
A Formal Security Analysis of the Signal Messaging Protocol
(Extended abstract: full version available at [10])

Katriel Cohn-Gordon∗, Cas Cremers∗, Benjamin Dowling†, Luke Garratt∗, Douglas Stebila‡

∗University of Oxford, UK
katriel.cohn-gordon@cs.ox.ac.uk
cas.cremers@cs.ox.ac.uk
luke.garratt@cs.ox.ac.uk†Royal Holloway, University of London, UK benjamin.dowling@rhul.ac.uk‡McMaster University, Canada stebilad@mcmaster.ca

Abstract—Signal is a new security protocol and ac-
companying app that provides end-to-end encryption
for instant messaging. The core protocol has recently
been adopted by WhatsApp, Facebook Messenger, and
Google Allo among many others; the first two of these
have at least 1 billion active users. Signal includes
several uncommon security properties (such as “future
secrecy” or “post-compromise security”), enabled by
a novel technique called ratcheting in which session
keys are updated with every message sent. Despite its
importance and novelty, there has been little to no
academic analysis of the Signal protocol.

We conduct the first security analysis of Signal’s
Key Agreement and Double Ratchet as a multi-stage key
exchange protocol. We extract from the implementation
a formal description of the abstract protocol, and define
a security model which can capture the “ratcheting” key
update structure. We then prove the security of Signal’s
core in our model, demonstrating several standard se-
curity properties. We have found no major flaws in the
design, and hope that our presentation and results can
serve as a starting point for other analyses of this widely
adopted protocol.

1. Introduction

Revelations about mass surveillance of commu-
nications have made consumers more privacy-aware.
In response, scientists and developers have proposed
techniques which can provide security for end users
even if they do not fully trust the service providers. For
example, the popular messaging service WhatsApp
was unable to comply with Brazilian government
demands for users’ plaintext messages [7] because
of its end-to-end encryption.

Early instant messaging systems did not provide
much security. While some systems did encrypt traffic
between the user and the service provider, the service
provider retained the ability to read the plaintext of
users’ messages. Off-the-Record Messaging [8, 17]

K.C-G. thanks Merton College and the Oxford CDT in Cyber
Security for their support.
D.S. was supported in part by Australian Research Council (ARC)
Discovery Project grant DP130104304, Natural Sciences and
Engineering Research Council of Canada (NSERC) Discovery grant
RGPIN-2016-05146 and Discovery Accelerator Supplement RGPAS
492986-2016.

was one of the first security protocols for instant
messaging: acting as a plugin to a variety of instant
messaging applications, users could authenticate each
other using public keys or a shared secret passphrase,
and obtain end-to-end confidentiality and integrity.
One novel feature of OTR was its fine-grained key
freshness: along with each message round trip, users
established a fresh ephemeral Diffie–Hellman (DH)
shared secret. Since it was not possible to work
backward from a later state to an earlier state and
decrypt past messages, this technique became known
as ratcheting; in particular, asymmetric ratcheting
since it involves asymmetric (public key) cryptography.
OTR saw relatively limited adoption, but its ratcheting
technique can be seen in modern security protocols.

Perhaps the first secure instant message protocol
to achieve widespread adoption was Apple’s iMes-
sage, a proprietary protocol that provides end-to-end
encryption. A notable characteristic of iMessage is
that it automatically manages the distribution of users’
long-term keys, and in particular (as of this writing)
users have no interface for verifying friends’ keys.
iMessage, unfortunately, has a variety of flaws that
seriously undermine its security [23].

The Signal Protocol. While there has been a range of
activity in end-to-end encryption for instant messaging
[19, 48], the most prominent recent development in
this space has been the Signal messaging protocol, “a
ratcheting forward secrecy protocol that works in syn-
chronous and asynchronous messaging environments”
[36, 37]. Signal’s goals include end-to-end encryption
as well as advanced security properties such as perfect
forward secrecy and “future secrecy”.

The Signal protocol, and in particular its ratch-
eting construction, has a relatively complex history.
TextSecure [37] was a secure messaging app and the
predecessor to Signal. It contained the first defini-
tion of Signal’s “Double Ratchet”, which effectively
combines ideas from OTR’s asymmetric ratchet and a
symmetric ratchet (which applies a symmetric key
derivation function to create a new key, but does
not incorporate fresh DH material, similar to so-
called “forward-secure” symmetric encryption [4]).
TextSecure’s combined ratchet was referred to as the
“Axolotl Ratchet”, though the name Axolotl was used
by some to refer to the entire protocol. TextSecure

2017 IEEE European Symposium on Security and Privacy

© 2017, Katriel Cohn-Gordon. Under license to IEEE.

DOI 10.1109/EuroSP.2017.27

451

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 00:43:53 UTC from IEEE Xplore. Restrictions apply.

was later merged with RedPhone, a secure telephony
app, and was renamed Signal1, the name of both the
instant messaging app and the cryptographic protocol.
In the rest of this paper, we will be discussing the
cryptographic protocol only.

The Signal cryptographic protocol has seen explosive
uptake of encryption in personal communications:
it (or a variant) is now used by Google Allo [38],
WhatsApp [50], Facebook Messenger [20], as well
as a host of variants in “secure messaging” apps,
including Silent Circle [40], Pond [34], and (via the
OMEMO extension [47] to XMPP) Cryptocat v2 [27],
Conversations [12], and ChatSecure [2].

Security of Signal. One might expect this widespread
uptake of the Signal protocol to be accompanied by
an in-depth security analysis and examination of the
design rationale, in order to: (i) understand and specify
the security assurances which Signal is intended to
provide; and (ii) verify that it provides them.

Surprisingly, this is not yet the case. There cur-
rently is little documentation available on the current
version of the Signal protocol, and no in-depth security
analysis, although the developers have recently started
work on some specifications for various components
of the protocol. This is in stark contrast to the ongoing
development of the next version of the Transport Layer
Security protocol, TLS 1.3, which explicitly involves
academic analysis in its development [6, 14, 18, 26,
29, 35].

Frosch et al. [21, 22] performed a security analysis
of TextSecure v3, showing that in their model the
computation of the long-term symmetric key which
seeds the ratchet is a secure one-round key exchange
protocol, and that the key derivation function and
authenticated encryption scheme used in TextSecure
are secure. However, it did not cover any of the security
properties of the ratcheting mechanisms.

In addition, Frosch et al. identified an unknown key
share (UKS) attack against TextSecure, because the
cryptographic material was not bound to the identities.
This attack is also not prevented by the core of the
Signal protocol, but can be prevented at higher layers.
We therefore explicitly exclude the UKS attack from
our security analysis. For details, see the full version
of this paper.

Providing a security analysis for the Signal protocol is
challenging for several reasons. First, Signal employs
a novel and unstudied design, involving over ten
different types of keys and a complex update process
which leads to various “chains” of related keys. It
therefore does not directly fit into existing analysis
models. Second, some of its claimed properties have
only recently been formalised [11]. Finally, as a more
mundane obstacle, the protocol is not substantially
documented beyond its source code.

1. TextSecure v1 was based on OTR; in v2 it migrated to the
Axolotl Ratchet and in v3 made some changes to the cryptographic
primitives and the wire protocol. Signal is based on TextSecure v3.

1.1. Contributions

We provide the first in-depth formal security anal-
ysis of the cryptographic core of the Signal messaging
protocol, which is used by more than a billion users.

To achieve this, we develop a multi-stage key
exchange security model with adversarial queries
and freshness conditions that capture the security
properties intended by Signal. Compared to previous
multi-stage key exchange models which involve a
single sequence of stages within each session, our
model considers a tree of stages to model the various
“chains” in Signal. Our security model characterizes
many detailed security properties of Signal, providing
the first formal definition of Signal’s security goals.
Among the interesting aspects of our model are the
subtle differences between security properties of keys
derived via symmetric and asymmetric ratcheting.

We subsequently prove that the cryptographic core
of Signal is secure in our model, providing the first
formal security guarantees for Signal. We give a
theorem statement in this paper; the complete proof
is included in the full version [10].

