spreading if the ada-
ptation is not fast enough.

From dynamical systems perspective, this study con-
tains several contributions. First, we propose a novel
state-dependent switching network framework and show

that a multilayer-network [46] formulation can be success-
fully employed. Second, we develop an original result of
nonlinear Perron-Frobenius theory, where we find neces-
sary and sufficient conditions for existence and unique-
ness of a strictly positive eigenvector for the class of non-
negative, concave maps. We apply this tool to find the
epidemic threshold for our AC-SAIS model. Furthermore,
we introduce a novel notion of connectivity for multilayer
networks, which is novel for the new research field of
multilayer networks.

The rest of the paper is organized as follows: After the
literature review in Section 2, Section 3 introduces a novel
notion of multilayer connectivity and an original result
for nonlinear Perron-Frobenius theory, which are pivotal
for the subsequent modeling and analysis. Section 4
develops the AC-SAIS model, showing that the proposed
adaptive contact can be equivalently modeled by multi-
layer networks. Analyses in Section 5 are followed by
numerical experiments in Section 6. Several proofs to the-
orems and lemmas are omitted for the sake of brevity,
and can be found in the Supplemental Materials of this
article, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TNSE.2017.2770091.

2 LITERATURE REVIEW

Typical approaches to modeling spreading processes on
networks consider network topologies as independent of
individual node states, such is the case when nodes retain
the same set of contacts regardless of whether or not they,
or their neighbors, are infected. This assumption is made
for simplicity’s sake and is not representative of real world
networks; especially in regards to social networks where a
person’s contacts are in constant fluctuation. The notion of
state-dependent topologies is especially poignant in the
context of disease dynamics where a person will adjust
who they come in contact with when in the presence of an
infection. The extent to which this occurs can vary
greatly—from removing a single contact to completely
changing all of them—depending on the perceived sever-
ity of an infection.

Several formulations of adaptive contact exist in the liter-
ature of infectious disease modeling, including: 1) social dis-
tancing [47], where healthy individuals lower their contact
with the rest of the population, 2) delete-and-reactivate [48],
where healthy break their contact with infected population
and reactivate after some time, 3) rewiring [49], [50], where
healthy break their contact with infected population and
create new links with healthy members [21] or any other
randomly chosen individual [23].

Altering the local contacts can have a strong effect on
disease dynamics, which in turn influences the contact
adaptation process; a complicated mutual interaction
between a time varying network topology and the dyna-
mics of the nodes emerges. For example, Gross et al. [21]
presented a model where susceptible individuals rewire
their links from other infected individuals toward suscep-
tible ones in an SIS model, resulting in the formation of
two loosely connected clusters. Several researches have
built on this model: Marceau et al. [22] additionally
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include the infection state of its neighbors in the node
information. Risau et al. [23] rewire susceptible individu-
als from infected neighbors to random nodes, which in
some cases completely suppresses epidemic spreading.

Most of contact adaptation schemes have been imple-
mented for well-mixed populations or random network
models of physical interactions. Studies that work with
generic graphs as their contact network are scarce in the lit-
erature. Among a few existing research endeavors is the
Adaptive-SIS (ASIS) model developed by Guo et al. [48],
who studied an SIS epidemic model where contacts
between susceptible and infected nodes are removed at
some rate and reactivated later. They showed the epidemic
threshold increases as a function of the link removal rate,
while the network topology exhibits binomial-like degree
distribution, assortative mixing, and modularity. This
approach was rigorously extended by Ogura and Preciado
[51], who additionally considered heterogeneous node and
edge parameters, as well as a method for optimizing adap-
tation rates to mitigate epidemic outbreaks. This approach
of adaptation for generic graphs considers a dynamic equa-
tion for the edge weights which is coupled with the epi-
demic model. Another approach would be through the
notion of switching networks in dynamical systems.

A switching contact network is defined as a set of distinct
networks where the “active” network at any given time is
determined by some switching signal. More precisely, we
denote a switching network GðtÞ ¼ ðV;EsðtÞÞ, where sðtÞ :
R ! f1; 2; . . . ; qg is a signal that determines which of the q
networks are active at time t. Usually this signal is external
and independent of the system states. For example, a com-
mon approach is to consider sðtÞ as a Markov process inde-
pendent from the disease states [52], [53]. The collection of
possible edge sets E ¼ fE1; E2; . . . ; Eqgmay be given a priori
as in [52], or they might be generated from local processes
as in [53]. In the latter, Ogura and Preciado considered a
base graph with jEj edges where each edge can become
active or inactive according to an externally defined Markov
process, leading to an overall 2jEj possible configurations for
the switching contact network. We can also think of a more
complex situation where the switching signal is dependent
on the system states. In this way, the topology of the active
network determines the evolution of the dynamic process
and in turn, the state of the process itself signals network
switching. Here lies our proposed contact adaptation
scheme.

We consider a class of switching networks where the
neighborhood set of each node depends on the state it occu-
pies. Specifically, each node i has one of two contact setsN S

i

and N A
i , depending on whether is is ‘susceptible’ or ‘alert’.

Therefore, for a network of sizeN , the entirety of the switch-
ing network is composed of 2N separate topologies. In this
case, not only the network state-space size exponentially
increases by N , but also the switching signal depends on
the collective system state.

3 FUNDAMENTAL CONCEPTS AND TOOLS

Before diving into the modeling and analysis, we first
start with a novel notion of connectivity for multilayer net-
works and an original results for a class of nonlinear

Perron–Frobenius problems that will facilitate the subse-
quent developments in this paper.

3.1 Nonlinear Perron Frobenius

The classical Perron-Frobenius theorem [54] concerns the
eigenvalue problem Ax ¼ �x for a nonnegative and irreduc-
ible matrix A. Let Rn

þ be the non-negative cone in the
n�dimensional Euclidean space

Rn
þ ¼ fx 2 Rnjxi � 0 for 1 � i � ng:

Assuming x; y 2 Rn
þ, here x � y (x � y) means xi � yi

(xi < yi) for 1 � i � n and x n y denotes x � y but x 6¼ y. A
matrix A ¼ ½aij� is called non-negative if all of its entries are
either positive or zero. We can construct a graph GðAÞ asso-
ciated with A such that the edge ði; jÞ exists if aij > 0. The
matrix A is irreducible if and only if its associated graph
GðAÞ is strongly connected. The classical Perron-Frobenius
theorem may be stated as the following:

Theorem 1 (Perron–Frobenius Theorem [54]). Let A be a
nonnegative, irreducible matrix. Then A has a positive eigen-
value �1 > 0 which has multiplicity one and any eigenvalue of
A has a magnitude smaller than or equal to �1. Furthermore the
eigenvector vv1 corresponding to �1 is strictly positive (i.e.,
vv1 	 0) and is the only eigenvector ofA in the nonnegative cone.

From mappings perspective, the classical Perron–
Frobenius theory concerns solutions to the eigenvalue prob-
lem F ðxÞ ¼ �x where F ðxÞ ¼ Ax is a linear self-map of the
non-negative cone. By “self-map of the non-negative cone,”
we mean that F : Rn

þ ! Rn
þ maps the non-negative cone to

itself. But what if the map F ðxÞ is not linear? Can we still
get powerful results for nonlinear maps analogous to the
Perron–Frobenius theorem? The whole area of the nonlinear
Perron–Frobenius theory [55], [56], [57], [58], [59] seeks
answer to these questions. A thorough review of nonlinear
Perron–Frobenius theory is out of the scope of this paper. In
short, results are usually more limited in that existence,
uniqueness, or strictly positivity of an eigenvector is seldom
guaranteed unless under restrictive assumptions on the
nonlinear map.

The following properties are among the possibilities to
relax the linearity assumption for the non-negative map F .
Note that the linear map F ðxÞ ¼ Ax with non-negative
matrix A has all of these properties.

