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Abstract— We develop foundations and several constructions
for security protocols that can automatically detect, without false
positives, if a secret (such as a key or password) has been misused.
Such constructions can be used, e.g., to automatically shut down
compromised services, or to automatically revoke misused secrets
to minimize the effects of compromise. Our threat model includes
malicious agents, (temporarily or permanently) compromised
agents, and clones.

Previous works have studied domain-specific partial solutions
to this problem. For example, Google’s Certificate Transparency
aims to provide infrastructure to detect the misuse of a certificate
authority’s signing key, logs have been used for detecting endpoint
compromise, and protocols have been proposed to detect cloned
RFID/smart cards. Contrary to these existing approaches, for
which the designs are interwoven with domain-specific consider-
ations and which usually do not enable fully automatic response
(i.e., they need human assessment), our approach shows where
automatic action is possible. Our results unify, provide design
rationales, and suggest improvements for the existing domain-
specific solutions.

Based on our analysis, we construct several mechanisms for
the detection of misuse. Our mechanisms enable automatic
response, such as revoking keys or shutting down services,
thereby substantially limiting the impact of a compromise.

In several case studies, we show how our mechanisms can
be used to substantially increase the security guarantees of a
wide range of systems, such as web logins, payment systems,
or electronic door locks. For example, we propose and formally
verify an improved version of Cloudflare’s Keyless SSL protocol
that enables key misuse detection.

1 Introduction

Most secure systems depend on secrets, and in particular cryp-

tographic keys. Consequently, many technical and procedural

measures have been developed to prevent the leakage of secrets,

such as hardware security modules.

In reality, secrets are often compromised in various ways,

either through compromising a system holding them, implemen-

tation bugs, or cryptanalysis. This has driven the need to design

mechanisms to cope with the compromise of a secret, such as

key revocation procedures, user blacklisting, or disabling the

relevant services entirely. However, independently of designing

these response mechanisms, a core question remains: how can

we tell if a secret has been compromised? In other words: when
are we supposed to invoke these response mechanisms?

If an attacker compromises a secret but never makes any

visible use of it, it can be hard (or even impossible) to detect

the compromise. However, in many cases, the attacker has

some other goal, which it can only perform using the secret.

For example, to log into a service, to request a document, or

to trigger a specific action of the system like opening a door.

This observation is used by mechanisms like SSH’s reporting

of the last login, or Gmail’s reports of current sessions. In these

settings, the service informs the user about the details of their

prior session(s). If an attacker compromises the user’s secret

and logs in, the user could, in theory, detect this manually upon

their next login. In practice, users often ignore this information

or cannot be expected to remember precisely when they logged

in to each service they use.

Further mechanisms that aim to facilitate detection include

Certificate Transparency and its relatives, which aim to make

relevant uses of certificate authority (CA) publicly observable,

thereby making it possible to detect misuse. However, while

these mechanisms typically provide a means to observe key

uses, they do not prescribe how to determine if the observed

key use is honest or when to invoke a response mechanism if it

is not. In practice, a domain owner or CA must manually check

for an inappropriately issued certificate in the log, and then

decide to take action—which may involve further out-of-band

communication to obtain additional details not visible in the

log—before any response mechanism is invoked.

This leads to several questions. First, is it possible to

automatically determine that a secret is being misused at the

protocol layer, to avoid reliance on human input? In this case,

what guarantees could be given? In particular, we focus on

detection mechanisms that do not yield false positives, which

enables a positive detection to automatically trigger a response

mechanism that is appropriate for the secret involved (such as

key revocation).

Second, what are the underlying observations that make such

mechanisms work? Is there any connection between the various

mechanisms that aim to detect the misuse of secrets? What are

the limits of detection, and what principles would be useful to

protocol designers, in the style of [2]?

Contributions. Our main contributions are the following:

First, we provide the first general foundations for provably
sound detection of the misuse of secrets, i.e. detection that
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allows for automatic response. Our focus on detection as

a verifiable security property without false positives leads

to solutions that can be used to automatically revoke keys,

access, or invoke other countermeasures. Our foundational

approach also provides new insights into the design choices in

existing mechanisms. For example, for detecting the misuse of a

Certificate Authority’s key on the internet, our results show that

both the domain owner and the CA could automatically perform

a certain kind of detection (“acausal detection”) that no other

parties can perform, which leads to suggestions for improving

detection mechanisms in this domain, such as Certificate

Transparency. More generally, our results reveal which agents

can perform which types of detection automatically, clearly

delineating what is possible and impossible to achieve in theory.

Second, we apply our foundational work to identify and

develop several principles and generic protocol constructions

to automatically detect the misuse of secrets. We then show how

such constructions can be applied to improve the security of a

variety of existing mechanisms, ranging from the previously

mentioned certificate authorities to card-based door access. For

example, we propose a simple modification to Cloudflare’s

Keyless SSL protocol [10] to enable the customer to detect

misuse of the CDN’s keys, which can directly trigger revocation.

We formally verify our proposals using the TAMARIN prover.

We additionally use our techniques to suggest improvements

to the Common Access Card [23], and the certificate creation

procedures of CAs.

We proceed as follows. In Section 2, we provide an informal

introduction to the idea of misuse detection. We then, in

Section 3, develop foundations and protocols for the automatic

detection of the misuse of secrets. We construct example

protocols and apply these constructions to concrete application

examples in Section 4. We describe related work in Section 5

and conclude in Section 6.

2 Foundations: an informal introduction
In this work we investigate a problem which has only been

studied in limited instances so far: the automatic detection

of the misuse of secrets. In an ideal world it would be

possible to indefinitely prevent secrets from being compromised.

Realistically, we cannot assume this is guaranteed, which drives

the need for mechanisms and procedures that can mitigate the

damage of a compromised secret.

We observe that if an attacker silently obtains a secret but

performs no visible actions based on this information, the

compromise fundamentally cannot be detected. Furthermore,

if the attacker obtains all necessary secrets to impersonate the

original owner, performs actions using those secrets that are

identical to the expected behaviour of the original owner, and

the original owner performs no further actions (e.g., because

they are deceased), then to all other participants the attacker’s

behaviour is indistinguishable from the original owner. In a

way, the attacker would have completely taken over the life of

the original owner. Thus, informally, the only situation in which

we can hope to detect the misuse of those secrets is when the

attacker deviates—or rather, is forced to deviate—from the

original owner’s behaviour or ongoing actions.

In this work, we are interested in protocols in which

participants obtain specific evidence of deviation (that is, there

are no false positives). This would allow detecting agents

to immediately trigger appropriate countermeasures, such as

disabling a service, revoking keys, or blacklisting users. Thus,

our work contrasts with the field of anomaly detection, where

one of the challenges is to detect behaviours that are allowed

by the specification, but unlikely to occur during normal usage;

such detection is typically plagued by false positives, and it is

hard to take countermeasures as a result.

Consider the following examples of protocols which allow

agents to differentiate adversary action from action by the

honest agents, which each examine a different aspect of

detection that we will return to in Section 3.

Example 1. Alice has a secret kA which she can use to
authenticate messages. The adversary compromises this secret,
and sends an authenticated message which is obviously
incorrect. For example, the authenticated message might be “I
compromised this secret”.

Example 1 is unlikely to occur in practice, but it is still a

valid action the attacker could take so it is important to take it

into account.