In practice, Signal is more than just its key
exchange protocol. In Section 6, we describe many
other aspects of Signal that are not covered by our
analysis, which we believe are a rich opportunity
for future research. We hope our presentation of the
protocol in Section 2 can serve as a starting point for
understanding Signal’s core.

1.2. Additional Related Work

Symmetric ratcheting and DH updates (asymmetric
ratcheting) are not the only way of updating state to en-
sure forward secrecy—i.e., that compromise of current
state cannot be used to decrypt past communications.
Forward-secure public key encryption [9] allows users
to publish a short unchanging public key; messages
are encrypted with knowledge of a time period, and
after receiving a message, a user can update their
secret key to prevent decryption of messages from
earlier time periods.

Signal’s asymmetric ratcheting, which it inherits
from the design of OTR [8], have been claimed
to offer properties such as “future secrecy”. Future
secrecy of protocols like Signal has been discussed
in depth by Cohn-Gordon, Cremers, and Garratt [11].
Their key observation is that Signal’s future secrecy
is (informally) specified with respect to a passive
adversary, and therefore turns out to be implied by the
formal notion of forward secrecy. Instead, they observe
that mechanisms such as asymmetric ratcheting can
be used to achieve a substantially stronger property
against an active adversary. They formally define this
property as “post-compromise security”, and show how
this substantially raises the bar for resourceful network
attackers to attack specific sessions. Furthermore, their
analysis indicates that post-compromise security may
hold of Signal depending on subtle details related to
device state reset and the handling of multiple devices.

In concurrent work released after the initial version
of this paper, Bellare et al. [3] develop security

452

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 00:43:53 UTC from IEEE Xplore. Restrictions apply.

definitions for ratcheted key exchange in a more
general context than the Signal protocol, and describe
a Diffie–Hellman based protocol that is somewhat
similar to the Signal protocol. Also concurrently and
published at EuroS&P 2017, Kobeissi et al. [28] use
ProVerif and CryptoVerif to analyze an implementation
of Signal in a JavaScript variant called ProScript.

Recently, Green and Miers [24] suggest using
puncturable encryption to achieve fine-grained forward
security with unchanging public keys: instead of
deleting or ratcheting the secret key, it is possible
to modify it so that it cannot be used to decrypt a
certain message. While this is an interesting approach
(especially for its relative conceptual simplicity), we
focus on Signal due to its widespread adoption.

Overview. In Section 2 we give a detailed presentation
of the Signal protocol. We follow this by a high-level
description of its threat model in Section 3, and a
formal security model in Section 4. In Section 5 we
prove security of Signal’s core in our model. As a first
analysis of a complex protocol our model has some
limitations and simplifying assumptions, discussed in
detail in Section 6. We conclude in Section 7.

2. The Core Signal Protocol

Basic setup. The Signal protocol aims to send en-
crypted messages from one party to another. It assumes
each party has a long-term public/private key pair,
referred to as the identity key. However, since the
parties might be offline at any point in time, standard
authenticated key-exchange (AKE) solutions cannot
be directly applied. For instance, using DH key-
exchange to achieve perfect-forward secrecy requires
both parties to contribute new ephemeral DH keys,
but the recipient may be offline at the time of sending.

Instead, Signal implements an asynchronous trans-
mission protocol, by requiring potential recipients to
pre-send batches of ephemeral public keys. When the
sender wishes to send a message, she obtains keys for
the recipient from an intermediate server (which only
acts as a buffer), and performs an AKE-like protocol
using the long-term and ephemeral keys to compute a
message encryption key.

This basic setup is then extended by making the
message keys dependent on all previously performed
exchanges between the parties, using a combination
of “ratcheting” mechanisms to form “chains”. New
random and secret values are also introduced into the
computations at various points, influencing future mes-
sage keys computed by the communicating partners.

Motivation and Scope. The Signal protocol uses an
intricate design whose rationale is currently not for-
mally documented, although there has been substantial
informal discussion on mailing lists and blog posts.
Our focus is to study the existing protocol: we aim
simply to report what Signal is, not why any of its
design choices were made.

It is not entirely straightforward to pin down a
precise definition of the intended usage and security

properties of Signal. Our descriptions in this section
were aided by some documentation but the ultimate
authority was the implementation2 [36]. After the time
of writing, Open Whisper Systems published high-
level specifications for X3DH [45] and the Double
Ratchet [44] which help to clarify many details,
although the codebase is still necessary to obtain a
full definition and the specification does not contain
detailed definitions of the security goals.

2.1. Protocol Overview

A party using Signal first registers their long-
term key, as well as medium-term keys and some
cached one-time keys with a key distribution server.
Two parties communicate using Signal in long-lived
exchanges called sessions. A session begins when
Alice requests Bob’s long-term, medium-term and one-
time credentials from a key distribution server (perhaps
over an authenticated channel), optionally verifies
them out-of-band, and uses them in a proprietary key
exchange protocol sometimes called the Signal Key
Exchange, “TripleDH” or “X3DH”.

The key exchange outputs a master secret, which
in turn is used to derive two symmetric keys: a “root
key” and a “sending chain key”. As messages are
sent and received these keys are frequently updated
by passing them through a key derivation function
(KDF), at the same time deriving output keys which
are used elsewhere in the protocol.

When Alice wishes to encrypt a message for Bob,
she advances her sending chain by one step, deriving
a replacement sending chain key as well as a message
encryption key. She can derive subsequent message
encryption keys by repeating this process, advancing
the sending chain once per message in order to derive
a new key. Similarly, when she receives a message
from Bob she advances her receiving chain in order
to generate a decryption key.

The root chain is advanced through a separate
mechanism: when the session is initialised, Alice also
generates an ephemeral DH key known as her “ratchet
key”. She attaches this to her messages, authenticated
but not encrypted. When Bob replies to a message, he
will send his own “ratchet public key”. Upon receiving
a new ratchet public key from Bob, Alice advances
the root chain twice: first with the DH shared secret
obtained using her old public key, and second with
that using her new. The resulting two outputs of the
chain initialise the new receiving and sending chains
respectively, and the resulting root chain key replaces
the original root chain key.

For the initiator (resp. responder), mksym-ir:x,y

denotes the yth symmetric key on the xth sending
(resp. receiving) chain, and mksym-ri:x,y the yth

symmetric key on the xth receiving (resp. sending)
chain. We use the notation ir and ri for sending and

2. The tagged releases of libsignal lag behind the current code-
base. The commit hash of the state of the repository as of our
reading is listed in the bibliography. Note that there are separate
implementations in C, JavaScript and Java; the latter is used by
Android mobile apps and is the one we have read most carefully.

453

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 00:43:53 UTC from IEEE Xplore. Restrictions apply.

receiving keys from the initiator of the session’s
perspective: ir is from initiator of the session to
responder, so corresponds to a sending key for the
initiator and receiving key for the responder, and
vice versa for ri. The notation inherits its complexity
from the underlying protocol, but it does allow us to
distinctly name each session key that is generated,
and will allow us to make note of the subtly different
properties of different keys. Thus, we can separate
the Signal protocol into four phases:

Registration. (Section 2.3)
At installation (and periodically afterwards), Al-
ice registers her identity with a key distribution
server and uploads some cryptographic data.

Session setup. (Section 2.4)
Alice requests and receives cryptographic data
from Bob (either from the central server or
directly from Bob himself), and uses it to setup a
long-lived messaging session and establish initial
symmetric encryption keys.

Symmetric-ratchet communication. (Section 2.5)
Alice uses the current symmetric encryption keys
of her messaging session for communication
with Bob, passing them through a key derivation
function on every iteration. The message keys
form a type of PRF chain: a “symmetric ratchet”.

Asymmetric-ratchet updates. (Section 2.6)
Alice exchanges DH values with Bob, generating
new shared secrets and uses them to begin new
chains of message keys. The exchanged DH
values give rise to a sequence of shared secrets,
which are input with the current key in the “root
chain” to the key derivation function to form the
“asymmetric ratchet”.