Definition 1. Assume F : Rn
þ ! Rn

þ is a self-map of nonnega-
tive cone. We say F is

1) homogeneous, if for any x 
 0 and c � 0, F ðcxÞ ¼
cF ðxÞ,

2) concave, if F ðuxþ ð1� uÞyÞ 
 uF ðxÞ þ ð1� uÞF ðyÞ
for all x; y 
 0 and 0 � u � 1,

3) super-additive, if F ðxþ yÞ 
 F ðxÞ þ F ðyÞ for all
x; y 
 0,

4) monotone,1 if F ðyÞ 
 F ðxÞ for all y 
 x 
 0.

The homogeneity property indicates that if x� 
 0 is an
eigenvector of F , so is cx� for any c � 0. Furthermore, the
following lemma indicates that the class of homogeneous,

1. Sometimes, this property is referred to as order-preserving.
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concave self-maps of the non-negative cone is a special case
of homogeneous, monotone maps.

Lemma 1. If F : Rn
þ ! Rn

þ is a homogeneous, concave map of
the non-negative cone, then F is also monotone and super-
additive.

Several results in the literature concern the more general
class of homogeneous, monotone maps [56], [57]. While
existence and strict positivity of an eigenvector can be
proved for this class of maps, uniqueness cannot be guaran-
teed without quite restrictive assumptions [56]. For exam-
ple,2 for the homogeneous, monotone function F ðxÞ ¼
½maxfx1; x22 g;maxfx12 ; x2g�T , any vector ½x1; x2�T 2 R2

þ with
x1
2 � x2 � 2x1 is an eigenvector of F with eigenvalue � ¼ 1.

On the contrary, existence and strict positivity of a unique
eigenvector can be proved for the special class of homoge-
neous, concave maps.

The nonlinear map of interest in this paper falls in the
special class of homogeneous and concave maps. Therefore,
we focus on this class of nonlinear maps and develop a new
result.

So far, we relaxed the linearity restriction by assuming
that our nonlinear map is homogeneous and concave. The
next question is what would be the counter part to irreduc-
ibility of A in the linear map F ðxÞ ¼ Ax for a homogeneous,
concave map. For homogeneous, concave maps, Krause [58]
proposes the following condition:

Definition 2 (Krause [58], Section 3). We say the homoge-
neous, concave self-map F : Rn

þ ! Rn
þ satisfies condition3 C1

in Rn
þ if for any non-empty subset ; 6¼ J z f1; . . . ; ng, there

exists j 2 J and i =2 J such that FiðejÞ > 0, where ej is the jth
unit vector in Rn and Fi denotes the ith component of F .

Furthermore, Krause proves that condition C1 is a suffi-
cient condition for existence and uniqueness of a positive
eigenvector:

Theorem 2 (Krause [58], Theorem 13). For the self-map
F : Rn

þ ! Rn
þ, which is concave, homogeneous, and satisfies

condition C1, the equation F ðxÞ ¼ �x has a strictly positive
solution x ¼ x� 	 0, � ¼ �� > 0, and x� is the only eigenvec-
tor in the non-negative cone (up to scaling).

We argue that the condition C1 for the notion of irreduc-
ibility in [58] may be restrictive, and same strong results
would be still valid under a more relaxed condition. Indeed,
the nonlinear map of our interest in this paper may not sat-
isfy the condition C1 in Definition 2.

To illustrate, suppose n ¼ 3 and the nonlinear map is
F ðxÞ ¼ ½minfx2; x3g; x1 þ x3; x1 þ x2�T . This map is both
homogeneous and concave. However, it does not satisfy
condition C1 of [58] stated in Definition 2. To test this, let
J ¼ f2; 3g; no j 2 J leads to F1ðejÞ > 0 because F ðe2Þ ¼ e3
and F ðe3Þ ¼ e2. However, this map has a unique, strictly

positive eigenvector x� ¼ ½ 1
1þ2�� ;

��
1þ2�� ;

��
1þ2���T and �� ¼ 1þ ffiffi

5
p
2

with jjx�jj1 ¼ 1. Another example is F ðxÞ ¼ ½ x2x3x2þx3
; x1 þ

x3; x1 þ x2�. Again, F ðe2Þ ¼ e3 and F ðe3Þ ¼ e2, so it does not

satisfy condition C1. However, this map has a unique,

strictly positive eigenvector x� ¼ ½ 1
1þ4�� ;

2��
1þ4�� ;

2��
1þ4���T and

�� ¼ 1þ ffiffi
3

p
2 with jjx�jj1 ¼ 1.

Definition 3. We say the homogeneous, concave self-map
F : Rn

þ ! Rn
þ of the non-negative cone satisfies condition C2

in Rn
þ if for any choice of ; 6¼ J zf1; . . . ; ng, there exists i =2 J

such that FiðeJÞ > 0, where eJ is defined as eJ ,
P

j2J ej.

The example function F ðxÞ ¼ ½minfx2; x3g; x1 þ x3; x1 þ
x2�T ; which does not satisfy condition C1, does satisfy C2.
For instance, selecting J ¼ f2; 3g yields F1ðeJÞ > 0 because
F ðeJ ¼ ½0; 1; 1�T Þ ¼ ½1; 1; 1�T . The following lemma proves
that C2 is indeed less restrictive than C1.

Lemma 2. A homogeneous, concave self-map F of the nonnega-
tive cone that satisfies condition C1 also satisfies condition C2.

We would like to emphasize that there is nothing special
about usage of eJ in Definition 3. The following lemma
shows that any vector that has positive values on elements
corresponding to J and is zero on other elements would be
equivalently applicable.

Lemma 3. For any choice x 	 0, we have Fiðx � eJÞ > 0 if and
only if FiðeJÞ > 0; where the symbol � denotes the Hadamard
(entry-wise) multiplication.

In the linear domain, we know that if a non-negative
matrix A is irreducible, the matrix Aþ cI is primitive for
any c > 0 [60, Theorem 9], and vice versa. How would be
the extension of this idea to the nonlinear domain? First, let
us precisely define a primitive map.

Definition 4. The self-map H : Rn
þ ! Rn

þ of the non-negative
cone is called primitive if there exists M such that HmðxÞ 	 0
for all m � M and x L 0. Here, Hm denotes the mth iterate of

H, i.e.,HmðxÞ ¼ HðHm�1ðxÞÞ andH0ðxÞ , x.

The following theorem states that F satisfying C2 and
F ðxÞ þ cx being primitive are equivalent.

Theorem 3. The map FcðxÞ , cxþ F ðxÞ with c > 0 is primi-
tive if and only if the homogeneous, concave self-map
F : Rn

þ ! Rn
þ of the non-negative cone satisfies condition C2.

The duality between F satisfying C2 and F ðxÞ þ cx being
primitive leads to the main theorem in this paper:

Theorem 4. Statements of Theorem 2 still holds if condition C1
is replaced with condition C2. Furthermore, if x� 	 0 is a
unique eigenvector of the homogeneous concave map F in RN

þ ;
then F must satisfy condition C2. Moreover, iterations of
FcðxÞ with c > 0 converge to x�; i.e.,

lim
k!1

�Fk
c ðxÞ ¼ x�; for all x L 0; and �FcðxÞ , FcðxÞ

jjFcðxÞjj : (1)

Compared with Theorem 1, it is evident that results for the
nonlinear Perron–Frobenius problem in case of homoge-
neous, concave maps are very strong; existence and unique-
ness of a strictly positive eigenvector can be guaranteed. Our
contribution to the theory of nonlinear Perron–Frobenius
theory for homogeneous, concavemaps is that we relaxed the

2. This example is from [56].
3. In Krause [58], authors refer to this condition as being irreducible.

We choose to avoid this term to avoid any confusion with other notions
that tend to extend irreducibility of linear maps to nonlinear domain.
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sufficient condition of [58] (through replacing C1 by C2) and
proved that this new4 condition is also the necessary condition
for uniqueness of the eigenvector in the non-negative cone.