Example 2. Alice and Bob have signing keys kA and kB
respectively, and send each other messages authenticated with
their keys over a public channel. They each maintain a counter,
and when Alice sends a message to Bob she increments her
counter, generates a new nonce nA and includes them both
in her message along with the last nonce received from Bob.
Upon receiving this message Bob checks that his last nonce
matches, increments his counter, and checks that it matches
the one in the message. Similarly, when Bob sends a message
to Alice, he includes a newly generated nonce nB , his counter
value, and Alice’s last nonce nA. The next message from Alice
contains a new nonce n′A, nB , and an incremented counter
value, the next message from Bob a nonce n′B , n′A, and his
counter value, etc.

Example 2 illustrates a simple case in which misuse can

be detected. If an attacker gains knowledge of kA and the

current value of the counter, and injects a new message

purporting to be from Alice, then Alice’s and Bob’s value

of the counter will become de-synchronised and they could

detect upon comparison that kA was misused. However, this is

somewhat limited, as an attacker with knowledge of both keys

who observes a counter value could strike up conversations with

Bob, then wait for Alice to send messages. By intercepting these

and returning a message to Alice which appears to be from Bob

the adversary can increment Alice’s counter until it matches,

and then inject one more message to each to resynchronize

their nonces. Alice and Bob are left in a state as if the attacker

were never involved.

Note that because Alice and Bob’s counter values rely only
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on the number of messages exchanged and not on their content,

it is impossible to determine if they agreed on all previous

message content. Thus, the attacker can resynchronize them

even after they have disagreed about the messages exchanged.

Example 3. Instead of using a counter, Alice and Bob adopt a
system of ‘rolling nonces with hash chains’. When Alice sends
her authenticated message to Bob, she includes a new nonce
nA and a hash chain of the previous nonces used by both
parties in the conversation. Bob then checks the value of the
hash chain matches his own, and when sending a message to
Alice does likewise, including a new nonce nB and extending
the hash chain with nA. The next message from Alice contains
a new nonce n′A and the hash chain extended with nB , etc.

In Example 3, suppose an attacker obtains Alice’s key kA
along with the current nonce and hash chain. The attacker

can inject conversations with Bob, which necessarily extends

Bob’s hash chain with new values. If the attacker ever stops

intercepting messages between the two, his session will be

detected, since the hash chain of Alice will not match and the

adversary has no way to ‘rewind’ Bob’s additions to his hash

chain. Indeed, even if both keys kA and kB are compromised,

this example with hash chains allows for detection if ever the

attacker tries to back out of the conversation, as any session

the attacker carries out with either of them has an irreversible

effect on their state.

3 Foundations and design space

In this section, we develop formal foundations and explore

the design space for detecting of secret misuse. While our

contributions can be informally understood and applied in

practice by skipping most of this section and immediately

moving to Section 3.5, our formal work serves the following

purposes: it enables us to precisely define the relevant concepts,

explore the design space more systematically, and will enable

us later to prove that some protocols indeed achieve detection.

We will use the resulting definitions in Section 4 to develop

concrete protocols, prove their correctness, and show how to

improve existing systems.

First, in Sections 3.1 to 3.3, we build the necessary

framework to formally define what it means to soundly detect

compromise, and what is necessary for detection. This leads us

to classify the possible ways misuse can be observed into three

broad categories in Section 3.4 and show that they together

form a complete categorization. Finally, we combine these

elements for the design space in Section 3.5.

3.1 Basic mechanisms
We introduce basic notation for a generic class of protocols

and an abstract notion of detection. This enables us to formally

define what it means to (soundly) detect compromise, and what

is necessary for detection. We then isolate in Section 3.4 three

different ways agents can observe key misuses: inconsistency

with a protocol specification, contradictions, and acausality. We

will use these three types of observation to guarantee detection

in particular scenarios, and apply this in Section 4 to design

and improve protocols.

We assume a finite set of agents Agent as participants,

each of which has some associated state, access to a random

number generator, and which can communicate only through

sending and receiving messages on a network. Agents perform

actions according to a protocol. A protocol is a deterministic

algorithm to be run on a Turing machine with agent state as

input, which returns an action to perform. Such actions may

include sampling the random number generator, sending or

receiving messages on the network, modifying their state, etc.

We write Protocol to denote the set of all protocols.

To model adversarial activity, we assume the existence

of an adversary with similar resources to the agents, but

with the additional ability to perform actions which remove

messages from the network and compromise parts of agent state.

Adversary actions are provided by a deterministic algorithm,

which we call an adversary model. It runs on a Turing machine,

taking adversary state as input and outputting an action for

the adversary to perform. We denote the set of all adversary

models Adv.

The definition above does not allow for malicious agent

activity, since all agents are assumed to follow the protocol.

We emulate malicious agents instead through the adversary

model, which may include completely compromising the state

of some agents. Since agent actions are a function of their

state, and since all communication with other agents occurs

through the adversary-controlled network, this is sufficient to

allow adversary emulation of an agent. This makes it easier

to abstractly distinguish potentially malicious actions from

honest and correct actions in the trace, while allowing for

over-approximation of the abilities of malicious agents (since

the adversary model may include controlling the network or

compromising additional agents).

Each combination of a protocol P ∈ Protocol and adversary

model A ∈ Adv gives rise to a transition system with agent

states, the network as a set of messages, and the state of the

adversary. We log each action performed by agents or the

adversary as events in a trace, with the requirement that the

trace contains sufficient information to reconstruct the state

of the adversary and every agent at the end of the trace. For

example, an agent performing an action to sample the random

number generator would be logged as an event including the

resulting value. We call a set of all possible traces arising

from some protocol and adversary model a trace set, and use

Tr(P,A) to refer to the trace set of a particular protocol P and

adversary A. Note that trace sets are prefix-closed, as individual

transitions are assumed to be atomic and the participants can

stop at any time.

Generally we do not care about the specific actions performed

by the agents or the adversary, or their resulting encoding

in the trace, other than requiring an abstract way to refer to

certain events relevant to detection. This allows us to restrict the
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actions of participants as little as possible while still having well

defined communication structure. We use compromise(k) to

refer to any adversary event that compromised some data k from

any agent’s state; this allows us to refer to, for example, the

subset of traces in a trace set in which a particular term is never

compromised. We use send and recv to refer to any agent

event which sent (resp. received) on the network, parametrized

by the message involved. Finally, we denote detection of a

compromised k by a special agent event detect(k).
The initial state of the agents includes both agent-specific

data as well as any public data assumed to be known to the

adversary as well as the agent (e.g. some settings may assume a

public key infrastructure). Adversary initial state contains only

this public data. Since we do not bound the computation time

of the agents or adversary, we instead assume a symbolic model

of security in which a term algebra (e.g. that of TAMARIN [19])

defines how terms may be derived.
In order to discuss a particular subsequence of events in a

trace, we define the sequence projection operator. For a set S
of trace events, the projection |S is defined as

〈〉|S = 〈〉
(〈e〉 · tr′) |S =

{
tr′|S if e �∈ S
〈e〉 · (tr′|S) if e ∈ S.

We define the projection �S as the projection onto the

complement of S, |Sc . For shorthand, we enumerate some

common projections that we will use throughout this section:

• For a set X ⊆ Agent, |X for all trace events e such that

one of the agents in X is performing e,

• |c(k) for all compromise(k) events,

• and |event for all trace events e of type event.

Projection is distributive over sets of sequences, so a projection

of a set of sequences is the set of each sequence with the

projection applied. We address elements of a sequence s as

s1 . . . s|s| from the first to the last element. We overload set

notation for sequences and write e ∈ s for a sequence s if and

only if ∃i . si = e.
We focus on detection protocols that can automatically

trigger an appropriate response when they detect, such as

key revocation, disabling services, or blacklisting users. To

enable this, it is important that there are no false positives.