Alice and Bob can run many simultaneous sessions
between them, each admitting an arbitrary sequence
of stages consisting of symmetric and asymmetric
ratcheting. We first explain notation and primitives
below, and then discuss each of the four phases in
detail in subsequent sections.

Table 1 is a glossary to the ten different classes
of keys used in the Signal protocol. Figure 1 depicts
the operations executed in all stages of the protocol
in a pseudocode format.

2.2. Notation and Primitives

Groups. Let g denote the generator of a group G of
prime order q; we write the group multiplicatively.

Sessions. We denote A’s ith session by πi
A.

Stages. Within a session, Signal admits a tree of
various different stages. We adopt a unified notation
to refer to any of them. All stages are described using
a term in [square brackets]; the initial stage is always
[0] and contains the key exchange. Subsequent stages
occur locally at Alice and Bob, but correspond in the
sense of generating matching keys.

Alice and Bob assign different roles to the stages
they complete: Alice may consider some stage s as

as
y
m
m
et
ri
c

ipkA ikA A’s long-term identity
key pair

prepkB prekB B’s medium-term
(signed) prekey pair

eprepkB eprekB B’s ephemeral prekey
pair

epkA ekA A’s ephemeral key pair

rchpkaA rchkaA A’s ath ratchet key pair

sy
m
m
et
ri
c

cksym-ir:a,y
A yth key in A’s ath send

chain

cksym-ri:a,y
A yth key in A’s ath receive

chain

mksym-ir:a,y
A yth message key in A’s

ath send chain

mksym-ri:a,y
A yth message key in A’s

ath receive chain

rkaA A’s ath root key

TABLE 1: Keys used in the Signal protocol. Asymmetric
key pairs show public and private components.

generating a sending key, while Bob considers his
version of the same stage as generating a receiving key.
To avoid persistent case distinctions, we adopt a role-
agnostic naming scheme, describing stages as “-ir” if
they are used for the initiator to send to the responder,
and as “-ri” if they are used for the responder to send
to the initiator. This maintains the invariant that stages
with the same name generate the same key(s).

There are two types of asymmetric updates; the
first uses a received ratchet key to begin a receiving
chain, and the second generates a new ratchet key to
begin a sending chain. At a given party, we count the
number of asymmetric updates in a variable x; thus,
we can refer to the xth update of the first type in a
session as stage [asym-ri:x], and of the second type
as [asym-ir:x]. Note that the xth “-ri” stage precedes
the xth “-ir” stage, because the first asymmetric stage
is of type “-ri”.

Similarly, there are two types of symmetric up-
dates, “-ri” and “-ir”, depending on whether the chain
to which they belong was created by a stage of type
[asym-ri:x] or [asym-ir:x]. At a given party, we
count the number of symmetric updates in the xth

symmetric chain in a variable y; thus, we can refer
to the yth update in the xth symmetric chain as stage
[sym-ri:x,y] or [sym-ir:x,y].

In Signal, for a fixed x, all symmetric stages
in which a party generates sending keys in chain
x occur before the asymmetric stage x + 1, but
symmetric receiving ratchets in chain x can occur
at any time after the parent node in the graph has
been established. This accommodates out-of-order
message delivery. For example, the initiator performs
all stages [sym-ir:x,1], [sym-ir:x,2], . . . before stage
[asym-ir:x+ 1], but may delay stages [sym-ri:x,y]
as much as necessary.

454

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 00:43:53 UTC from IEEE Xplore. Restrictions apply.

Keys. Signal distinguishes between at least ten different
classes of key, depicted in Table 1, so again for ease
of reading we adopt a standardised notation. Keys
are written in italics and end with the letter k. For
asymmetric key pairs, the corresponding public key
ends with the letters pk, and is always computed by
group exponentiation with base g and the private key
as the exponent: pk = gk . If the identity of the agent
A who generates a key is unclear we mark this in
subscript (i.e. kA), but omit this where it is clear.

Every stage derives new keys. To identify these
keys uniquely, we write the index of the stage deriving
a key k in superscript; thus, rk0A would be the root key
derived by A in stage [0], and mksym-ri:x,y the message
key derived in stage [sym-ri:x,y]. Not all stages
derive all keys: for example, there is no rksym-ri:x,y,
since root keys are not affected by symmetric updates.

The naming scheme for keys is also role-agnostic:
in intended operation, keys will be equal iff they have
the same name. As with stages, agents have different
intended uses for the same key: for example, the
initiator would use the key mksym-ir:x,y for encrypting
messages to send, and the responder would use the
same key for decrypting received messages.

In our model, there are technically no stages
[sym-ir:x,0] or [sym-ri:x,0], but there are keys with
these indexes, since the first entry in each sending
and receiving chain is created by the asymmetric
update starting that chain . We could equivalently think
of Signal only deriving message keys in symmetric
stages and allowing y = 0, in which case asymmetric
stages would not derive message keys. Our formulation
simply renumbers keys, so that every stage derives a
message key.

Cryptographic functions. Signal uses one of two
elliptic curves to implement X3DH: curve X25519 or
curve X448. The key derivation functions use either
HMAC-SHA256 or HKDF [30] using SHA256.

AEAD denotes an authenticated encryption
scheme with associated data. In Signal, this is an
encrypt-then-MAC scheme: encryption is AES256 in
CBC mode with PKCS#5 padding, and the MAC
is HMAC-SHA256. This is the same combination
originally used in TextSecure v3, which was shown
by Frosch et al. [22] to have standard authenticated
encryption security properties. Since our focus is on
the key exchange portion, we omit details of the AEAD
and treat it in a black-box fashion.

Sign is related to the Ed25519 signature scheme
[5, 43]. Again, we treat it as a black-box signature.

2.3. Registration Phase—Figure 1(a)

Upon installation (and periodically afterwards), all
agents generate a number of cryptographic keys and
register themselves with a key distribution server.

Specifically, each agent generates the following
DH private keys:
(i) a long-term “identity” key ik
(ii) a medium-term “signed prekey” prek
(iii) multiple short-term “one-time prekeys” eprek

The public keys corresponding to these values are then
uploaded to the server, together with a signature on
prek using ik.

2.4. Session Setup Phase—Figure 1(b)

In the session-setup phase, public keys are ex-
changed and used to initialise shared secrets in the
session memory. The underlying key exchange pro-
tocol is a one-round DH protocol called the Signal
Key Exchange or X3DH3, comprising an exchange
of various DH public keys, computation of various
DH shared secrets as in Figure 2, and then application
of a key derivation function. While many possible
variants of such protocols have been explored in-depth
in the literature (HMQV [31], Kudla-Paterson [32],
NAXOS [33] among many others), the session key
derivation used here is new and not based on one
of these standard protocols, though it draws some
inspiration from [32].

Recall that for asynchronicity Signal uses prekeys:
initial protocol messages which are stored at an
intermediate server, allowing agents to establish a
session with offline peers by retrieving one of their
cached messages (in the form of a DH ephemeral
public key).

In addition to this ephemeral public key, agents
also publish a “medium-term” key, which is shared
between multiple peers. This means that even if the
one-time ephemeral keys stored at the server are
exhausted, the session will go ahead using only a
medium-term key. This form of key reuse is studied
in [39] and will be modelled in this paper. Thus,
session setup in the Signal protocol consists of two
steps: first, Alice obtains ephemeral values from Bob
(usually via a key distribution server); second, Alice
treats the received values as the first message of a
Signal key exchange, and completes the exchange in
order to derive a master secret.

2.4.1. Receiving ephemerals. The most common way
for Alice to receive Bob’s session-specific data is for
her to query a semi-trusted server for pre-computed
values (known as a PreKeyBundle).

When Alice requests Bob’s identity information,
she receives his identity public key ipkB , his current
signed prekey prepkB , and a one-time prekey eprepkB
if there are any available. Signed pre-keys are stored
for the medium term, and therefore shared between
everyone sending messages to Bob; one-time keys are
deleted by the server upon transmission. Alice’s initial
message contains identifiers for the prekeys so that
Bob can learn which were used.