3.2 Multilayer Networks and an Algorithmic Notion
of Connectivity

Graph theory is the mathematics of networks. In graph the-
ory, a directed graph is formally defined as an ordered pair
G ¼ ðV;EÞ, where V is the set of nodes and E 
 V � V is
the set of ordered pairs of nodes representing their directed
relation. We say node j is a neighbor of node i, if ði; jÞ 2 E.
The set N i ¼ fjjði; jÞ 2 Eg denotes the neighbors of node i.
A path ðv0 ¼ i; v1; . . . ; vl�1; vl ¼ jÞ of length l is an ordered
tuple of edges than connects i to j, i.e., ðvk�1; vkÞ 2 E. A
directed graph is strongly connected if there exists a path
between all ordered pair of nodes in the network [54].

Several natural and technological systems show complex
patterns of interactions among their heterogeneous entities.
To capture the complexities of such systems, the network
science community has recently shown substantial interest
in the notion of multilayer networks [46], [61] and develop-
ing proper mathematics for them beyond the classical graph
theory [62].

In this paper, we denote a multilayer network5 as an
ordered tupleG ¼ ðV;EA;EBÞwhere nodes inV are connected
through two link typesEA andEB. Corresponding to themul-
tilayer network G, we define GA ¼ ðV;EAÞ and GB ¼ ðV;EBÞ
as the layers of G. Motivated by the notion of strong connectiv-
ity for directed graphs, we propose a novel notion of connec-
tivity formultilayer networks in the following.

Our proposed notion of multilayer connectivity, which
from now on we will refer to it as M–connectivity, has an
algorithmic definition. To motivate and acquaint our defini-
tion to the reader, we first point out a straight-forward
property of simple strongly connected graphs. Suppose for
the graph G ¼ ðV;EÞ we have an arbitrary partition P of the
node set V , i.e., members of P are non-empty disjoint sub-
sets of V that cover V , more precisely

ð1Þ ; =2 P;
ð2Þ I \ J ¼ ; for any I 6¼ J 2 P
ð3Þ

[
I2P

I ¼ V:

We can build a graph GG ¼ ðP;LÞ, where the partition set P
is the node set of GG. Note that each node I 2 P of GG is a par-
titioning subset of V . As such, to avoid possible confusion,
we will refer to nodes of GG as hypernodes from now on. We
assign a directed link from one hypernode I 2 P to another
hypernode J 2 P, if there is a node i 2 I of G that is con-
nected to a node j 2 J , i.e., ði; jÞ 2 E. Trivially, yet impor-
tantly, strong connectivity of G implies strong connectivity
of GG. For a multilayer network G, we use a related notion to
define connectivity.6 The main difference is that connection
among subsets must be through both layers. Following pro-
vides a formal definition.

For a multilayer network G ¼ ðV;EA;EBÞ, we iteratively
build graphs GGk ¼ ðPk;LkÞ, starting with GG0 ¼ ðP0; ;Þ,
where P0 ¼ ff1g; f2g; . . . ; fNgg is the trivial partition of V

singletons. From the graph GGk�1, we build GGk ¼ ðPk;LkÞ in
the following way:

Step 1.Define the hypernode set Pk of cardinality equal to
the number of strongly connected components of GGk�1

where each element I 2 Pk groups one and only one

strongly connected component of GGk�1 (i.e., I is the union of
all the hypernodes in that strongly connected component).
Note that, doing so, the hypernode set Pk always denotes a
partitioning of the node set V .

Step2. We assign the directed link ðI; JÞ 2 Lk if at least
one single node in I is connected to J through both layers
simultaneously,7 i.e.,

Lk ¼
�
ðI; JÞ 2 Pk � Pk

���9i 2 I s:t: ði; j1Þ 2 EA;

ði; j2Þ 2 EB for some j1; j2 2 J

�
:

Fig. 1 illustrates the iterative procedure explained above.

Definition 5. A multilayer network G ¼ ðV;EA;EBÞ is M–
connected, if starting with with GG0 ¼ ðP0; ;Þ—where P0 ¼
ff1g; f2g; . . . ; fNgg is the trivial partition of V singletons—
and inductively building GG1; GG2; . . . following Step 1 and Step
2 described above, there exists an iteration step k� such that
GGk� is strongly connected.

Intuitively, M–connectivity of G implies that if we split
the node set V into any two subsets Va and Vb, there is
always a node in Va (resp. Vb) that is connected to Vb (resp.
Va) through both edge types. A necessary condition for M–
connectivity of G is that both individual layers GA and GB

are strongly connected. Moreover, a sufficient condition
for M–connectivity of G is that the intersection graph
Gc , ðV;EA \EBÞ is strongly connected (because, GG1 which
is similar to Gc, will be already strongly connected).

M–Connectivity and Condition C2. Consider a multilayer
network G ¼ ðV;EA;EBÞ, where the node set are labeled from
1 toN , i.e., V ¼ f1; 2; . . . ; Ng. By defining a real valued vector
x : V ! RN

þ on node set V , we show the relation between
M–connectivity and conditionC2 for functionsF ðxÞ.

4. We got the inspiration for our definition of condition C2 for
homogeneous, concave maps from a notion in [56] for homogeneous,
monotone maps. Gaubert and Gunawardena [56] refer to the homoge-
neous, monotone map F as indecomposable if for any choice of
; 6¼ J z f1; . . . ; ng, there exists i =2 J such that lima!1 FiðrJ ðaÞÞ ¼ 1,
where rJ ðaÞ is defined as ðrJ ðaÞÞj ¼ a if j 2 J; and ðrJ ðaÞÞj ¼ 1 other-
wise. While this may look very similar (or perhaps equivalent) to condi-
tion C2, we would like to point out a subtle difference which can be

very consequential. Consider the function F ðxÞ ¼ ½4x
1
2
1
x
3
2
2

x1þx2
; x1 þ x2�T . This

function is homogeneous, concave, and monotone. It does not satisfy

condition C2 because for J ¼ f2gwe get F1ðeJ Þ ¼ F1ðe2Þ ¼ 0. However,

it falls in the category of indecomposable maps of [56] because

lima!1 F1ðr2ðaÞÞ ¼ lima!1 4a
3
2

1þa ¼ 1 and lima!1 F2ðr1ðaÞÞ ¼ lima!1 1 þ
a ¼ 1. The nonlinear eigenvalue problem for this function gives two

eigenvectors in R2
þ, namely, x�1 ¼ ½1; 1�T with �1 ¼ 2, and x�2 ¼ ½0; 1�T

with �2 ¼ 1; which is consistent with the fact that it does not satisfy

condition C2.
5. In some literature, this may be referred to as a multiplex network.

6. We have been inspired by the notions of indecomposability for
nonlinear maps and the method of aggregated graphs from Gaubert
and Gunawardena [56, Sections 1.3 & 3.4].

7. Note that this is different from, 9i1; i2 2 I s:t: ði1; j1Þ 2 EA;
ði2; j2Þ 2 EB for some j1; j2 2 J , which basically indicates that both
individual layersGA and GB are strongly connected.
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Theorem 5. Associated with the multilayer network
G ¼ ðV;EA;EBÞ; where V ¼ f1; 2; . . . ; Ng, suppose a homoge-
neous, concave map F of the non-negative cone is such that for
any nontrivial subset J of V and i =2 J , FiðeJÞ > 0 if and only
if there exists j1; j2 2 J for which ði; j1Þ 2 EA and
ði; j2Þ 2 EB. Then, F satisfies condition C2 if and only if the
multilayer network G is M-connected.

4 MODEL DEVELOPMENT

Before introducing our model, we first review a background
on the networked SIS epidemic process.

4.1 A Background on Networked SIS Model

Susceptible–infected–susceptible model is a paradigmatic
epidemic spreading model. In the SIS model, each individ-
ual is either susceptible or infected, and individuals are
assumed to immediately become susceptible to the disease
after recovery. SIS model is thus suitable for modeling

sexually transmitted infections such as Gonorrhea and
Syphilis [2].