Formally,

Definition 4 (Soundly detecting protocol). We say a detecting
protocol P ∈ Protocol is sound with respect to an adversary
model A ∈ Adv if

sound(P,A) ≡ ∀tr . tr ∈ Tr(P,A) =⇒
∀k .

(
detect(k) ∈ tr =⇒ compromise(k) ∈ tr

)
.

In this paper we do not prescribe a response mechanism for

key compromise, since this is an orthogonal area of research

(and often involves side-channels or other scenario- or system-

specific resources). We instead discuss which parties can

detect and when. Soundness enables any detecting party to

immediately trigger whichever response mechanism it deems

appropriate.

3.2 Reasoning about agents

In order to reason about agent capabilities, we must be able

to talk about their state as well as the possible actions they

can perform under particular constraints. We begin with some

notation to discuss the state of agents after a trace. Since trace

events are, by definition, enough to determine how agent state

changes with each action, the state of some agents at some time

along with a sequence s of events are sufficient to determine

the state of those agents after s. This is formally stated in

Corollary 6.

Definition 5 (State after a trace). For a set of agents X ⊆
Agent, we introduce the notation state(tr,X) to represent the
collective state of the agents of X after a trace tr.

Corollary 6 (State convergence). Let tr and tr′ be two traces
in a trace set T such that state(tr,X) = state(tr′, X), and
X ⊆ Agent. Then

∀s . tr · s ∈ T ∧ tr′ · s ∈ T =⇒
state(tr · s,X) = state(tr′ · s,X).

The state of particular agents’ after trace tr are, by necessity,

some function of tr|X , since all state changes of an agent

arise from actions they perform. Notably, this requires that

state(tr,X) = state(tr′, X) if tr|X = tr′|X .

State convergence is a particularly useful property, because

it implies that a subset of agents cannot differentiate two traces

in which their combined states are the same, unless they later

receive a message that is only possible in one of the two. In

fact, we can lift this to prove practical limitations on when

it is possible to detect even when agents can run an arbitrary

protocol between themselves. We define protocol extensions
to capture the events that could occur running a secondary

protocol, without an adversary, after a particular trace.

Definition 7 (Protocol extension). Let T = Tr(P,A) for some
protocol P and adversary A. A protocol extension performed
by a set X ⊆ Agent beginning from the trace tr is the set
of all sequences of agent events s performed by agents in X
such that tr · s ∈ T , and s is independent of all prior network
events. Formally,

SP (tr, T,X) ≡ {s | (tr · s) ∈ T ∧ (s|X = s) ∧
∀m, i .

(
si = recv(m) =⇒

∃j < i . sj = send(m)
)}

.

We use SP (tr, T ) as shorthand for SP (tr, T,Agent), which

is equivalent to omitting only adversary events from the

protocol extensions.

Intuitively, these protocol extensions represent what a set of

agents can do by running a protocol amongst themselves after

a particular trace, in an ideal environment where no adversary

interferes. State convergence can be leveraged to show a useful

property of the protocol extensions across all possible protocols.

206

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 23:56:01 UTC from IEEE Xplore.  Restrictions apply. 



Lemma 8. Let T = Tr(P,A) for some protocol P and
adversary A, and X ⊆ Agent a set of agents. Then

∀tr, tr′ ∈ T . (state(tr,X) = state(tr′, X)) =⇒
SP (tr, T,X) = SP (tr′, T,X).

That is, for every protocol, any two traces tr and tr′ where
state(tr,X) = state(tr′, X) have the same X-protocol exten-
sions.

Proof. Assume otherwise; that is, there is a trace suffix s in

SP (tr, T,X) that is not in SP (tr′, T,X).
If s �∈ SP (tr′, T,X), then by the definition of protocol

extensions either s|X �= s, or there are recv events with no

corresponding send in s, or tr′ · s �∈ T . The first two are

trivially false by the requirement that s ∈ SP (tr, T,X), so it

must be true that tr′ ·s �∈ T . We will construct tr′ ·s recursively

to show that this is false.

Take the first element of s, which we will call e such that

s = 〈e〉 · s′ for some sequence s′. The set T is prefix-closed

since it is generated by a protocol, and by the definition of

protocol extension, tr · s ∈ T , so tr · 〈e〉 ∈ T .

If tr′ · 〈e〉 �∈ T , then this must be because the action

corresponding to the event e cannot be performed after tr′.
The event can only rely on receivable messages on the network,

the output of the random number generator, or the state of

the agent, so one of these must differ between tr and tr′.
However, the antecedent requires that both the states and sent

messages are identical, and the random number generator does

not depend on the prior trace, so none of these can be the case

and thus tr′ · 〈e〉 ∈ T .

By Corollary 6, state(tr · 〈e〉, X) = state(tr′ · 〈e〉, X), and

because every trace is finite we are left with a shorter s′ on

which we can repeat the argument above to eventually find

that tr′ · s ∈ T , a contradiction.

Lemma 8 allows us to begin reasoning about the space of

possible actions a set of agents can take. It shows that after a

trace, a set of agents performing any protocol at all amongst

themselves are still limited to some computation over their

collective state.

Note there is an equivalent definition of soundness in terms

of protocol extensions.

Lemma 9 (Equivalent definition of soundly detecting). For a
detection protocol P ∈ Protocol and adversary model A ∈
Adv,

sound(P,A) ⇐⇒
∀tr, s . tr ∈ Tr(P,A) ∧ s ∈ SP (tr, T r(P,A)) =⇒

∀k . (detect(k) ∈ s =⇒ compromise(k) ∈ tr) .

Proof. (Sketch) If a protocol is sound, then detect(k) events

must be preceded by a compromise(k) event in all traces.

Since compromise(k) cannot occur in the protocol extension

s by definition, a detect event in s implies a compromise

event in tr.

In the other direction, let us assume that detect events in

protocol extensions imply a compromise event in the trace,

but the protocol is not sound. Since it is not sound, and trace

sets are prefix-closed, there exists a trace tr′ · 〈detect(k)〉
that ends with a detect event but with no compromise event

in tr′. But then the protocol extension of tr′ also contains this

detect event, a contradiction.

3.3 Observability of misuse
Whether a usage of a key is ‘correct’ in general may not be

possible to determine from the limited perspective of an agent.

To detect misbehaviour, and its subsequent attribution to the

misuse of a secret, the protocol (or in a wider sense, the security

mechanism) must be designed to make the misuse observable

by the agent in question. We first give two examples to provide

intuition about the type of designs that (fail to) accomplish

this, before providing a more formal treatment of observable

misuse to build useful detection protocols.

Ideally, it would be possible to soundly detect any compro-

mise by the adversary. There is however an upper bound on

how much can be detected: intuitively, there is no possible

protocol for a set of agents to soundly detect secret misuse if

that misuse had no effect on them. We formalize this below,

using the protocol extension properties discussed above.

Lemma 10 (Sound detection requires state). For a secret k, a
set X of agents, and a trace tr in a trace set T = Tr(P,A)
generated by a protocol P with adversary A,

∀s, tr′ . s ∈ SP (tr, T,X) ∧ detect(k) ∈ s ∧
tr′ ∈ T ∧ (

tr′|c(k) = 〈〉
) ∧

state(tr,X) = state(tr′, X) =⇒
¬sound(P,A).

That is, if a set X of agents detect the misuse of k in a trace
tr ∈ Tr(P,A) when that state could also be reached in a
trace without compromise, then the protocol cannot be sound.