2.4.2. Building a session. Once Alice has received
the above values, she generates her own ephemeral key

3. The key exchange protocol was sometimes referred to as
TripleDH, from the three DH shared secrets always used in the
KDF (although in most configurations four shared secrets are used).
The name QuadrupleDH has also been used for the variant which
includes the long-term/long-term DH value, not as might be expected
the variant which includes the one-time prekey.

455

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 00:43:53 UTC from IEEE Xplore. Restrictions apply.

(a) Bob’s registration phase (at install time), over an authentic channel (Section 2.3)

Client B Server S

ikB , prekB
$← Zq

multiple eprekB
$← Zq

ipkB , prepkB , SignikB
(prepkB), multiple eprepkB

(b) Alice’s session (Initiator) setup with peer Bob (Responder), over an authentic channel (Section 2.4)

Client instance πi
A, stage [0] Server S

B

ipkB , prepkB , SignikB
(prepkB)[, eprepkB]

Client instance πi
B , stage [0]ekA

$← Zq

rchk0A
$← Zq

epkA, key identifier for prepkB , rchpk0A[, eprepkB]

(in practice attached to initial encrypted message)
confirm possession of prekB [, eprekB]

ms← (prepkB)
ikA‖(ipkB)

ekA‖(prepkB)
ekA ms← (ipkA)

prekB‖(epkA)
ikB‖(epkA)

prekB

if eprepkB then ms← ms‖(eprepkB)
ekA if eprepkB then ms← ms‖(epkA)

eprekB

rk1, cksym-ir:0,0 ← KDFr(ms) rk1, cksym-ir:0,0 ← KDFr(ms)

cksym-ir:0,1,mksym-ir:0,0 ← KDFm(cksym-ir:0,0) cksym-ir:0,1,mksym-ir:0,0 ← KDFm(cksym-ir:0,0)

rchk0B
$← Zq

(c) Symmetric-ratchet communication: Alice sends a message to Bob (Section 2.5)

Client instance πi
A, stage [sym-ir:x,y] Client instance πi

B , stage [sym-ir:x,y]

AEADmksym-ir:x,(y−1)(message,AD = rchpkxA, ipkA, ipkB , y)

cksym-ir:x,y+1,mksym-ir:x,y ← KDFm(cksym-ir:x,y) cksym-ir:x,y+1,mksym-ir:x,y ← KDFm(cksym-ir:x,y)

(d) Asymmetric-ratchet updates: Alice and Bob start new symmetric chains with new ratchet keys (Section 2.6)

Client πi
A, stage [asym-ri:x] Client πi

B , stage [asym-ri:x]

tmp, cksym-ri:x,0 ← KDFr(rkx, (rchpkx−1
A)rchkx−1

B)

cksym-ri:x,1,mksym-ri:x,0 ← KDFm(cksym-ri:x,0)
rchpkx−1

B

(in practice in the associated data of a later message encrypted with mksym-ri:x,0
B)

tmp, ckr:x,0 ← KDFr(rkx, (rchpkx−1
B)rchkx−1

A)

cksym-ri:x,1,mksym-ri:x,0 ← KDFm(cksym-ri:x,0)

rchkxA
$← Zq

Client πi
A, stage [asym-ir:x] Client πi

B , stage [asym-ir:x]

rkx+1, cksym-ir:x,0 ← KDFr(tmp, (rchpkx−1
B)rchkxA)

cksym-ir:x,1,mksym-ir:x,0 ← KDFm(cksym-ir:x,0)
rchpkxA

(in practice in the associated data of a later message encrypted with mksym-ir:x,0
A)

rkx+1, cksym-ir:x,0 ← KDFr(tmp, (rchpkxA)
rchkx−1

B)

cksym-ir:x,1,mksym-ir:x,0 ← KDFm(ckr:x,0)

rchkxB
$← Zq

Figure 1: Signal protocol including preregistration of keys. Local actions are depicted in the left and right columns, and
messages flow between them. We show only one step of the symmetric and asymmetric ratchets; they can be iterated
arbitrarily. Variables storing keys are defined in Table 1, and session identifiers in Table 2. Dark red text indicates reordered
actions in our model, as discussed in Section 5. Each stage derives message keys with the same index as the stage number,
and chaining/root keys with the index for the next stage; the latter is passed as state from one stage to the next. State info
st in asymmetric stages is defined as the root key used in the key derivation, and for symmetric stages st is defined as the
chain key used in key derivation. Symmetric stages always start at y = 1 and increment. When an actor sends consecutive
messages, the first message is a DH ratchet and then subsequent messages use the symmetric ratchet. When an actor replies,
they always DH ratchet first; they never carry on the symmetric ratchet.

456

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 00:43:53 UTC from IEEE Xplore. Restrictions apply.

initiator responder intended use

signed prekey prekA prekB medium-term, reused across sessions

identity key ikA ikB long-term, bound to identity

one-time (pre)key ekA eprekB unique to each session, never reused

Figure 2: Diffie–Hellman private keys used in the Signal Key Exchange KDF. An edge between two private keys (e.g., ikA
and prekB) indicates that their DH value (gikA·prekB) is included in the final KDF computation. The dashed line is optional:
it is omitted from the session key derivation if eprekB is not sent. Note the asymmetry: when Alice initiates a session with
Bob, her signed prekey is not used at all. Our freshness conditions in Section 4.3 on page 10 will be partially based on this
graph.

ekA, and computes a session key by performing three
or four group exponentiations as depicted in Figure 2.
She then concatenates the resulting shared secrets
and passes them through a key derivation function
to derive an initial root key rk0 and sending chain
key cks:0,0. (No DH value is passed to KDFr for this
initial invocation.) For modelling purposes, we also
have Alice generate her initial sending message key
mksym-ir:0,0 (which is this stage’s session key output)
and the next sending chain key cksym-ri:0,0. Finally,
she generates a new ephemeral DH key rchk0 known
as her ratchet key.

For Bob to complete4 the key exchange, he must
receive Alice’s public ephemeral key epkA. In the Sig-
nal protocol, Alice attaches this value to all messages
that she sends (until she receives a message from Bob,
since from such a message she can conclude that Bob
received epkA). To disentangle the stages of the model,
we have Alice send epkA in a separate message; thus,
once the session-construction stage is complete, both
Alice and Bob have derived their root and chain keys.

When Bob receives epkA, he first checks that he
currently knows the private keys corresponding to
the identity, signed pre-, and one-time pre-key which
Alice used. If so, he performs the receiver algorithm
for the key exchange, deriving the same root key
rk0 and chain key (which he records as ckr:0,0). For
modelling purposes, we also have Bob generate his
initial receiving message key mksym-ir:0,0 (which is
this stage’s session key output) and the next receiving
chain key cksym-ir:0,0.

2.5. Symmetric-Ratchet Phase—Figure 1(c)

Two sequences of symmetric keys will be derived
using a PRF chain, one for sending and one for
receiving. The symmetric chainsmay be advanced for
one of two reasons: either Alice wishes to send a new
message, or she wishes to decrypt a message she has
just received.

In the former case, Alice takes her current sending
chain key cksym-ir:x,y and applies the message key
derivation function KDFm to derive two new keys:
an updated sending chain key cksym-ir:x,(y+1) and

4. If the initial message from Alice is invalid, Bob will in fact
not complete a session. This does not affect our analysis, which
considers only secrecy of session keys, but may become important
if e.g. analysing deniability.

a sending message key mksym-ir:x,y. Alice uses the
sending message key to encrypt her outgoing message,
then deletes it and the old sending chain key. This
process can be repeated arbitrarily.

When Alice receives an encrypted message, she
checks the accompanying ratchet public key to confirm
that she has not yet processed it, and if not she then
performs an asymmetric ratchet update, described
below. Regardless, she then reads the metadata in
the message header to determine the index of the
message in the receiving chain, and advances the
receiving chain as many steps as is necessary to derive
the required receiving message key; by construction,
Alice’s receiving message keys equal Bob’s sending
keys. Unlike for the sending case, Alice cannot delete
receiving message keys immediately; she must wait to
receive a message encrypted under each one. (Other-
wise, out-of-order messages would be undecryptable
since their keys would have been deleted.) The open
source implementation of Signal has a hard-coded
limit of 2000 messages or five asymmetric updates,
after which old keys are deleted even if they have not
yet been used.