Classical compartmental epidemic models assume
homogeneous (fully mixed) interactions among individuals.
In networked epidemic models, interactions among individ-
uals are explicitly modeled using a contact network, repre-
sented by the graph G ¼ ðV;EÞ, where individuals are
represented by nodes V of a graph and possible interactions
are the edges E of a graph. Node j is a neighbor of node i,
denoted as ði; jÞ 2 E, if she can infect node i directly. We
can also use weighted graphs to represent contact networks.
Doing so, the weight value of a link would serve as a proxy
for heterogeneity of contact levels among pairs of individu-
als. For example, if both nodes j and k are infected and
wij ¼ 2wik, the likelihood that a susceptible node i contracts
the disease from node j is double the likelihood of contract-
ing it from node k. In this paper, we allow the contact graph
be directed and weighted.

In the networked SIS model [63], the state of node i at
time t is denoted by XiðtÞ 2 fS; Ig, where XiðtÞ ¼ S if the
node is susceptible or XiðtÞ ¼ I if it is infected. In this
model, a susceptible nodes becomes infected if it is exposed
to an infected individual. Moreover, an infected individual
recovers and becomes susceptible again after a recovery
period. The infection and curing times are commonly
assumed to have a memoryless property, leading to expo-
nentially distributed time intervals in continuous time
descriptions. More general time distributions are also possi-
ble and addressed in the literature to some extent [53], [64],
[65], [66], [67].

The overall evolution of the nodes states are due to their
interactions with each other. Hence, mathematical descrip-
tion of the SIS model requires utilization of the collective
state XX ¼ ½X1; . . . ; XN �, which is the joint state of all N
nodes in the network. The network state is a continuous-
time Markov process that undergoes transition over a space
consisting of 2N possible network states. In this description,
we say an event has occurred if the state of a single node
changes. Furthermore, the time interval for the event occur-
rence is exponentially distributed. This time interval can
equivalently be described as the minimum of transition
times of a set of statistically independent processes on node
states, denoted by Xi, and pair states, denoted by ðXi;XjÞ,
as the following:

Xi : I ! S; for i 2 V; T � expðdÞ;
ðXi;XjÞ : ðS; IÞ ! ðI; IÞ; ifði; jÞ 2 E; T � expðbwijÞ;

where d and b are called curing and infection rates, respec-
tively, and T represents the corresponding exponentially
distributed transition duration.

Describing the network Markov process as competition
among statistically independent nodal and edge-based tran-
sitions, similar to the above formulation of the SIS process,
allows for a much more general framework for modeling
networked epidemic processes (see, [68]). We will use this
approach to describe our adaptive contact epidemic model.

Finally, the Kolmogorov equation, which governs proba-
bility distribution of the SIS Markov process, is a system of
2N coupled differential equations which is neither computa-
tionally nor analytically tractable for large number of nodes.

Fig. 1. Example of an M-connected multilayer network according to Defi-
nition 1. (a) In the two-layer graph, the red arrows represent EA edges
and green arrows represent EB edges. (b) The first graph GG1 has the
hypernodes set P1 ¼ ff1g; f2g; . . . ; f12gg, and its links are the intersec-
tion of EA and EB edges. Hypernodes are depicted by black squares,

and links between them are shown by black arrows. The graph GG1 is not
strongly connected. (c) The second aggregate graphGG2 has the strongly
connected components of GG1 as its hypernodes set P2 ¼ ff1; 2; 3g;
f4; 5; 6g; f7; 8; 9g; f10; 11; 12gg. The links among the hypernodes is
according to Step 2 in Section 3.2. For example, the directed link
ðf4; 5; 6g; f7; 8; 9gÞ 2 L2 is due to node 6, a member of f4; 5; 6g, being
connected to the hypernode f7; 8; 9g through both layers (because,
ð6; 8Þ 2 EA and ð6; 7Þ 2 EB:). The graph GG2 is not strongly connected
either. (d) The third aggregated graph GG3 groups strongly connected
components of GG2 as its hypernodes set P3 ¼ ff1; 2; 3; 4; 5; 6g;
f7; 8; 9g; f10; 11; 12gg. The graph GG3 is strongly connected. Therefore,
the two-layer network in (a) is M–connected according to Definition 1.
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Moment closure approximations [39], [68], [69], [70] or
Monte Carlo simulations are thus necessary to study the
networked SIS process. The SIS process shows a phase tran-
sition behavior where initial infections die out quickly for
small values of b=d, while infections can persist in the net-
work for long time (coined as metastable state) for large val-
ues of b=d [71]. The critical value separating these regions is
called the epidemic threshold. As such, epidemic threshold
suggests a measure of networks robustness against epi-
demic spreading. In this paper, whenever we say network a
is more robust against epidemic spreading than network b,
we mean network a has a larger value of epidemic threshold
that network b.

4.2 AC-SAIS Markov Model

Consider a population of N individuals, where each indi-
vidual is either susceptible, alert, or infected. For each individ-
ual i 2 f1; . . . ; Ng, let the random variable XiðtÞ ¼ S if the
individual i is susceptible at time t, XiðtÞ ¼ A if alert, and
XiðtÞ ¼ I if infected. In the AC-SAIS model of this paper,
contacts of a node depends on her state. Specifically, we
define N S

i as the neighbors of node i when she is suscepti-
ble, and N A

i as her neighbors when she is alert. Associated
with these neighborhood sets, we consider weight values
wS

ij > 0 if j 2 N S
i and wA

ij > 0 if j 2 N A
i as a proxy for het-

erogeneity of the contact levels.
Four competing stochastic transitions describe the AC-

SAIS model, as Fig. 2 depicts:

1) Infection of susceptible nodes: A susceptible individual
becomes infected from her infected neighbor (among
N S

i ) after an exponentially distributed random time
duration with the infection rate b

ðXi;XjÞ : ðS; IÞ ! ðI; IÞ; if ði; jÞ 2 ES; T � expðbwS
ijÞ:

2) Alerting of susceptible nodes: A susceptible individual
becomes alert from her infected neighbor (among
N S

i ) after an exponentially distributed random time
duration with the alerting rate k

ðXi;XjÞ : ðS; IÞ ! ðA; IÞ; if ði; jÞ 2 ES; T � expðkwS
ijÞ:

3) Infection of alert nodes: An alert individual becomes
infected due to having an infected neighbor among
her switched neighborhood setN A

i after an exponen-
tially distributed random time duration with the
infection rate b

ðXi;XjÞ : ðA; IÞ ! ðI; IÞ; if ði; jÞ 2 EA; T � expðbwA
ijÞ:

4) Recovering of infected nodes: An infected individual
recovers to the susceptible state after an exponen-
tially distributed random time duration with recov-
ery rate d

Xi : I ! S; for i 2 V; T � expðdÞ:

A Few Remarks on the AC-SAIS Model. The disease dynam-
ics component of the AC-SAIS model is according to the net-
worked SIS model, elaborated in Section 4.1. Therefore, a
representative example would be the spread of Syphilis or
Gonorrhea for which the sexual contact network is well-
defined and disease dynamics are SIS-type. In this scenario,
the alerting process can be the result of a partner notification
effort.

In the AC-SAIS model, we assume that if an alert individ-
ual never gets infected, she will remain in the alert state
indefinitely. In other words, we do not consider an aware-
ness decay process where alert individuals can transition to
the susceptible state directly. In practice, we are assuming
that the awareness decay process is so much slower than
the disease dynamics that it becomes irrelevant for the dis-
ease spreading. Interested readers can refer to [44] for analy-
sis of an SAIS model with awareness decay.

The current setup of the AC-SAIS model only considers a
type-2 preventive behavior of altering contacts, whereas the
original SAIS model considered a type-1 preventive behavior
by assuming a lower infection rate for alert individuals. It
would be possible to also incorporate type-1 behaviors in the
AC-SAIS model by lowering the infection rate for the alert
individuals to ba < b. In order to isolate the role of network
adaptation, we do not change the infection rate in this study.