Proof. Assume it is possible for the agents in X to soundly

detect after tr, and thus there exists a suffix s ∈ SP (tr, T,X)
where detect(k) ∈ s.

The antecedent requires a trace tr′ where

tr′ ∈ T ∧ (
tr′|c(k) = 〈〉

)∧ (state(tr,X) = state(tr′, X)),

and from Lemma 8,

SP (tr, T,X) ⊆ SP (tr′, T,X).

Thus s ∈ SP (tr′, T,X). Since the agents detect in s after

a trace with no compromise events, the detection cannot be

sound.

The requirement that the state of the agents could arise in a

restricted trace set (in this case, traces with no compromise of

k) is a useful one, which we formalize in terms of agent state

being consistent with a trace set.

207

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 23:56:01 UTC from IEEE Xplore.  Restrictions apply. 



Definition 11 (State consistent with a trace set). Let T =
Tr(P,A) generated by a protocol P with adversary A. The
state of some agents X ⊆ Agent after a trace tr is consistent
with the trace set T if there is at least one trace in T which
leaves the agents in X in the same state as tr.

consistent(X, tr, T ) ≡ ∃tr′ ∈ T .

(state(tr,X) = state(tr′, X)) .

We say that misuse of a secret k in a trace tr ∈ Tr(P,A)
is unobservable by a set X of agents when

consistent(X, tr, {t | t ∈ T ∧ t �c(k) ∈ T}).
A trace involving key misuse which leaves the agents in some

state that is also reachable without a compromise of the key

limits the ability of the agents in X to detect; by Lemma 10

there is no idealized protocol the agents of X could run to

detect the misuse.

It is important to note that, while observability of secret

misuse is necessary for a set of agents to soundly detect it, it

is not sufficient to guarantee that deciding whether to detect

can be done tractably (i.e. in a polynomial amount of time).

For example, consider a toy protocol where an agent generates

a random value with some property and sends the output of a

one-way permutation applied to that value over the network

signed with their key—detecting misuse of that key may require

inverting the permutation to check if the input value had the

correct property.

3.4 Categorizing observable misuse
Lemma 10 shows that a set X ⊆ Agent must reach a collective

state inconsistent with the set of all traces without compromise

of k to have a possibility of soundly detecting it. In this section

we show a categorization of different ways an inconsistent state

might be reached, and prove some properties of them which

should be considered when designing or modifying a protocol

to detect secret misuse.

We divide the ways of observing misuse into three categories,

based on the messages received by an agent. The first, trace-
independent inconsistency refers to a received message that

could not have occurred at all without compromise. The second,

an observation of contradiction, refers to the observation of a

sequence of messages which, while each individually possible,

could not occur in that sequence without compromise. Finally,

an observation of acausality is when a sequence of received

messages requires action on the part of an agent in order to

occur in a trace set, but has occurred without such an action.

This final type of observation requires agents to be in a position

where they would know if the action did not occur.

3.4.1 Trace-independent inconsistency

The simplest way in which agents can determine that the

current trace is inconsistent with a trace set is by receiving a

message which could not occur in any trace of that trace set.

This category of misuse event is observable ‘statelessly’ in the

sense that it is inconsistent with the trace set independently

of the current trace. As such, we refer to this category of

observability as trace-independent inconsistency.

We formalize it as the negation of the predicate spec,

representing the ability to receive a message in any trace

within an arbitrary trace set T , where

spec(m,T ) ≡ ∃tr ∈ T . recv(m) ∈ tr.

and messages which cannot be received in a trace set are

referred to as out-of-specification. The latter are not expected

to arise often. Example 1 in Section 2 illustrates this.

3.4.2 Observing contradictions

The messages in a trace are contradictory compared to a trace

set if each message can occur individually but the sequence

cannot occur in any trace of the trace set. This is formalized

with the predicate contra.

Definition 12 (Contradictory messages). Given a set X ⊆
Agent, a trace tr, and a trace set T , we say that the agents of
X have received a contradictory sequence of messages when

contra(X, tr, T ) ≡(∀m . recv(m) ∈ tr =⇒ spec(m,T )
) ∧(∀tr′ ∈ T . tr|X |recv �= tr′|X |recv

)
.

Example 2 in Section 2 can detect because of the observabil-

ity of contradictory messages. In that example, each message

received from the other party is expected to include the next

counter value, so an agent could detect if they saw two messages

with the same counter value even if each message would be

valid on its own.

A stronger example making use of contradictory messages

to detect is found in transparency overlays like Certificate

Transparency, where the public log produces signed tree heads

for the auditors. These signed tree heads are expected to be

mutually consistent, and misuse of the log server’s key could

be detected in principle by receiving a tree head which is not

consistent with another tree head produced with the key.

Both trace-independent inconsistency and contradictory

messages allow an agent to store evidence of key misuse,

since the message or messages involved are enough to detect

irrespective of the receiving agent’s state. This allows, in

transparency overlays for example, the misuse of a log server’s

key to be proven to third parties by showing them two

inconsistent signed tree heads.

3.4.3 Observing acausality

While the previous two categories reason about received

messages, it is also possible to detect based on agent state

directly by counterfactual reasoning. For example, an agent

storing all prior uses of their key can identify misuse of their

key if they see a usage that is not in their state. This extends

in more complex ways: transparency overlays are based on the
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ability of an identity or domain owner to notice an entry in

the log that they did not request, on the assumption that only

the owner should be initiating the process to add an entry to

the log.

We define a notion of causal precedence, where an agent

causally preceding the messages of a trace has some guarantee

that they are required every time some sequence of messages

occurs in the trace set.

Definition 13 (Causal precedence). A set of agents X causally

precedes the messages of a trace tr in a trace set T if there
is some trace in which those messages can be received, and
in every such trace some agent in X must have participated
by sending at least one message. Formally,

causal(X, tr, T ) ≡ (∃tr′ ∈ T . tr|X |recv = tr′|X |recv
) ∧(∀tr′ ∈ T . tr|X |recv = tr′|X |recv =⇒ tr′|X |send �= 〈〉
)
.

Since the agents of X would expect to have performed some

action before or during a sequence of messages, their state may

become inconsistent with an uncompromised trace. In fact, the

only way the agents’ states can become inconsistent with a

trace set upon receiving an otherwise valid series of messages

is if they causally precede those messages in that trace set. We

formalize this in Lemma 14.

Example 3 in Section 2 makes use of causal precedence

to observe misuse, as Alice would expect to have generated

the nonce received in Bob’s message if the adversary has

compromised neither key. Note that in this case, Alice does not
causally precede Bob’s message if either of their keys has been

compromised, so it is not possible for Alice to determine which

key has been compromised if this occurs—that is, Alice’s state

will not be inconsistent with either trace set where one key is

compromised, just inconsistent with traces where neither key

is compromised.

Lemma 14 (Complete categorization). For a secret k, a set
X ⊆ Agent, and a trace set T = Tr(P,A), let tr ∈ T and
Tuc = {t | t ∈ T ∧ t �c(k) ∈ T}. If tr leaves the agents of
X in a state inconsistent with any uncompromised trace, then
compared to the trace set Tuc:

i) a message in tr is not possible in any trace, or
ii) the message sequence observed in tr is contradictory, or

iii) X causally precedes the messages observed in tr.

Formally,

¬consistent(X, tr, Tuc) =⇒(∃m . recv(m) ∈ tr ∧ ¬spec(m,Tuc)
) ∨

contra(X, tr, Tuc) ∨ causal(X, tr, Tuc).