2.6. Asymmetric-Ratchet Phase—Figure 1(d)

The final top-level phase of Signal is the
asymmetric-ratchet update. In this phase, Alice and
Bob take turns generating and sending new DH public
keys and using them to derive new shared secrets.
These are accumulated in the asymmetric ratchet
chain, from which new (symmetric) message chains
are initialized.

When Alice receives a message from Bob, it may
be accompanied by a new (previously unseen) ratchet
public key rchpkx−1

B . If so, this triggers Alice to enter
her next asymmetric ratchet phase [asym-ir:x]. Note
that Alice already has stored a previously generated
private ratchet key rchkx−1

A . Before decrypting the
message, Alice updates her asymmetric ratchet as
per Figure 1. This consists of two steps. In the first
step, denoted rchkxA, deriving two DH shared secrets
[asym-ri:x], she computes a first DH shared secret
(between the received ratchet public key and her old
ratchet private key), and combines this with the root
chain key to derive a new receiving chain key and
receiving message key. In the second step, denoted
[asym-ir:x], she computes a second DH shared secret

457

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 00:43:53 UTC from IEEE Xplore. Restrictions apply.

(between the received ratchet public key and her new
ratchet private key), and combines this with the root
chain key and the first DH shared secret to derive a
new sending chain key and sending message key, as
well as the root chain key for the next asymmetric
stage.

The message keys in the first and second steps
have slightly different security properties, so they are
recorded in our model as belonging to distinct stages
[asym-ri:x] and [asym-ir:x].

Alice then sends her new ratchet public key rchpkxA
along with future messages to Bob, and the process
continues indefinitely.

Bob does the corresponding operations shown in
Figure 1 to compute the same DH shared secrets
and the corresponding root, chain, and message keys.
While symmetric updates can be triggered either
by Alice (the session initiator) or Bob (the session
responder) and thus could be as in Figure 1(c) or
its horizontal flip, asymmetric updates can only be
triggered by Alice (the session initiator) receiving a
new (previously unseen) ratchet key from Bob (the
session responder) and not the other way around, so
Figure 1(d) will never be horizontally flipped.

3. Threat Models

We will analyze Signal in the context of a fully
adversarially-controlled network. The high-level prop-
erties we aim to prove are secrecy and authentication
of message keys. Authentication will be implicit (only
the intended party could compute the key) rather than
explicit (proof that the intended party did compute the
key). Forward secrecy and “future” secrecy are not
explicit goals; instead, derived session keys should
remain secret under a variety of compromise scenarios,
including if a long-term secret has been compromised
but a medium or ephemeral secret has not (forward
secrecy) or if state is compromised and then an
uncompromised asymmetric stage later occurs (“future”
or post-compromise secrecy [11]). We assume out-of-
band verification of identity keys and medium-term
keys, and do not consider side channel attacks.

The finer details of our threat model are ultimately
encoded in the so-called freshness predicate, specified
in Section 4.3 on page 10, where we provide further
information on our threat model design choices.

On Our Choice of Threat Model. Because at the
time of writing Signal did not claim any formally-
specified security properties, as part of our analysis
we had to decide which threat model to assume. The
README document accompanying the source code
[36] states that Signal “is a ratcheting forward secrecy
protocol that works in synchronous and asynchronous
messaging environments”. A separate GitHub wiki
page [42] provides some more goals (forward and
future secrecy5, metadata encryption and detection of
message replay/reorder/deletion) but to the best of

5. Future secrecy means “a leak of keys to a passive eavesdropper
will be healed by introducing new DH ratchet keys” [42].

our knowledge no mention of message integrity or
authentication is made other than the use of AEAD
cipher modes.

We believe that the threat model we have chosen
is realistic, although we discuss later some directions
in which it could be strengthened. As is common
in the AKE literature, we assume a trusted public
key infrastructure (PKI). Since in Signal the PKI is
combined with the network (the same server distributes
identity and ephemeral keys), this assumption some-
what restricts the attacker’s control over particular
sessions.

Some claims have been made about privacy and
deniability [49] in Signal, but these are relatively
abstract. In general, signatures are used but only for
the signed pre-key in the initial handshake, meaning
that an observer can prove that Alice sent a message
[16, full deniability] to someone but perhaps not to
Bob [13, peer deniability].

Additionally, one might consider a threat model
that includes imperfect ephemeral random number
generators. Since no static-static DH shared secret is
included in Signal’s KDF, an adversary who knows
all ephemeral values can compute all secrets. How-
ever, Signal continuously updates state with random
numbers, so we capture in our threat model the fact
that it is possible to make some security guarantees, if
some, but not all, random numbers are compromised.

The trust assumptions on the registration channel
are not defined; Signal specifies a mandatory method
for participants to verify each other’s identity keys
through an out-of-band channel, but most implemen-
tations do not require such verification to take place
before messaging can occur. Without it, an untrusted
key distribution server can impersonate any agent.

Signal’s mechanisms suggest a lot of effort has
been invested to protect against the loss of secrects
used in specific communications. If the corresponding
threat model is an attacker gaining (temporary) access
to the device, it becomes crucial if certain previous
secrets and decrypted messages can be accessed by the
attacker or not: generating new message keys is of no
use if the old ones are still recoverable. This, in turn,
depends on whether deletion of messages and previous
secrets has been effective. This is known to be a hard
problem, especially on flash-based storage media [46],
which are commonly used on mobile phones.

4. Security Model

In this section we present a security model for multi-
stage key exchange, which we then apply to model
Signal’s initial key exchange as well as its ratchet-
ing scheme. Our model allows multiple parties to
execute multiple, concurrent sessions; each session
has multiple stages. For Signal, the session represents
a single chat between two parties, and each stage
represents a new application of the ratchet. Figure 1
depicts, roughly, a single session. There are three
types of stage in Signal: the initial key exchange,
asymmetric ratcheting, and symmetric ratcheting. In
addition, ratcheting stages differ based on whether they

458

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 00:43:53 UTC from IEEE Xplore. Restrictions apply.

are used for generating keys for the initiator to send
to the responder (denoted -ir) or vice versa (denoted
-ri). For our purposes, every stage generates a session
key; depending on the stage, this will be either the
sending or the receiving message key.

On the choice of model. We choose to study the
security of Signal in the traditional key exchange
notion of key indistinguishability (albeit a multi-stage
variant), as opposed to a monolithic secure channel
notion such as ACCE [25]. This is possible because
Signal does not use session keys in the channel
establishment.

Model notation. We present our model as a pseudocode
experiment where the primitive in question (the multi-
stage key exchange protocol) is modelled as a tuple
of algorithms, and then an adversary interacts with
the experiment. This approach is commonly used in
many other areas of cryptography, but less so in key
exchange papers. Compared with models and experi-
ments presented in textual format, we argue that our
approach makes it easier to understand some precise
details, and easier to see subtleties in variations.

We adopt the following notational and typographic
conventions. Monotype text denotes constants; serif
text denotes algorithms and variables associated with
the actual protocol (variables are italicized); and
sans-serif text denotes algorithms, oracles, and vari-
ables associated with the experiment. Algorithms and
Oracles start with upper-case letters; variables start
with lower-case letters. We use object-oriented notation
to represent collections of variables. In particular, we
will use πi

u to denote the collection of variables that
party u uses in its ith protocol execution (“session”). To
denote the variable v in stage s of party u’s ith session,
we write πi

u.v[s]; note s is not (necessarily) a natural
number. For Signal, s is [0] for the session setup stage;
[sym-ir:x,y] or [sym-ri:x,y] for symmetric sending
or receiving stages; or [asym-ri:x] or [asym-ir:x]
for the 1st and 2nd portions of the xth asymmetric
stage. (See also Figure 1.)