The contact alteration scheme in the AC-SAIS model
assumes the contacts set of an individual only depends on
her own state; it is the default set when susceptible, and the
adapted set when alert. Particularly, the contact set of an
alert individual is fixed and is independent of the health
state of those contacts. Such contact adaptation scheme is
most sensible when the identity of infected contacts are not
known to the individual. For example, in the context of sex-
ually transmitted diseases and partner notification, the
identity of the infectious patient is not revealed to their part-
ners. So, a subsequent contact adaptation may not necessar-
ily lead to definite avoidance of infectious partners.

4.3 An Equivalent Multilayer Representation

From a networked dynamical system perspective, the net-
work topology in the AC-SAIS model is time-varying and
switches among 2N different possibilities because each node
i may adopt one of the two neighborhood sets N S

i and N A
i .

However, the AC-SAIS model can be equivalently inter-
preted as a spreading process on a two-layer network. The
AC-SAIS Markov process described in Section 4.2 falls in

Fig. 2. Schematic of the AC-SAIS model. Black edges correspond to
neighborhood N S

i of susceptible node i, while red edges represent the

neighborhood N A
i when node i is in the alert state. Here, b, d, and k are

the infection rate, curing rate, and alerting rate, respectively. YiðtÞ is the
number of infected neighbors of i in N S

i at time t and ZiðtÞ is the number
of infected neighbors of i inN A

i at time t.
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the broad class of generalized epidemic modeling frame-
work (GEMF) introduced in [68] for spreading processes on
multilayer networks. In essence, the switching contact net-
work of the AC-SAIS model can be equivalently described
as a spreading process on multilayer network G ¼
ðV;ES; EAÞ, where each layer determines the interaction
neighborhood that induces state change in a node, depend-
ing on its current state. Note that we only need to include
layers for susceptible and alert nodes, because the transition
of an infected node towards the susceptible state is sponta-
neous and does not depend on other nodes states.

Significantly, a multilayer network formulation of adap-
tive contact reduces the problem from defining a process
between 2N separate topologies to defining a process on top
of a static two–layer network, effectively modeling complex
switching dynamics with a conceptually straightforward
framework. The network layers GS ¼ ðV;ESÞ and GA ¼
ðV;EAÞ represent the two extreme cases among all possible
2N configurations. The network layer GS would be physical
contact network if none of the nodes were alert, and the net-
work layer GA would be the physical contact network if
none of the nodes were susceptible. Associated with net-
work layers GS and GA, we define the weighted adjacency
matrices WS ¼ ½wS

ij� and WA ¼ ½wA
ij�, respectively. The real-

ized topology at a given time will be a mixture of the two
network layers according to the collective node states at
that time. Interestingly though, we show it is possible to
characterize the behavior of the AC-SAIS model in terms of
the spectral properties ofWS andWA and their interrelation.

Remark. The actual, physical/social contact between the
network agents is fundamentally different from those repre-
sented by the multilayer network G. For example, a directed
edge ði; jÞ 2 ES is physically relevant only if node i is sus-
ceptible and node j is infected. Otherwise, node i and j
might have a different interaction if, for instance, both are
susceptible. However, the later is not relevant for disease
spreading and thus no need to be incorporated in our epi-
demic model. Take for instance the contact between node i,
who is a nurse, and node j, who is a student. These two
might not have any social contact in normal situation, how-
ever, when node j (the student) is sick, she can possibly
pass infection to node i (the nurse); and this is the contact
important for epidemic modeling purpose. Also, realize
that this contact is directional because when the nurse is
sick, she may not have a physical contact with the student.
This is why in our state-dependent contact network formu-
lation we do not make “undirectedness” assumption on the
underlying graph.

4.4 Mean-Field AC-SAIS Model

Similar to the networked SIS model described in Section 4.1,
the collective state XXðtÞ in the AC-SAIS model is a Markov
process. However, this Markov process is both analytically
and numerically intractable due to its exponential state
space size of 3N (each node can be in one of three states).
We can leverage the observation that the AC-SAIS model
falls in the GEMF class of stochastic spreading processes on
multilayer networks—for which Sahneh et al. [68] have
derived a system of nonlinear differential equations describ-
ing the evolution of state-occupancy probabilities after
adopting a first-order, mean-field-type approximation.

Following procedures explained in [68], we find the first
order mean-field-type approximate model for the AC-SAIS
model as

_pi ¼ �dpi þ bð1� qi � piÞ
X

wS
ijpj þ bqi

X
wA

ijpj; (2)

_qi ¼ kð1� qi � piÞ
X

wS
ijpj � bqi

X
wA

ijpj; (3)

for i 2 f1; . . . ; Ng, where pi corresponds to the probability
that individual i is infected, and qi corresponds to the prob-
ability that she is alert.

It is worthwhile to acknowledge the limitations of mean-
field models. Statistical physics tells us that MF approxima-
tions function suitably for infinite-dimensional networks.
While, they can perform very poorly for sparse or highly
structured networks, such as rings or low-dimensional latti-
ces, particularly close to critical model parameters. Despite,
the approximation allows for investigating extremely com-
plex dynamics, and discovering intriguing phenomena and
key network characteristics influencing them.

5 ANALYSIS OF AC-SAIS MODEL

In this section, we compute and study the epidemic thresh-
old of the mean-field AC-SAIS model in Eqs. ((2) and (3))
through analyzing its equilibrium points. Ourmotivation for
this approach stems from the mean-field SIS model which
exhibits a threshold phenomena in its equilibrium where a
stable (see, [72], [73], [74]) endemic equilibrium emerges [39].

To facilitate the subsequent analysis, we make the follow-
ing assumption on the structure of the default and adapted
neighborhoods throughout this article.

Assumption 1. The edge sets ES and EA are such that the two-
layer network G ¼ ðV;ES; EAÞ is M–connected according to
Definition 5.

5.1 Mean-Field Epidemic Threshold Equation

Our approach to finding the critical value tc for AC-SAIS
model (Eqs. (2) and (3)) is through examining the equilib-
rium points; as used by Van Mieghem for the SIS model in
[39]. The idea is to show that for t > tc an endemic equilib-
rium (p�i > 0; 8iÞ exists aside from the disease-free equilib-
rium.8 In this approach, strong connectivity of the
underlying contact network is pivotal. In case of the SIS
model, Van Mieghem [39] showed that if the contact graph
is strongly connected, equilibriums of the mean-field model
must either be all zero—the disease-free equilibrium—or
they must be strictly positive—the endemic equilibrium.
Following lemma shows that similar argument holds for the
AC-SAIS model (Eqs. (2) and (3)) under the M–connectivity
assumption of the multilayer network G as in Definition 5.

Lemma 4. Under Assumption 1, the equilibrium value of the
infection probability p�i is either zero for all individuals, or
strictly positive for all individuals. Moreover, a positive equilib-
rium satisfies

p�i
1� p�i

¼ t
ð�kþ 1ÞPwA

ijp
�
j

P
wS

ijp
�
j

�k
P

wS
ijp

�
j þ

P
wA

ijp
�
j

( )
; (4)

8. Note that tc is the mean-field model threshold value which is a
lower bound of the actual value in the exact stochastic SIS process.
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with effective infection rate t and relative alerting rate �k
respectively defined as9

t , b=d; �k ,
k

b
:

Proof. Assume p�j > 0. Letting _qi ¼ 0 in Eq. (3) for any node
iwith wS

ij > 0 or wA
ij > 0, yields

q�i ¼
�k
P

wS
ijp

�
j

�k
P

wS
ijp

�
j þ

P
wA

ijp
�
j

ð1� p�i Þ: (5)

Therefore, according to Eq. (2), the equilibrium infection
probabilities p�i satisfy

p�i ¼ b
ð1� q�i Þ

P
wS

ijp
�
j þ q�i

P
wA

ijp
�
j

dþ b
P

wS
ijp

�
j

: (6)

Replacing q�i from Eq. (5) in Eq. (6) yields the formula in
Eq. (4).