Proof. Assume this is not true, so that X is not causal, nor

contains contradictory messages, nor are any of the messages

impossible in an uncompromised trace. From this, we will

reach a contradiction by constructing a trace in Tuc which

leaves the agents of X in the same state as tr.

If the antecedent is false, then expanding the definitions,

(∀recv(m) ∈ tr . spec(m,Tuc)
) ∧(∃tr′ ∈ Tuc . tr|X |recv = tr′|X |recv

) ∧(∃tr′ ∈ Tuc . tr|X |recv = tr′|X |recv ∧ tr′|X |send = 〈〉
)
.

Thus, there exists a trace tr′ ∈ Tuc where tr|X |recv =
tr′|X |recv and tr′|X |send = 〈〉. Since this trace is in Tuc we

can also conclude that tr′ �X ∈ Tuc, as the only way the agents

of X can influence the actions of the other agents or the

adversary is through send events.

We can now concatenate all events of tr|X onto this trace.

Each event is either local or relies on the state of the network;

by the assumption above tr′ must contain the same receive

events, so either the network already contains or the adversary

can already generate all of these messages after the trace tr′ �X .

Thus, tr′ �X · tr|X ∈ Tuc, and given that all the state transitions

of X are identical to those in tr, state(tr′ �X · tr|X , X) =
state(tr,X).

Note that in most cases, detection would only be feasible

when the set of agents X that observes the misuse is a singleton.

Nonetheless, knowing that some set of agents is able to observe

misuse can be valuable for guiding protocol design, as it may

be possible to modify the protocol so that these agents can

communicate enough to detect, or to narrow the number of

agents required to observe misuse. Alternatively, for some

systems it may be practical to assume some out-of-band channel

for communication between the observing agents, and perform

detection that way.

As an example, if a protocol requires at least one agent

from a set to make a request before a particular token is

produced, then that set of agents collectively causally precedes

the production of that token but none of the agents individually

do. However, if the protocol can be modified such that the

token produced depends on which agent requested it, then each

agent individually could causally precede the production of

their tokens. We distill lessons like these into general design

principles and constructions below.

3.5 Design space
We now revisit our observations to identify the possible

observation mechanisms and summarize design principles.

3.5.1 Main detection mechanisms

We identify three main mechanisms by which secret misuse

can become observable. Ultimately, all of them rely on the

observations that agents make through their interactions with

the network. The difference in approaches mainly depends on

the extent to which they take this information and their own

actions into account.

Recall that state inconsistency is necessary but not sufficient

for detection. Nonetheless, the categorization of observability

conditions provides a categorization of the types of detection

that can be designed into a detecting protocol.
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1) Trace-independent observability of any single message

in the trace set, which requires no knowledge of the prior

trace events.

2) Contradicting observations when a sequence of ob-

served messages cannot occur in a single honest trace. This

requires enough knowledge of prior observed messages

to determine if new observations contradict.

3) Acausal observations when the observed messages con-

tradict the agents’ knowledge of their own activity. This is

only possible for agents who causally precede the observed

message sequence in honest traces, and it requires enough

knowledge of past agent actions as well as prior observed

messages to determine whether the agent caused the

observed messages.

All agents can detect based

on trace-independent observability

Stateful agents can detect

based on inconsistent observations

Stateful agents that causally
precede the use of a secret can

detect based on acausal observations

Fig. 1. Venn Diagram of the type of agents and the detection mechanisms
that they might be able to use. Only stateful agents that causally precede the
use of a secret can use all three types.

3.5.2 Design principles

The combination of the three types of detection and the concrete

detection mechanisms leads to a number of design principles

for detecting the misuse of secrets.

We note that for any given application, there may be

practical and security considerations that affect whether and

how the principles can be applied. For example, the wish to

maintain confidentiality and unlinkability of messages may

limit the application of Principle 3. Restrictions on message

size, communication complexity, and storage size may limit

the applicability of any of the principles. This directly results

in a trade-off between such restrictions and the ability to detect

the misuse of secrets.

• Principle 1: Protocol messages should be tightly coupled

to prior messages. This helps maximise the possibility

of any misuse detection, and prevents an adversary from

‘resychronizing’ agents after misusing keys (e.g. the attack

described in Example 2). Stateless protocols necessarily

violate this principle.

• Principle 2: Include unique and unpredictable values

in messages. This helps to establishing contradicting

observations, and ensure an adversary cannot correctly

predict what an agent will do next. If values are not unique,

then agents could get identical observations from messages

sent at different points, making them indistinguishable.

If an adversary could predict the next exchange, they

could potentially carry it out in advance with one of the

participants and then take their place in the real exchange

without leaving any evidence.

• Principle 3: Maximize the spread of data that other

parties might find contradictory or acausal. Detection

requires observations, so it is important to increase the

opportunities for that to happen. Ideally, some observations

could be broadcast to all participants (e.g., used when dis-

seminating transactions in Bitcoin-like systems [12,15,21]

to detect double spending), but for many applications this

is not feasible. This motivates the need for compromise

solutions such as a gossip protocol (e.g., [9]).

• Principle 4: Identify which agents causally precede

important messages, and ensure they can observe those

messages. Agents who causally precede a sequence of

messages can detect more than agents who can only detect

by observing contradictions. It is therefore worthwhile to

ensure that the protocol enables the detection of acausal

observations as much as possible.

For example, in the PKI setting, the agents with causal

precedence are the domain owner and the CA, since a

certificate for domain signed with a CA’s key should only

exist after it has been requested by the domain and then

signed by that CA. If such a certificate occurs without

the request, or without the CA signing it, then the key

must have been misused. This principle is implicitly used

in systems like Certificate Transparency [17] and other

systems based on transparency overlays, which we will

return to in Section 4.3.

Some minor aspects of the above principles are similar to

principles from earlier work [2], but there are crucial differences.

Principle 1 explicitly requires state, which leads to a trade-

off between security guarantees and keeping track of state.

Principle 2’s unique values have been suggested before, but

not all messages need to have unpredictable values for other

security properties. This unpredictability is specifically useful

for detection. Principle 3, which suggests spreading data,

improves detectability at a clear cost in terms of transmissions,

which would be avoided by previously proposed principles

(except perhaps accountability). To the best of our knowledge,

Principle 4 is entirely derived from our detection-based

observations, though it is implicitly used in some systems.

4 Applications

The design principles discussed in Section 3.5 are general

and can be used to improve existing systems in practice. In

this section, we illustrate this by applying the techniques

from Sections 3.4 and 3.5 to construct example protocols,

and use them as guides to modify existing real-world protocols,

including Keyless SSL [10], the Common Access Card (CAC)-

based physical access control [23], and the certificate creation

procedures of CAs. We show how these protocols can make use

of misuse detection methods to be resilient against compromise.

Finally, at the end of the section, we provide a collection of
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other popular systems, and briefly discuss each of them. In

particular, we show how they fit into our design principles,

and how our design principles can improve some of them.

We formally verified several of our case studies with the

TAMARIN prover [19], a tool for symbolic analysis of security

protocols. In its framework, properties are expressed in a

fragment of first-order logic that allows quantification over

timepoints. We provide the full models in [1].

For our TAMARIN models, we consider an arbitrary (un-

bounded) number of agents and sessions. We only restrict the

models in the sense that each agent executes sequentially. More

precisely, an agent doesn’t run two sessions concurrently with

the same peer. In all other respects our models are as accurate

as possible within the symbolic setting.