DH protocols conventionally use both ephemeral
keys (unique to a session) and long-term keys (in
all sessions of an agent). Signal’s prekeys do not fit
cleanly into this separation, and in order to follow the
conventions of the field we refer to the reused DH
keys as “medium-term keys”.

Medium-term key authentication. Signal’s medium-
term keys are signed by the same identity key used
for DH, breaking key separation. Although there has
been some analysis of this form of key reuse [15, 41],
it is nontrivial to prove secure. We instead enforce
authentication by fiat, allowing the adversary to select
any of the medium-term keys owned by an agent,
but not to inject their own. In the game, this is
implemented as an extra argument when the adversary
creates a new session.

4.1. Multi-Stage Key Exchange Protocol

Definition 1 (Multi-stage key exchange protocol). A
multi-stage key exchange protocol Π is a tuple of

algorithms, along with a keyspace K and a security
parameter λ indicating the number of bits of random-
ness each session requires. The algorithms are:

• KeyGen()
$�→ (ipk, ik): A probabilistic long-term

key generation algorithm that outputs a long-term
public key / secret key pair (ipk, ik). In Signal,
these are called “identity keys”.

• MedTermKeyGen(ik) $�→ (prepk, prek): A prob-
abilistic medium-term key generation algorithm
that takes as input a long-term secret key ik
and outputs a medium-term public key / secret
key pair (prepk, prek). In Signal, these are called
“signed prekeys”; in the key exchange literature,
they are sometimes called “semi-static keys”.

• Activate(ik, prek, role) → (π ′,m′): A proba-
bilistic protocol activation algorithm that takes as
input a long-term secret key ik, a medium-term
secret key prek, and a role role ∈ {init, resp},
and outputs a state π ′ and (possibly empty)
outgoing message m′.

• Run(ik, prek, π,m)→ (π ′,m′): A probabilistic
protocol execution algorithm that takes as input
a long-term secret key ik, a medium-term secret
key prek, a state π , and an incoming message
m, and outputs an updated state π ′ and (possibly
empty) outgoing message m′.

Definition 2 (State). A state π is a collection of the
following variables:
• π.role ∈ {init, resp}: the instance’s role
• π.peeripk: the peer’s long-term public key
• π.peerprepk: the peer’s medium-term public key
• π.status[s] ∈ {ε, active, accept, reject}: ex-
ecution status for stage s, set to active upon
start of a new stage, and set to accept or reject
by computation of the stage’s ratchet key.

• π.k[s] ∈ K: the session key output by stage s
• π.st[s]: any additional protocol state values that a
previous stage gives as input to stage s (defined
as part of the protocol).

• π.sid[s]: the identifier of stage s of session π ;
this is view the actor has of the session π in
stage s, as defined in Figure 1.

• π.type[s]: the type of freshness required for
this stage to have security. For Signal, this
is triple, triple+DHE, asym-ir, asym-ri,
sym-ir or sym-ri.

The state of an instance π in our experiment models
“real” protocol state that an implementation would
keep track of and use during protocol execution. We
will supplement this in the experiment with additional
variables that are artificially added for the experiment.
These are administrative identifiers, used to formally
reason about what is happening in our security exper-
iment, e.g., to identity sessions and partners.

4.2. Key Indistinguishability Experiment

Having defined what a multi-stage key exchange
protocol is, we can now define the experiment for key
indistinguishability.

459

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 00:43:53 UTC from IEEE Xplore. Restrictions apply.

As is typical in key exchange security models,
the experiment establishes long-term keys and then
allows the adversary to interact with the system. The
adversary can direct parties to start sessions with
particular medium-term keys, and can control the
delivery of messages to parties (including modifying,
dropping, delaying, and inserting messages). The
adversary can learn various long-term or per-session
secret information from parties via reveal queries,
and at any point can choose a single stage of a
single session to “test”. They are then given either
the real session key from this stage, or a random key
from the same keyspace, and asked to decide which
was given. If they decide correctly, we say they win
the experiment. This is formalized in the following
definition and corresponding experiment.

Definition 3 (Multi-stage key indistinguishability).
Let Π be a key exchange protocol. Let nP, nM, nS, ns ∈
N. Let A be a probabilistic algorithm that runs in
time polynomial in the security parameter. Define

Advms-ind
Π,nP,nM,nS,ns(A) = Pr

[
Expms-ind

Π,nP,nM,nS,ns(A) = 1
]
− 1/2

where the security experiment Expms-ind
Π,nP,nM,nS,ns(A) is as

defined in Figure 3. Note nS and ns are upper bounds
on the number of sessions per party and number of
stages per session that can be established. We call an
adversary efficient if it runs in time polynomial in the
security parameter.

We are working in the post-specified peer model,
where the peer’s identity is learned by the actor during
the execution of the protocol, by virtue of learning
the peer’s public key; and similarly for the peer’s
semi-static key. Certain aspects of the experiment
require the administrative index of the corresponding
key, and thus, we assume that πi

u.peerid is set to the
corresponding index upon πi

u.peeripk being set; and
similarly for the semi-static key index πi

u.peerpreid
upon πi

u.peerprepk being set. (Recall that experiment-
only variables are in sans-serif.)

4.2.1. Session identifiers. We define the session iden-
tifiers sid[s] for each stage [s] of Signal in Table 2. It
is important to note that these session identifiers only
exist in our model, not in the protocol specification
itself. We use them to we define restrictions on the
adversary’s allowed behaviour in our model, so that
we can make precise security statements: we will
generally restrict the adversary from making queries
against any session with the same session identifier as
the Test session. If two sessions have equal session
identifiers we say that they are “matching”.

The precise components of the session identifiers
are crucial to our definition of security: the more
information is included in the session identifier, the
more specific the restriction on the adversary and
hence the stronger the security model. In particular,
we do not include identities, because they are not
included in Signal’s key derivation or associated
data of encrypted messages. This means that the
unknown key share attack against TextSecure [22] is
not considered an attack in our model: Alice’s session

with Eve will have the same session identifier as Bob’s
session with Alice.

4.3. Freshness

From a key exchange perspective, the novelty of
Signal is the different security goals of different stages’
session keys. The subtle differences between those
security goals are captured in the details of the threat
model. Previously, we provided the adversary with
powerful queries with which it can break any protocol.
We now define the so-called freshness predicate fresh
to constrain that power, effectively specifying the
details of the threat model.

Our goal of the fresh predicate is to describe the
best security condition that might be provable for
each of Signal’s message keys based on the protocol’s
design; here, “best” is with respect to the maximal
combinations of secrets learned by the adversary.

The main motivation for our fresh predicate for
the initial stages comes from observing Figure 2 on
page 7. In the graph, the edges can be seen as the
individual secrets established between initiator and
responder, on which the secrecy of the session keys
is based. If the adversary cannot learn the secret
corresponding to one of these edges, it cannot compute
the session key. The adversary can learn the secret
corresponding to an edge if it can compromise one of
the two endpoints. Thus, if an adversary can learn, e.g.,
the initiator A’s ikA and ekA, it can derive the secrets
corresponding to all edges. A similar observation can
be made for the responder. However, after keys are
updated, the situation changes, since additional secrets
are introduced, and the adversary may no longer have
enough information. We define modified freshness
conditions for subsequent stages to capture Signal’s
post-compromise security properties.

We define our freshness conditions to exactly
exclude those cases for which we can directly ob-
serve that the protocol design offers no protection.
For example, the design does not include an edge
between the long-term keys of the parties (sometimes
referred to as the static Diffie-Hellman key). This
implies that if the long-term keys are secret, but all
generated randomness is compromised, Signal offers
no protection, since all edges become compromised.
Because our freshness conditions are based on fig. 2
and the subsequent key updates, we do not consider
this scenario an attack but rather a direct consequence
of the design. In this work we aim to prove that,
working from the design choices made, Signal indeed
achieves the best it can (without introducing further
elements in the key derivation function).