The rest of the proof concerns choosing i deliberately,
so that p�j > 0 guarantees p�i > 0, and repeating the pro-
cess until concluding positive equilibrium probabilities
for all nodes. We employ the definition of graphs
GGk ¼ ðPk;LkÞ associated with the multilayer network
G ¼ ðV;ES; EAÞ as explained in Section 3.2. According to
Definition 5, if G is M–connected, there exists k� such that
GGk� is a strongly connected graph. Eq. (4) indicates that
in order to get p�i > 0, both

P
wA

ijp
�
j and

P
wS

ijp
�
j must be

positive. Therefore, choosing i such that ði; jÞ 2 L1 (for
which wS

ij > 0 and wA
ij > 0) necessitates p�i > 0. Repeat-

ing this process yields the equilibrium probability of all
the nodes in the strongly connected component of G1

that contains j are all positive. This strongly connected
component of G1 becomes a single hypernode, which we
call J 2 P2, for graph GG2. So far, we have proved that
8j 2 J; p�j > 0. According to the definition of GGk, for
graph GG2, there is a directed link from component J to
component I, i.e., ðI; JÞ 2 L2, if and only if

9i 2 I such that wA
ij1
; wS

ij2
> 0 for some j1; j2 2 J: (7)

Since 8j 2 J; p�j > 0, we get p�i > 0 for the above choice
of i, which further indicates all the nodes of I have posi-
tive equilibrium values. As a result, all the nodes belong-
ing to the strongly connected component of GG2 that
contains J have positive equilibrium values. This proce-
dure can be repeated for GG3; . . . ; GGk� . Since, GGk� is
strongly connected, all the nodes of the network must
have positive equilibrium values. tu
We can find the epidemic threshold by examining the

equilibrium points in Eq. (4). For t < tc, the disease-free
state is the only equilibrium. However, for t > tc, another

equilibrium point pp� , ½p�1; . . . ; p�N �T 	 0, also exists in the
positive orthant. Therefore, we find the threshold value of
tc if we can find a critical value t ¼ tc such that p�i jt¼tc

¼ 0
while

dp�
i

dt jt¼tc
> 0 for all i 2 f1; . . . ; Ng. We have the follow-

ing theorem regarding the value of the epidemic threshold.
We would like to emphasize that such a threshold corre-
sponds to the mean-field approximate model (Eqs. (2) and
(3) ) and should not be confused as the actual threshold
value in the exact AC-SAIS Markov model.

Theorem 6. The threshold value tc for AC-SAIS model ((2) and
(3)) is such that the equation

zz ¼ tcð�kþ 1ÞF ðzzÞ; (8)

with

F ðzzÞi ,
P

wA
ijzj

P
wS

ijzj

�k
P

wS
ijzj þ

P
wA

ijzj
; (9)

has a nontrivial solution zz , ½z1; . . . ; zN �T 	 0.

Proof. Eq. (4) can be rewritten as

p�iP
wS

ijp
�
j

¼ tð1� p�i Þ
(

ð�kþ 1ÞPwA
ijp

�
j

�k
P

wS
ijp

�
j þ

P
wA

ijp
�
j

)
:

Now, we take the limit of both sides as t # tc, for which
p�i # 0 for 8i according to the definition of an epidemic
threshold. Since the limit of numerator and denominator
of fraction terms of both sides goes to zero, we apply the
L’Hôpital’s rule for limits [76]

lim
t#tc

d
dt p

�
iP

wS
ij

d
dt p

�
j

¼ tc lim
t#tc

ð�kþ 1ÞPwA
ij

d
dt p

�
j

�k
P

wS
ij

d
dt p

�
j þ

P
wA

ij
d
dt p

�
j

:

Defining zi , d
dt p

�
i jt¼tc

, the above equation will lead to (8).
The value of tc that solves (8) is the critical value for
which p�i ¼ 0, however, dp�i =dt > 0, denoting a second-
order phase transition at t ¼ tc. Therefore, tc is the epi-
demic threshold for AC-SAIS model ((2) and (3)). tu
Letting �k ¼ 0 in Eq. (9) yields F ðzzÞ ¼ WSzz, which reduces

Eq. (8) to the Perron Frobenius problem zz ¼ tcWSzz, suggest-
ing tc ¼ 1=�1ðWSÞ; the SIS mean-field threshold. For the
AC-SAIS model, the epidemic threshold condition pertains
to the nonlinear Perron-Frobenius problem (8). Though an
analytical solution is not expected, we can employ the tools
of Section 3.1.

In order to employ Theorem 6, we should prove our non-
linear map F in Eq. (9) is homogeneous and concave, and it
satisfies condition C2 defined in Definition 3. The map F in
Eq. (9) is defined for interior of the nonnegative cone. We
extend the definition to the boundary of the nonnegative
cone by letting F ðzzÞi ¼ 0 whenever

P
wS

ijzj ¼ 0 andP
wA

ijzj ¼ 0. In this way, F ðzzÞ is well defined for all zz 
 0. It
is obvious that F in Eq. (9) is a homogeneous map. Concav-
ity of F can be also deduced from the concavity of the func-
tion g : R2

þ ! Rþ defined as gðu; vÞ ¼ uv
uþv (which is half of

the harmonic average) because the arguments of u and v are
linear transformation of zi’s. Next lemma proves that it also
satisfies condition C2.

9. According to Poisson processes theory, the effective infection rate
t ¼ b=d is equal to the expected number of attempts per link that an
infected node makes to infect her neighbor during her infectious period
[75]. The relative alerting rate �k ¼ k=b indicates the ratio of the chance
that an infected neighbor cause her neighbor to become alert versus
the causing her to become infected. For instance, �k ¼ 1

2 means the
chance that a node becomes infected from her infected neighbor is
twice the chance of becoming alert as the result of interacting with the
same neighbor.
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Lemma 5. Function F , defined in Eq. (9), satisfies condition C2
if and only if the multilayer graph G ¼ ðV;ES; EAÞ is M–
connected.

Proof. We just argued that F , as defined in Eq. (9), is homo-
geneous and concave. Also, for any set J , FiðeJÞ > 0 if
and only if there exists i =2 J and j1; j2 2 J for which
wS

i;j1
> 0 and wA

i;j2
> 0, i.e., ði; j1Þ 2 ES and ði; j2Þ 2 EA.

Therefore, Theorem 5 is applicable and proves the
lemma. tu
Since we showed F in Eq. (9) is homogeneous and con-

cave, and satisfies condition C2, we can apply Theorem 4 to
prove existence and uniqueness of a strictly positive solu-
tion for zz to the nonlinear Perron–Frobenius problem (8).

Corollary 1. If the multilayer graph G ¼ ðV;ES; EAÞ is M–con-
nected, the nonlinear Perron–Frobenius problem (8) has a
unique solution zz ¼ zz� 	 0 with jjzz�jj2 ¼ 1. Furthermore, the
following numerical update law will converge asymptotically
to zz�

zzkþ1 ,
F ðzzkÞ þ czzk
F ðzzkÞ þ czzkk k2

; (10)

with c > 0, and the initial state zz0 	 0 and jjzz0jj2 ¼ 1. More-
over, the threshold value is tc ¼ 1

ð�kþ1ÞðzzT� F ðzz�Þ�cÞ.

5.2 Possible Solutions to MF Epidemic Threshold

Corollary 1 proves the existence and uniqueness of a solu-
tion for the AC-SAIS threshold formula in Eq. (8). Further-
more, the update law of Eq. (10) suggests a numerical
algorithm for finding the threshold value. Interestingly, a
numerical experiment in the next section (see, Fig. 3) shows
that the epidemic threshold value is a non-monotone func-
tion of contact adaptation rate (quantified by �k); indicating
faster contact adaptation is not necessarily always better in
suppressing epidemics. Here, we aim to predict such

scenarios without numerically solving the nonlinear Per-
ron-Frobenius problem for the epidemic threshold.