To help TAMARIN prove the properties, we manually

formulated several invariants (referred to as reusable lemmas

in the TAMARIN framework). Once these are formulated,

TAMARIN automatically proves the invariants and uses them

to prove the desired properties, i.e., no interaction is required.

4.1 Counting precedence and Keyless SSL

To illustrate the application of the principles, we imagine a

simple protocol in which one agent increments a counter each

time the other provides a fresh signature, similar to example 2.

In this setting, the causal structure is very clear: the counter

value is increased at most once for each signing key use.

The counter protocol is based on this idea, shown in Figure 2.

Note that throughout this section, a message m signed by using

signing key sk is presented as {|m |}sk, which includes both

the signature on m and the plaintext message m.

The counter protocol demands that R increase their counter

once for each unique signed message by I , where uniqueness

is ensured by requiring I to include a nonce generated by R
during the previous session. As such, I can determine whether

they caused each increment of R’s counter by comparing their

counter state with the counter returned by R. Hence, the counter

and nonce implement a minimal form of Principles 1 and 2:

while the values should be unique, the dependency on previous

messages is still relatively loose. From Principle 4 we find

that I causally precedes the signed messages and can therefore

perform causal detection.

Despite its simplicity, the counter protocol has a number of

desirable detection properties, which we formally verified with

Tamarin.

1) Soundness if sk(R) cannot be compromised: detection

events of a term imply it was compromised, for all traces

in T = Tr(P,A) where A cannot compromise sk(R).

∀t ∈ T, i, k . ti = detect(k) =⇒ (∃j < i . tj = compromise(k)) .

Note that if sk(R) can be compromised, detect(sk(I))
instead implies that sk(I) or sk(R) is compromised, which

may still be a useful property.

I R

- create a nonce nii
- m1 := {| I, R, nii, nri−1 |}sk(I)

m1

- verify m1 and I, R, nri−1

- generate a nonce nri
- cri := cri−1 + 1
- m2 := {|R, I, nri, nii, cri |}sk(R)

session(Resp, I, 〈nri, nii, cri〉)

m2

- verify m2 and R, I, nii
- detect (sk(I)) if cri �= cri−1 + 1
session(Init, R, 〈nri, nii, cri〉)

Fig. 2. The counter protocol. The inclusion of nri−1 in m1 could instead
be provided as a nonce in an additional message m0 = {|R, I, nri |}sk(R),
as in the Keyless SSL example in Figure 3

2) Detection guarantee for past sessions if sk(R) cannot be
compromised: In the trace set T = Tr(P,A) where A
cannot compromise sk(R), if there is a matching session in

which I did not detect, then every session before matched.

∀t ∈ T, I, R, i1 < i2 < i3, data1, data2 .

ti1 = session(Init, R, data1) ∧ ti2 = session(Resp, I, data2) ∧
ti3 = session(Init, R, data2)∧¬(∃k, i1 < j < i3 . tj = detect(k))

=⇒ (∃j < i1 . tj = session(Resp, I, data1)) .

Keyless SSL: Keyless SSL was designed by CloudFlare

to allow the provision of CDN services to web services that

cannot or do not want to cede their certificates’ private keys to

CloudFlare [10]. In Keyless SSL, CloudFlare’s servers interact

with a customer-provided key server, which decrypts pre-master

secrets as needed for CloudFlare to carry out key exchanges

as if they knew the customer’s private key.

In practice, this means that a large number of different private

keys are each sufficient to use the customer’s key server as

an oracle, with much greater control over key issuance and

revocation than in a typical TLS environment. This makes

detection of key misuse especially valuable.

We consider the TLS DHE carried out between a CDN

server C (the initiator), and a web service owner W . C and W
each hold secret keys sk(C) and sk(W ), respectively. They also

have some means to validate each other’s public keys–typically,

pk(W ) would be provided through some authenticated side

channel while pk(C) is signed by a CDN-specific CA known to

W . In this setting, we wish to provide some security guarantee

against an attacker who obtains sk(C) and all state information

(i.e. nonces) of C generated in any session. The protocol

currently violates Principle 1, as it is essentially stateless.
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C W

nci, . . .

. . . , {|nci, nwi, . . . |}sk(W )

- verify signature and nci
- cci := cci−1 + 1
- derive kci, kwi from DH parameters

- m3 :=
(
. . . , {| cci,H(m1,m2), . . . |}sk(C)

)

m3

- verify m3

- detect if cci �= cci−1 + 1
- derive kci, kwi from DH parameters
- m4 := . . . , MACkwi(H(m1,m2,m3), . . . )

m4

- verify m4

Fig. 3. An example of the additions to the i-th session of the TLS mutually-
authenticated key exchange in Keyless SSL. For clarity, we omit terms in the
messages that are not relevant. Our modifications are highlighted in bold blue.

The goal of our protocol modification is to detect the

compromise of sk(C), and we apply Principles 1, 2, and
4 to achieve this. In the first session, the counter begins at

some known value, say ‘0’. In the ith session, when C is

establishing a shared secret with W , C begins a mutually-

authenticated TLS exchange by creating a new nonce nci and

sending the ClientHello message to W . Upon receiving

this message, W generates its own nonce nwi and replies to

C with, among many other things, a signature on nci and nwi

in m2. Note that the exchange so far is unmodified from the

standard TLS mutually-authenticated DHE.

Upon verifying m2, C is certain that sk(W ) is being actively

used in the current session, and so increments its counter cci.
This counter value is then included in m3. This is the only

modified message of the protocol.

If cci does not match what W expects but the hash and

signature are valid, a detection event will be raised at which

point W can immediately revoke C’s key to limit the potential

damage of the compromise; W can later contact C through

an out-of-band channel to begin remediation and attempt to

discover the cause.

Our modified Keyless SSL protocol, shown in Figure 3,

satisfies equivalent detection properties to the counter protocol,

namely, both soundness and a detection guarantee when W
is uncompromised. In [1] we provide symbolic verification,

as well as an alternative protocol which allows C to detect

instead of W . The assumption that W is uncompromised is

reasonable considering W ’s role as a signing oracle. If W
were compromised as well, then it is possible for the adversary

to avoid detection by playing to role of W to resynchronize

C. As discussed, this could be remedied by requiring W to

provide a signed fresh token to be returned by C in the next

session, however this requires an additional signing operation

and provides benefit only when W might also be compromised.

Practical implications: The implementation of our mod-

ified protocol allows the CDN’s customers to have assurance

that either they have not been used to sign requests for an

adversary that has gained access to a valid CDN server key,

or if they were then the misuse of the key will be detected in

short order. Furthermore, customers can immediately revoke

to limit their risk, without requiring other parties to act. The

proposed protocol requires very little modification and minimal

storage requirements: a single counter value for each CDN

server.

4.2 Commitment and the Common Access Card
Principles 1 and 4 suggest that the message sequences in a

protocol are tightly coupled. This can be achieved, e.g., by

having each session contain a pre-commitment to some aspect

of the next session, ideally with a commitment that can only

be fulfilled with knowledge of the agent’s state (to limit the

risk of compromised state).

We show an example of such a construction in Figure 4,

with an example of a commitment protocol, and an application

in a high-security environment where the detection of cloning

is valuable. R generates an asymmetric key pair and presents

I with a fresh commitment constructed by signing session

data with the secret key, as well as the secret key used for

the previous commitment to ensure continuity. In the session

following, R provides the public key that allows I to verify

that the commitment is correct based on previous session data.