The freshness predicate fresh for our experiment
works hand-in-hand with a variety of sub-predicates
(cleantriple, cleantriple+DHE, cleanasym-ir, cleanasym-ri,
cleansym-ir and cleansym-ri) which are highly special-
ized to Signal to capture the exact type of security
achieved Signal’s different types of stages. We define
cleanness below.

460

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 00:43:53 UTC from IEEE Xplore. Restrictions apply.

Expms-ind
Π,nP,nM,nS,ns

(A):
1: b

$← {0, 1}
2: tested← ⊥
3: // generate long-term and semi-static keys
4: for u = 1 to nP do
5: (ipku, iku)

$← KeyGen()
6: for preid = 1 to nM do
7: (prepkpreidu , prekpreidu)

$← MedTermKeyGen(iku)
8: pubinfo← (ipk1, . . . , ipknP , prepk11, . . . , prepknMnP)

9: b′ $← ASend,Rev∗,Test(pubinfo)
10: if (tested �= ⊥) ∧ fresh(tested) ∧ b = b′ then
11: return 1 // the adversary wins
12: else
13: return 0 // the adversary loses

Send(u, i,m):

1: if πi
u = ⊥ then

2: // start new session and record intended peer
3: parse m as (πi

u.preid, role)
4: πi

u. �rand
$← {0, 1}nS×λ

5: (πi
u,m

′) ← Activate(iku, prekπ
i
u.preid

u , role;πi
u.rand[0])

6: return m′

7: else
8: s← πi

u.stage
9: (πi

u,m
′)← Run(iku, prekπ

i
u.preid

u , πi
u,m;πi

u.rand[s])
10: return m′

RevSessKey(u, i, s):

1: πi
u.rev_session[s]← true

2: return πi
u.k[s]

RevLongTermKey(u):

1: rev_ltku ← true
2: return iku

RevMedTermKey(u, preid):

1: rev_mtkpreidu ← true
2: return prekpreidu

RevRand(u, i, s):

1: πi
u.rev_random[s]← true

2: return πi
u.rand[s]

RevState(u, i, s):

1: πi
u.rev_state[s]← true

2: return πi
u.st[s]

Test(u, i, s):

1: // can only call Test once, and only on accepted stages
2: if (tested �= ⊥) or (πi

u.status[s] �= accept) then
3: return ⊥
4: tested← (u, i, s)
5: // return real or random key depending on b

6: if b = 0 then
7: return πi

u.k[s]
8: else
9: k′ $← K

10: return k′

Figure 3: Security experiment for adversary A against multi-stage key indistinguishability security of protocol Π.

Definition 4 (Freshness). Define the predicate fresh
as follows:

fresh(u, i, s) = (πi
u.status[s] = accept)

∧ ¬πi
u.rev_session[s]

∧ (∀ j : πi
u.sid[s] = πj

πi
u.peerid

.sid[s]

=⇒ ¬πj
πi
u.peerid

.rev_session[s]
)

∧ cleanπi
u.type[s](u, i, s)

fresh and its sub-clauses have access to all variables
in the experiment (global, user, session, and stage).

4.3.1. Session Setup Stage [0]. Intuitively, a triple-
DH or triple-DH+DHE key exchange should be
secure as long as at least one of its DH shared
secrets is secure; thus the clauses of cleantriple and
cleantriple+DHE correspond to those components. Note
that cleantriple and cleantriple+DHE only need to be
defined for the initial key exchange, i.e., stage [0].

Definition 5 (cleantriple). Within the same context
as Definition 4, define

cleantriple(u, i, [0]) = cleanLM(u, i)

∨ cleanEL(u, i, 0)

∨ cleanEM(u, i, 0)

Definition 6 (cleantriple+DHE). Within the same con-
text as Definition 4, define

cleantriple+DHE(u, i, [0]) = cleantriple(u, i, [0])

∨ cleanEE(u, i, 0, 0)

For the sub-clauses cleanXY in the above two
definitions, our convention is that initiator’s key is
of type X and the responder’s key of type Y, where
the possible types are L, M, and E for long-term
(ik), medium-term (prek), and ephemeral (ek) keys
respectively, as in Figure 2. This necessitates the two
definitions below of cleanLM/cleanEL/cleanEM for when
the tested session is the initiator or responder.

These three definitions are straightforward for
initiator sessions. For responder sessions, the difficult
part is that the ephemeral key is now the peer’s, not the
actor’s: to ensure that it is not known by the adversary,
we have to ensure the peer session’s randomness has
not been revealed (identifying the peer session using
session identifiers), and that key actually has to come
from an honest peer (meaning the peer session must
exist). The following clause helps identify that precise
situation:

cleanpeerE(u, i, s) =(
∀ j : πi

u.sid[s] = πj
πi
u.peerid

.sid[s]

=⇒ ¬πj
πi
u.peerid

.rev_random[s]
)

∧ ∃ j : πi
u.sid[s] = πj

πi
u.peerid

.sid[s]

We can now define our various clean predicates. This
is a non-trivial restriction on the adversary. If the
medium-term key is corrupted then we do not permit
an attack impersonating Alice to Bob: since the only
randomness in a X3DH handshake is from the initiator
(and there is no static-static DH secret), such an attack

461

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 00:43:53 UTC from IEEE Xplore. Restrictions apply.

name sid

sid[0]
(triple : ipki, ipkr, prepkr, epki) if type[0] = triple

(triple+DHE : ipki, ipkr, prepkr, epki, eprepkr) if type[0] = triple+DHE

sid[asym-ri:x]
sid[0] ‖ (asym-ri : rchpk0i , rchpk0r) if x = 1

sid[asym-ir:x− 1] ‖ (asym-ri : rchpkx−1
r) if x > 1

sid[asym-ir:x] sid[asym-ri:x] ‖ (asym-ir : rchpkxi) if x > 0

sid[sym-ri:x,y]
does not exist if x = 0

sid[asym-ri:x] ‖ (sym-ri : y) if x > 0

sid[sym-ir:x,y]
sid[0] ‖ (sym : y) if x = 0

sid[asym-ir:x] ‖ (sym-ir : y) if x > 0

TABLE 2: Definition of session identifiers sid[s] for an arbitrary stage s. Since our stages are named role-agnostically, the
definitions for initiator and responder stages coincide; we use i to refer to the identity of the initiator and r for that of the
responder. For example, if Alice believes she is responding to Bob, then ipki denotes Bob’s identity public key and ipkr
denotes Alice’s. The initial asymmetric stage sid contains two ratchet keys (instead of one) since they are not used in the
initial session key derivation and thus are not contained in sid[0]. We note that sid[sym-ir:x,y] for x = 0 does not exist
because the receiver never starts a symmetric chain immediately after the handshake, always first performing a DH ratchet.

will succeed.
Since we reveal randomness instead of specific

keys, this final predicate applies to both the ephemeral
keys and the ratchet keys, a fact which we shall use
later when defining cleanness of asymmetric stages.

4.3.2. Asymmetric Stages[asym-ir:x]/[asym-ri:x].
In Signal, keys are updated via either symmetric
or asymmetric ratcheting. Asymmetric ratcheting
introduces new DH shared secrets into the state,
whereas symmetric ratcheting solely applies a KDF
to existing state.

It will be helpful to have the following predicate:

Definition 7 (cleanstate). Within the same context as
Definition 4, define

cleanstate(u, i, s, s
′) = ¬πi

u.rev_state[s]

∧ (∀ j : πi
u.sid[s] = πj

πi
u.peerid

.sid[s′]

=⇒ ¬πj
πi
u.peerid

.rev_state[s′]
)

For brevity, we will write cleanstate(u, i, s) as a short-
hand for cleanstate(u, i, s, s).

The state reveal query reveals additional state
information that a previous stage gives as input to stage
s. For Signal, we define as follows. For asymmetric
stages, state reveal gives the root key used in the
session key computation that was derived in the
previous stage; for symmetric stages, state reveal gives
the chain key derived in the previous stage.