The idea is perturbing the threshold Eq. (8) around two
extreme cases of �k ¼ 0 and �k ! 1, for which we know the
exact solutions. Specifically, 1) for �k ¼ 0, the epidemic
threshold is tcj�k¼0 ¼ 1

�1ðWSÞ and zzj�k¼0 ¼ vvS is a solution,
where vvS is the dominant eigenvector of matrix WS ; and 2)
for �k ! 1, the epidemic threshold is tcj�k!1 ¼ 1

�1ðWAÞ and

zzj�k!1 ¼ vvA is a solution, where vvA is the dominant eigen-
vector of matrix WA. Thus, employing spectral perturbation
techniques, we can approximate the threshold value for
small and large values of relative alerting rate �k.

Theorem 7. The value of the epidemic threshold solving (8) has
the forms

tcð�kÞ ¼ 1

�1ðWSÞ ð1þ �kðCðWS;WAÞ � 1ÞÞ þ oð�kÞ; (11)

suitable for small values of �k, and

tcð�kÞ ¼ 1

�1ðWAÞ ð1þ �k�1ðCðWA;WSÞ � 1ÞÞ þ oð�k�1Þ; (12)

suitable for large values of �k, whereCðA;BÞ is

CðA;BÞ ,
XN

i¼1
uivi

PN
j¼1 aijvjPN
j¼1 bijvj

; (13)

and vvA ¼ ½v1; . . . ; vN �T and uuA ¼ ½u1; . . . ; uN �T are the right
and left dominant eigenvectors of A corresponding to �1ðAÞ
with vvTAuuA ¼ 1.

Fortunately, spectral perturbation of the nonlinear Perron-
Frobenius problem (Eq. (8)) leads to analytically tractable for-
mulas expressed in terms of spectral properties of individual
layersGS andGA, and their interrelation (as manifested byC
terms in Eqs. (11) and (12)). Using Eq. (11) for small values of
�k and Eq. (12) for large values of �k, we can categorize several
solution possibilities for the full range of �k values.

To reflect more realistic scenarios, we impose the con-
straint �1ðWSÞ > �1ðWAÞ, that is, we assume that if all
healthy individuals adopted their alert neighborhood
simultaneously, they would collectively raise the epidemic
threshold value, making their network more robust against
epidemics than the default contact graph GS .

The three scenarios for the dependency of the threshold
value on contact adaptation rate—as shown in Fig. 3—can
be characterize as the following:

1) Monotone scenario (the faster, the better): This is the
simplest case where the value of the epidemic
threshold increases monotonically with �k, as
simulated in Section 6 and shown in Fig. 3 by the
black curve. The monotone behavior happens if
CðWS;WAÞ > 1 and CðWA;WSÞ < 1. Such mono-
tonically increasing curve occurs, for instance, in
contact-avoidance cases10 where wA

ij � wS
ij. In other

words, if individuals only reduce contact with their

Fig. 3. Normalized epidemic threshold tcð�kÞ=tcð0Þ as a function of rela-
tive alerting rate �k ¼ k

b
, showing three dependency scenarios. All three

alert layers have the same spectral radius with respect to GS i.e.,
�1ðWSÞ=�1ðWAiÞ ¼ 1:5. Therefore, in all of them the threshold value
tcð�kÞ starts from tcð0Þ ¼ 1=�1ðWSÞ and converges to tcð1Þ ¼ 1:5tcð0Þ.
Graph GA1 is synthesized such that CðWS;WA1Þ < 1. From the red
curve we can observe that tcð�kÞ decreases for small �k values after which
it increases. Graph GA2 is synthesized such that CðWA2;WSÞ > 1. In
this case the blue curve tcð�kÞ is maximal around �k � 2. The topology of
graph GA3 is GS with reduced weights and is represented by the black
epidemic threshold curve which increases monotonically by �k.

10. This is because having wA
ij � wS

ij yields
PN

j¼1 w
S
ijvSj >PN

j¼1 w
A
ijvSj and

PN
j¼1 w

S
ijvAj >

PN
j¼1 w

A
ijvAj, which according to

Eq. (13), leads toCðWS;WAÞ > 1 andCðWA;WSÞ < 1.
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neighbors upon becoming alert, the higher the rate
they do so, the better; because the epidemic thresh-
old increases with the alerting rate in this scenario.

2) Overshooting scenario (moderate even better than
fast): It is possible that an optimal alerting rate �k
exists for which the adaptive network is most robust
with respect to spreading infection. In other words,
having a moderate contact adaptation rate is even
better than than the case where the alerting rate is so
large that alerting processes is almost instantaneous.
The blue curve in Fig. 3 corresponds to this case.
This scenario happens ifCðWA;WSÞ > 1.

3) Undershooting scenario (adaptation goes wrong if
slow): An interesting and important scenario is
when CðWS;WAÞ < 1. In this case, the value of the
epidemic threshold initially decreases as the value of
�k increases. If the switching rate is not fast enough,
the alerting process can unintendedly worsen the
infection spreading compared to keeping the default
contacts! The red curve in Fig. 3 depicts such
scenario.

The following lemma shows that asymmetry of contacts
is critical for observing the latter scenario.

Lemma 6. If WS and WA are both symmetric, CðWS;WAÞ is
lower-bounded as

CðWS;WAÞ � �1ðWSÞ
�1ðWAÞ : (14)

Given �1ðWSÞ > �1ðWAÞ (the alert layer is more robust
than the susceptible layer), the right hand side of Eq. (14)
will be always greater than 1. Hence, for undirected net-
work layers, it is impossible for the critical threshold of the
adaptive contact network to go below the critical threshold
of the default contacts layer, GS . We can conclude that
asymmetry of contacts is in part responsible for this unex-
pected behavior.

6 NUMERICAL EXPERIMENTS

In this section, we perform a numerical study to evaluate
our findings. For ES edges, we consider the well-known
“Football” network from [77] with N ¼ 115 nodes and
jESj ¼ 615 edges, and spectral radius �1ðWSÞ ¼ 10:8. Given
GS , we synthesize three adapted contact layers GA1, GA2,
and GA3 as described bellow, and compute their corre-
sponding threshold values as a function of the relative alert-
ing rate as shown in Fig. 3.

� The spectral radii of GAi graphs are all equal to 2
3 of

the spectral radius of GS , i.e., �1ðWAiÞ ¼ 2
3�1ðWSÞ. In

this way, we ensure that the adapted contacts layers
are more robust to epidemic spreading compared to
the default contacts layer. This can be verified in
Fig. 3 where tcð1Þ ¼ 3

2 tcð0Þ. Note that tcð0Þ is the
threshold value when �k ¼ 0, i.e., no adaptation
occurs, and tcð1Þ corresponds to �k ¼ 1 where the
contact adaptation occurs instantaneously.

� ForGA1,CðWS;WA1Þ < 1. From Eq. (11), we can pre-
dict that for small values of �k, the epidemic threshold
decreases below tcð0Þ, the threshold if no contact
adaptation was in place at all . Therefore, we expect

an undershoot in tcð�kÞ as a function of �k. This is the
configuration where contact adaptation can “go
wrong”; despite the fact that the alert contact net-
work is more robust, switching to it can adversely
aid in the spread of infection. The red curve in Fig. 3
corresponds to this scenario.

� ForGA2,CðWA2;WSÞ > 1. From Eq. (12), we can pre-
dict it is possible to get tcð�kÞ > tcð1Þ, an thus there
is a value for �k for which tcð�kÞ is maximum. This is
in contrast to GA1 in that the epidemic threshold for
the multilayer network is greater than its constituent
layers. In this configuration, the characteristics are
such that an enhanced robustness is created syner-
gistically. The blue curve in Fig. 3 corresponds to
this scenario.

� Graph GA3 is made by decreasing the link weights
from GS , representing a social-avoidance scenario.
As discussed in Section 5.2, we expect to see a
monotonic increase in the epidemic threshold as the
contact adaptation rate increases. The black curve in
Fig. 3 corresponds to this scenario.