R never reveals the commitment key, and hence the adversary

can’t authenticate their own session data even if they trick R
into revealing an arbitrary number of commitments and proofs.

This commitment protocol has a number of desirable

properties, which we also formally verified using TAMARIN.

We include the model of this protocol in [1].

1) Soundness: A detection event implies compromise.

∀t ∈ T, i, k . ti = detect(k) =⇒ (∃j < i . tj = compromise(k)) .

2) Detection guarantee against key compromise: Against an

adversary compromising both sk(I) and sk(R), when I
completes a session with R and some data, then either R
also completed with that data or I detected they did not.

∀t ∈ T, I, R, i, data . ti = session(Init, R, data) ∧
¬(∃j < i . tj = detect(sk(R)))

=⇒ ∃j < i . tj = session(Resp, I, data).

3) Detection guarantee after an uncompromised session:

Against an adversary who can reveal all agent state, if

there was a previous correct session and the adversary has
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I R

- create a nonce ni

- m1 := {| I, R, ni, ci−1 |}sk(I)
m1

- verify m1 and ci−1

- generate a new keypair (ski, pki)
- ci := {| ′Commit′, R, I, ni |}ski

- ncci := {|ni, ci−1, ci |}ski−1

- m2 := {|R, I, pki−1, ci, ncci |}sk(R)

session(Resp, I, 〈ni, ci−1, pki−1, ci〉)
m2

- verify m2

- verify ncci using pki−1

- detect (sk(R)) if pki−1 doesn’t verify ci−1

session(Init, R, 〈ni, ci−1, pki−1, ci〉)

Fig. 4. A commitment protocol.

not revealed R’s state since that session, then any session

I completes with R will also be correct or I will detect.

∀t ∈ T, I, R, j1 < i1 < i2, data1, data2 .

ti1 = session(Init, R, data1) ∧ tj1 = session(Resp, I, data1) ∧
ti2 = session(Init, R, data2) ∧ ¬(∃s, i1 < c . tc = compromise(s)

)

=⇒ (∃j1 < j2 < i2 . tj2 = session(Resp, I, data2))⊕
(∃d < i2 . td = detect(sk(R))).

Common Access Card: The Common Access Card

(CAC) is the standard identification card for United States

Defense personnel. The CAC has been used as an authentication

token for security network systems and also for physical access

to sensitive areas [7]. It supports asymmetric key cryptography

and has writable memory. The CAC provides a useful example

of a high-security domain where it is valuable both to detect

if a cloned card has previously been used, as well as ‘heal’

compromise so that any clone becomes useless unless used

immediately. To show an implementation, we exhibit a modified

ISO-IEC 9798-3-3 protocol (Figure 5) in the scenario of

the CAC physical access control. Here, the initiator I is a

card reader which is connected to a back-end server, and the

responder R is the CAC.

In our modified protocol, each CAC stores a unique com-

mitment cr created by the back-end server. In the i-th session,

when a reader detects a CAC, the reader communicates with

the back-end server, which generates a message m1 signed

with the server’s private key sk(I) containing the identities

of the server and card, a fresh nonce ni, and the previous

commitment provided by the card cri−1. The reader forwards

this to the card.

I R

- create a nonce nii
- m1 := {| I,R, nii, ci−1 |}sk(I)

m1

- verify m1

- verify cri−1

- generate nri, and a new keypair (ski, pki)
- ci := {|R, I, nii |}ski

- ncci := {|nii, ci−1, ci |}ski−1

- m2 := {|R, I, nri, nii,pki−1, ci, ncci |}sk(R)

m2

- verify m2

- verify ncci
- detect (sk(R)) if pki−1 doesn’t verify ci−1

Fig. 5. The i-th session of the modified ISO-IEC 9798-3-3 standard protocol.
Modifications are highlighted in bold blue.

The card verifies the signature, and that the provided cri−1

agrees with its local memory. If these verifications succeed, the

CAC generates a new nonce nri and a pair (ski, pki) of signing

and verification keys. The CAC creates a new commitment cri
using ski, signs cri again using ski−1, and uses its long-term

key sk(R) to create a signed message m2 from the identities

(R, I), the two nonces (nr, ni), the signed cri, and the public

key that verifies the previous commitment cri−1. The CAC

then sends this message to the reader to be forwarded back to

the server. The server can check that the message contents are

correct, and then verifies the signatures of the commitments

cri−1 and cri against the provided proof pki−1, raising a

detection alert if this validation fails; if it succeeds, the back-

end server updates its memory. The CAC also updates the

old values in their memory with the new ones. After both the

server and the CAC have updated their local memory, either

the door will release or a signal will be displayed to security

guards to grant access to the facility. If any of the verification

in the protocol fails, then an alarm of detection raises.

In this scenario, the modified protocol provides both detec-

tion of acausal action and of contradicting commitments, even

if the attacker can extract all information from the CAC. In

other words, the provided security guarantee is that when an

attacker has a cloned copy of a CAC at time t, and used the

cloned card at time t′, then if the original card has been used

in the time interval between t and t′, the cloning of the card

will be detected. If the original card is not used in the time

interval between t and t′, then the attacker can use the card to

get access, but the cloning attack will be detected as soon as

the original card is used again.

The modified ISO-IEC-9798-3-3 protocol achieves equivalent

detection properties to the commitment protocol. These have
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been formally verified using TAMARIN, and the model of this

protocol is included in [1].

Note that while this protocol requires three signing operations

on the part of the card, two of these are by temporary

commitment keys which only need to remain secure until

the next authentication. As such, a weaker and faster signature

computation could be used for these to reduce the computation

required by the card.

Practical implications: The CAC is used in high-security

applications where an adversary may have high incentive

to attempt card cloning, especially since cloned cards may

remain a valuable strategic asset for some time. We show

with a modified standard protocol that it is possible for a

smartcard authentication protocol to not only swiftly detect

and revoke cloned cards, but also invalidate any existing

clones every time a card authenticates. This is done in such

a way that an attempt to use an earlier clone results in

immediate detection and revocation of privilege before the

card successfully authenticates. Furthermore, this is possible

even with the key of the reader compromised, and messages

between the card and the reader intercepted.

4.3 Improving detection in transparency overlays
Transparency overlays and related public log-based systems [3,

4, 8, 17, 24, 25] are designed to make participants’ behaviour

public through the use of a third-party log, enabling misuse

detection on the basis of acausal observations. To avoid having

to trust the log maintainer, transparency overlays set up the

log structure so that the maintainer must be able to prove

that any two authenticated log states are consistent with each

other. This allows a compromised log to be detected through

observation of contradictory log states, and this misuse can be

proven to other participants. Whereas the mechanisms from

previous sections did not make much use of Principle 3 to

more widely distribute information, this is in fact one of the

core principles underlying transparency overlays.

Participants examine log entries and detect if it contains

entries they know it should not. For example, detection of a

misissued certificate in Certificate Transparency may be done

by domain owners checking the log and discovering a log entry

for a certificate that they did not request, conform Principle 4.

As discussed in Section 3.4, this cannot be done by any party

that would not necessarily causally precede that certificate’s

issuance, nor can any misuse be proven to other parties. The

detecting party can revoke the certificate as invalid, but there is

no evidence that the CA’s key has been misused to produce it. In

practice, it is assumed that misuse of the CA’s key would instead

be determined manually based on multiple independent—or

suspicious enough—certificates requiring revocation.

Though transparency overlays make use of contradicting

observations to detect misuse of a log server’s key, they

rely entirely on acausal observations to detect misuse of a

secret belonging to any of the parties committing to the log.