In order to synthesize GA1 and GA2, we performed a
greedy search to obtain desired values of C functions. For
each alert contact graph,GAi, and subsequent multilayer net-
work representation, Gi ¼ ðV;ES;EAiÞ, we examine spread-
ing behavior at three effective infection rates t1 ¼ 0:9tcð0Þ,
t2 ¼ 1:3tcð0Þ, and t3 ¼ 1:7tcð0Þ, as seen in Fig. 3 (dotted
lines). In our numerical simulations, we have set d ¼ 1,
which without loss of generality, chooses the unit of time
equal to the expected curing period. Steady-state solutions to
the mean-field AC-SAIS Eqs. (2) and (3) are calculated for

10�2 � �k � 102 and fraction of population infected �p ¼
1
N

PN
i¼1 pi—as the indicator of severity of the spreading—is

plotted as a function of the alerting rate in Figs. 4, 5, and 6.

6.1 Adaptation Gone Wrong

For the multilayer network with GA1 as the adaptive contact
layer, we expect to observe increased epidemic sizes—due
to a decreased threshold (red curve of Fig. 3)—for a range of
low alerting rates.

In Case 1, the infection rate is chosen so that
t < tcð0Þ < tcð1Þ. In the top plot of Fig. 4, we can see that
for most �k values there is no outbreak, as one would expect
since the effective infection rate is below the either extreme
values. However, for 0:1 � �k � 1:2 an epidemic is sustained
due entirely to inter-layer dynamics creating conditions
where an epidemic is more effectively carried throughout
the population. In the context of persons altering who they
come into contact with, although in an effort to avoid
becoming infected, may in fact unintentionally contribute to
the opposite outcome.

For Case 2, with tcð0Þ < t < tcð1Þ, we observe two
regimes of behavior as depicted in the middle plot of Fig. 4:
for lower alerting rates, where the effective infection rate is
above the epidemic threshold tcð�kÞ, an infection is sus-
tained. For higher alerting rates the reverse is true since the
critical threshold goes above t.

In Case 3, effective infection rate is set above the critical
threshold (red curve of Fig. 3) for all values of �k, i.e.,
tcð�kÞ < t. Therefore, persistent infections are observed
regardless of contact adaptation rate in bottom plot of Fig. 4.
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6.2 Enhanced Robustness

We perform the same computations on when the adapted
contact layer is GA2

. Case 1 yields trivially zero infection
size. For case 2, shown in the top plot of Fig. 5, we observe
that increasing alerting rate beyond a certain value success-
fully suppresses the infection spreading. Case 3, shown in
the bottom plot of Fig. 5, provides an interesting observation
in that the critical threshold raises even larger than the alert
contacts layer, indicating that a moderate rate of contact
adaptation is indeed better than fast rates in enhancing the
robustness of the network. Therefore, for 0:8 < �k < 5, the
critical threshold increases such that no infection is sus-
tained. While for larger values an outbreak occurs, and the
infection size increases as contact adaptation rate increases.

6.3 Monotonic Dependency

In the third scenario, the adapted contact layer is con-
structed by lowering the edge weights of GS . This would
correspond to a social distancing scenario, where individu-
als limit or abandon their contacts when they become alert.
As can be seen by the black curve in Fig. 3, the threshold
value increases monotonically by the alerting rate. Fig. 6
depicts the second case where tcð0Þ < t < tcð1Þ. As
expected, there is a certain value of �k� so that the epidemic
infection is controlled for alerting rates �k � �k�. Case 1 and 3
are omitted for trivial behavior.

7 DISCUSSIONS AND CONCLUSION

The state-dependent switching (adaptive) contact network
in the AC-SAIS model leads to rich dynamics for the epi-
demic spreading process and behavior not yet identified in
literature (to the best of the authors’ knowledge). Intui-
tively, when nodes can “switch” to a neighborhood consti-
tuting a more robust network, the expected effect on the
overall robustness of the network would be to increase
monotonically with the alerting rate. As shown in Sections
6.2 and 6.1, this is not always the case. Indeed, we observed
non-monotone dependency of the epidemic threshold in
most of our experiment trials. We show how the adaptive
switching topology of the contact network is different from
fixed static graphs and can lead to regimes of extreme or
unexpected behavior. In particular, it is possible that adap-
tive behavior towards a supposedly more resilient network
can in fact worsen the severity of an outbreak, or enable the

Fig. 4. The effect of alerting rate on infection size for the undershooting
scenario, for which the epidemic threshold dependence on �k is depicted
by the red curve in Fig. 3. Case 1 (top) Despite setting the effective infec-
tion rate below that of the extreme cases, i.e., t < tcð0Þ < tcð1Þ, an
epidemic outbreak is still observed for small alerting rates because t is
larger than the minimum of tcð�kÞ. case 2 (middle) Effective infection rate
lies in between the two extreme values, i.e., tcð0Þ < t < tcð1Þ. There
is a slight increase in infected individuals after which the infection size
drops to 0 due to the increase in the critical threshold. Case 3 (bottom)
Persistent infections are observed regardless of contact adaptation rate
because tcð�kÞ < t for all �k.

Fig. 5. The effect of alerting rate on infection size for the overshooting
scenario, for which the epidemic threshold dependence on �k is depicted
by the blue curve in Fig. 3. Case 1 This case is omitted since the infection
size would be 0 regardless of the alerting rate. Case 2 (top) The behavior
is similar to case 2 with GA1 (middle graph in Fig. 4) though the transition
to zero infection size occurs at a smaller alerting rate. Case 3 (bottom)
This is a scenario when the effective infection rate is larger than the
extreme values ðtcð0Þ < tcð1Þ < tÞ, yet it is less than the maximum of
the threshold curve tcð�kÞ as seen by the blue curve in Fig. 3. A non-zero
infection size is observed for small alerting rates, eventually tcð�kÞ raises
above t so that an epidemic cannot be sustained. As the threshold con-
verges towards tcð1Þ, an epidemic can once again persist, and the infec-
tion size even increases by the contact adaptation rate.

Fig. 6. The effect of alerting rate on infection size for the monotone sce-
nario, for which the epidemic threshold dependence on �k is depicted by
the black curve in Fig. 3. Case 2 Similar to Sections 6.1 and 6.2, case 2
shows a transition between low and high alerting rates where epidemic
outbreaks occur for the former and not the latter. Cases 1 and 3 are omit-
ted for trivial behavior.
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possibility where it did not exist before. On the other hand,
it is possible to configure network layers such that the multi-
layer network is more robust than either individual layer.

It is noteworthy to mention that some results in the litera-
ture point to the observation that contact adaptation do not
always aid suppressing the infection. For example, Meloni
et al. [26] considered a self-initiated behavior where individ-
uals change their mobility patterns. When travelers decide
to avoid locations with high levels of infection and travel
through locations with low levels of infections, this behav-
ioral change may facilitate disease spreading because
individuals effectively act as vectors of the disease trans-
mission. It is very important to highlight the difference of
the underlying mechanism between these formerly reported
results and the “adaptation-gone-wrong” behavior in this
paper. In our model, individuals who adapt their contacts
(alerts) do not act as vectors for propagating the infection
because they do not carry infection. This comes purely as a
result of the adaptive behavior, signifying the importance of
further analysis of state-dependent networks.

Finally, we would like to highlight several aspects of this
study that go beyond the specific epidemic model consid-
ered in this paper. We developed a necessary and sufficient
condition for existence and uniqueness of a positive eigen-
vector for homogeneous, concave maps. Furthermore, our
utilization of multilayer networks to formulate dynamics on
state-dependent switching networks is novel and can facili-
tate analysis of many networked dynamical systems. In our
analysis, we come up with concepts that are genuine and
novel to multilayer networks. Specifically, our analysis
leads to 1) critical phenomena characterized by a nonlinear
Perron Frobenius equation, and 2) the definition of M–
connectivity. Our proposed concept of M–connectivity can
easily scale to more than two layers. Furthermore, the joint
descriptor C in Eq. (13) emphasizes the importance of joint
descriptors when characterizing dynamics over multilayer
networks. While network science has flourished in under-
standing intra-layer network topologies, intrinsic descrip-
tors of inter-layer connectivity of multilayer networks are
yet to be investigated.
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