From Section 3.4, we know that if a submitting party was

compromised and their secrets were misused to authenticate

(valid) submissions to the log, the only way for the participants

to detect this misuse (without causal precedence) is through

observing entries that are contradictory. Currently, however,

applications like CT have no standard way that two otherwise

valid entries in the log can contradict each other.

Based on our design Principles 1 and 2, we propose that

CT-like transparency applications can be extended to allow

dependencies between submissions from the same source,

adding a further line of defense to transparency overlays

and improving attribution when misuse is detected. Taking

Certificate Transparency as a canonical example, we propose

to add into each certificate a value dependent on previous

certificate submissions. For example, the value could be the

number of certificates n, indicating that this is the n-th

certificate authenticated by that CA, starting at 0; or it could

be the hash of certificate n− 1.

Contradiction testing: With an addition that allows log

commitments to contradict each other, a log server can deter-

mine whether the CA knew about the previous commitment

authenticated by them, or whether it might have been committed

without their knowledge.

When contradictory certificates are submitted to a log server,

the log server can swiftly notify the CA that either its key has

been compromised or its system has not updated with issued

certificates. On the other hand, if all certificates in the log are

consistent with each other, then a domain owner discovering a

misissued certificate for its domain in the log knows that the

CA’s own system must have been updating their state when the

certificate was issued–an indication that the CA should have

some record of issuing that certificate.

Implementation considerations: Our proposed additions

(as applied to CT) make the CAs stateful in their creation

of certificates, though with negligible overhead introduced.

Importantly, the state kept by the CA depends only on local

operations, and not on any feedback from log servers, so no

latency is introduced into the process of issuing certificates.

If all new certificate submissions to the log in Certificate

Transparency were required to include this information, it

would immediately benefit detection of CA key compromise.

This proposal is only one example of an addition which

would force contradictions between log submissions from the

same submitter in a transparency overlay. More elaborate

constructions like the consistency proofs used by log servers

could be leveraged to make submissions to a log from a misused

key contradict a larger set of prior entries, for additional

redundancy or for tying together multiple independent logs.

In other transparency overlay applications, the commitment

protocol shown in Section 4.2 could be used to ensure that

future log submissions come from the same party that generated

the pre-commitment in the prior entry.

4.4 Analysing other system designs
As mentioned and illustrated previously, our design principles

are general and can be used to improve existing systems in

practice. Here, we collect existing work that already conforms
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in part with the foundations and principles discussed in this

paper. We show how existing systems fit into our design

principles, and how they can be further improved by applying

our work where relevant.

a) RFID tag cloning detection: Mechanisms [5, 18, 26,

27] for detecting cloned RFID tags in the supply chain have

been widely studied. In [27], the RFID readers write random

values to RFID tags as they pass through the supply chain so

that the tag accumulates a sequence of random values. Cloned

tags are then detected by observing contradicting sequences

for the same tag identity.

This design follows both Principle 1 and Principle 2. The

tags are written with random values, and the sequence of values

grows longer each time a reader is passed, making it very likely

that a cloned tag will exit the supply chain with a different

sequence written to it than the original.

More complex solutions could give stronger guarantees, but

the resource constraints of RFID tags make it difficult to suggest

further improvement.

b) The Double Ratchet Algorithm: The Double Ratchet

algorithm [20] is designed for messaging systems to prevent

replay, reordering or deletion of messages while encrypting with

forward-secrecy in an asynchronous setting. Every message sent

and received is encrypted with a new ephemeral symmetric key

generated from two interlocking key ratchets, one of which is

iterated with each message sent and the other when a message

is received. A compromised message key will not help an

attacker decrypt messages exchanged in previous sessions, and

an adversary making use of a compromised message key causes

the newly derived key to differ between the communicating

agents.

The design of the double ratchet derives new keys each

message, but this is still vulnerable to a persistent MITM

attacker who was able to compromise both keys at some prior

time. This could potentially be remedied by applying Principle
3 (for example, through the use of the second concrete

mechanism we describe). This would allow communicating

agents to confirm that they agree on the keys being used, though

at the cost of some privacy; care would have to be taken to

anonymize log entries, etc.

c) Key-evolving cryptosystems: Key-evolving cryp-

tosystems (e.g. [6, 13, 14]) were proposed to mitigate damage

from compromised secret keys, through the use of periodic key

refreshment. In the symmetric setting, a sender and a receiver

share an initial long-term secret from which they derive a set

of keys valid for a certain (application-specific) time period.

In the asymmetric setting, one party holds only the public part

of another party’s private key, and updates it when they see

the use of a new private key without further communication.

Though key-evolving cryptosystems have desirable proper-

ties, they could be improved through an application of our

design principles. For example, by ensuring that key changes

cannot be reset to any previous key (Principle 1) through some

derivation process that relies on the prior keys.

d) TPM authentication protocol: The Trusted Platform

Module (TPM) [22] is a chip designed to allow platforms to

provide better security guarantees by securing cryptographic

keys in its shielded memory. The authorisation protocols use

‘rolling nonces’ to prevent replay attacks: in each new session,

the nonces generated in the previous session will be included

in the authenticating MAC.

The use of unique nonces follows our design Principle 2,

though an adversary who could inject messages would not be

prevented from making use of the TPM and then injecting

a message to resynchronize the nonces between the client

and TPM. This could be prevented through the application of

Principle 1, by deriving future nonces from past sessions so

that an adversary cannot resynchronize them.

5 Related work
We present related work on security guarantees after key com-

promise, and on protocols with accountability and verifiability.
a) Post-compromise security: In [11], Cohn-Gordon et

al. introduce post-compromise security: security guarantees for

communication after a party’s long-term keys are compromised.

This is accomplished using dynamic secrets, similarly to

the commitment protocol above (though the secrets in the

commitment protocol are used only for authentication).

Post-compromise security as described differs from detection

in what is done after attempting to establish a ‘correct’ session

fails. If a guarantee of security is the only objective, then it

makes sense to simply not allow a session that uses an incorrect

key even if the long-term key is correct; doing so, however,

discards information that may be sufficient to determine the

compromise of a long-term key. Detection and post-compromise

security are therefore–while conceptually similar–orthogonal

in nature and can be realized independently.
b) Accountability and verifiability: Küsters, Truderung,

and Vogt have proposed definitions of accountability and

verifiability [16] which aim to be widely applicable. The

proposed definitions share some similar intuition with ours, i.e.,

they aim to discover if something went wrong. A conceptual

difference is that they focus on misbehaving parties (for

example, election authorities that are expected to behave in a

certain way, but might not do so). In contrast, we focus on

compromised parties, whose key material is in the possession

of both the party and the adversary.

6 Conclusions
We have described and explored designs for protocols that

detect when an adversary misuses an agent’s secrets. Our

design principles and constructions directly led to suggesting

improvements for many deployed systems, enabling them to

automatically detect the misuse of secrets. We have given exam-

ple protocols and applications, described them systematically

and verified their properties in the TAMARIN prover.

Concretely, our suggested improvements of existing systems

such as CA’s, the Common Access Card, or Cloudflare’s Key-

less SSL can significantly reduce the impact of a compromise,
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since they can be used to immediately revoke keys or shut

down the related service.

There are some limitations to the proposed approaches.

First, while our mechanisms are not applicable to all scenarios

(e. g., because keeping synchronised state can be expensive or

problematic in some use cases), it is clear that there are many

applications whose security can be significantly improved by

introducing these detection mechanisms. We therefore expect

our mechanisms to find their way into many applications in

the near future.
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