During asymmetric ratcheting, there are actually
two substages, in which keys with slightly different
properties are derived. In the first substage, the parties
apply a KDF to two pieces of keying material: the
root key derived at the end of the previous asymmetric

stage, and a DH shared secret derived from both
party’s previous ratcheting public keys. Keys from this
substage are marked with sid[asym-ri:x]; they should
be secure if either of the two pieces is unrevealed,
which is what type asym-ri captures. In the second
substage, the parties effectively apply a KDF to three
pieces of keying material: the root key, a DH shared
secret from the first substage, and a DH shared secret
derived from one party’s previous ratcheting public
key and the other’s new ratcheting public key. Keys
from this substage are marked with sid[asym-ir:x]
and should be secure if at least one of the three pieces
is unrevealed, which is what asym-ir captures.
These clauses capture the “future secrecy” goal
of Signal: if a device had been compromised at
some prior time (i.e., the party’s long-term key,
past states, and past ephemeral keys are all com-
promised, and thus neither the second disjuncts nor
cleanEE(u, i, s

′
ir, s

′
ri) are satisfied), but the current

ephemeral keys of both parties are uncompromised
and honest (cleanEE(u, i, sir, sri) is satisfied) then the
stage is clean. Since our security property requires that
the adversary cannot learn keys derived from clean
stages, this captures post-compromise security.

Note that cleanEE is used twice (because clean-
ness of ephemerals is defined as cleanness of the
random numbers): once to show that the randomness
is clean when generating ephemerals for the initial
key exchange, and once to show that it is clean when
generating the first ratchet key pair.

4.3.3. Symmetric Stages [sym-ir:x,y] and
[sym-ri:x,y]. For stages with only symmetric
ratcheting, new session keys should be secure only if
the state is unknown to the adversary: this demands

462

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 00:43:53 UTC from IEEE Xplore. Restrictions apply.

cleanLM(u, i) =

{
¬rev_ltku ∧ ¬rev_mtk

πi
u.peerpreid

πi
u.peerid

πi
u.role = init

¬rev_ltkπi
u.peerid

∧ ¬rev_mtkπ
i
u.preid

u πi
u.role = resp

cleanEL(u, i, [0]) =

{
¬πi

u.rev_random[0] ∧ ¬rev_ltkπi
u.peerid

πi
u.role = init

cleanpeerE(u, i, [0]) ∧ ¬rev_ltku πi
u.role = resp

cleanEM(u, i, [0]) =

{
¬πi

u.rev_random[0] ∧ ¬rev_mtk
πi
u.peerpreid

πi
u.peerid

πi
u.role = init

cleanpeerE(u, i, [0]) ∧ ¬rev_mtkπ
i
u.preid

u πi
u.role = resp

cleanEE(u, i, s, s
′) =

{
¬πi

u.rev_random[s] ∧ cleanpeerE(u, i, s
′) πi

u.role = init

cleanpeerE(u, i, s) ∧ ¬πi
u.rev_random[s′] πi

u.role = resp

Within the same context as Definition 4, let sir = [asym-ir:x], sri = [asym-ri:x], s′ir = [asym-ir:x− 1]
and s′ri = [asym-ri:x− 1]. Define

cleanasym-ri(u, i, sri) =

⎧⎨
⎩
cleanEE(u, i, [0], [0]) ∨

(
cleanstate(u, i, sri) ∧ cleanπi

u.type[0](u, i, [0])
)

x = 1

cleanEE(u, i, s
′
ri, s

′
ir) ∨

(
cleanstate(u, i, sri) ∧ cleanasym-ir(u, i, s

′
ir)

)
x > 1

cleanasym-ir(u, i, sir) =

⎧⎨
⎩
cleanEE(u, i, sri, [0]) ∨

(
cleanstate(u, i, sir) ∧ cleanasym-ri(u, i, sri)

)
x = 1

cleanEE(u, i, sri, s
′
ir) ∨

(
cleanstate(u, i, sir) ∧ cleanasym-ri(u, i, sri)

)
x > 1

Writing s = [sym-ir:x,y],

cleansym-ir(u, i, s) = cleanstate(u, i, s, s) ∧

⎧⎪⎨
⎪⎩
cleanπi

u.type[0](u, i, [0]) x = 0, y = 1

cleanasym-ir(u, i, [asym-ir:x]) x > 0, y = 1

cleansym-ir(u, i, [sym-ir:x,y − 1]) x ≥ 0, y > 1

There is no stage of type sym-ri with x = 0, so (writing now s = [sym-ri:x,y])

cleansym-ri(u, i, s) = cleanstate(u, i, s, s) ∧
{
cleanasym-ri(u, i, [asym-ri:x]) x > 0, y = 1

cleansym-ri(u, i, [sym-ri:x,y − 1]) x > 0, y > 1

We may write cleansym to denote cleansym-ir or cleansym-ri where it is clear which one we mean.

Figure 4: Cleanness predicates. All notation is within the same context as Definition 4.

that all previous states in this symmetric chain are
uncompromised, since later keys in the chain are
computable from earlier states in the chain. Thinking
recursively, this means that the previous stage’s
key derivation should have been secure, and that
the adversary has not revealed the state linking the
previous stage with the current one.

While the symmetric sending and receiving chains
derive independent keys and are triggered differently
during Signal protocol execution, their security prop-
erties are identical and captured by the following
predicate; the different forms of the predicate are due
to needing to properly name the “preceding” stage.
There are different freshness conditions depending on
whether the symmetric stage is used for a message
from initiator to responder or vice versa. Moreover, the
symmetric stages arising from the initial handshake
(x = 0) and from subsequent asymmetric stages
(x > 0) are subtly different.

5. Security Analysis

In this section we prove that Signal is a secure
multi-stage key exchange protocol in the language

of Section 4, under standard assumptions on the
cryptographic building blocks.

The algorithms comprising the Signal protocol are
given in Definition 1, and we summarise some key
points below.

We have made a few minor reorganizations in
Figure 1 compared to the actual implementation
of Signal. We consider Signal to generate the first
message keys for each chain at the same time that
it initialises the chain, allowing us to consider these
message keys as the session keys of the asymmetric
stages. Similarly, we consider Bob to send his own
one-time prekey eprepkB instead of relaying it via
the server. We mark these extra steps in Dark red in
Figure 1.

KeyGen and MedTermKeyGen consist of uniform
random sampling from the group.

Activate depends on the invoked role. Our prekey
reorganization described above means that the roles
of initiator and responder are technically reversed:
although intuitively Alice initiates a session in our pre-
sentation, in fact Bob sends the first message, namely
his prekeys (first right-to-left flow of Figure 1(b).

463

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 00:43:53 UTC from IEEE Xplore. Restrictions apply.

Thus, the activation algorithm for the responder (Bob)
outputs a single one-time prekey and awaits a response.
The activation algorithm for the initiator (Alice) out-
puts nothing and awaits incoming prekeys.

Run is the core protocol algorithm. It admits various
cases, which we briefly describe. If the incoming
message is the first, Run builds a session as described
previously: for Alice, it operates as in the left side of
Figure 1(b) and outputs a message containing epkA;
for Bob, it operates as in the right side of Figure 1(b)
and outputs nothing.

After that, there are two cases: Run is either
invoked to process an incoming message, or to encrypt
an outgoing one. We distinguish between incoming
ratchet public keys (causing asymmetric updates) and
incoming messages (causing symmetric updates).

(i) Outgoing message. Perform a symmetric sending
update, modifying the current sending chain key
and using the resulting message key as the session
key (left side of Figure 1(c)).

(ii) Incoming ratchet public key. If this ratchet public
key has not been processed before, perform
an asymmetric update using it to derive new
sending and receiving chain keys as in Figure 1(d).
Advance both chains by one step, and output the
message keys as the session key for the two
asymmetric sub-stages as indicated in the figure.

(iii) Incoming message. Use the message metadata to
determine which receiving chain should be used
for decryption, and which position the message
takes in the chain. Advance that chain (according
to the right side of Figure 1(c)) as many stages
as necessary (possibly zero), storing for future
use any message keys that were thus generated.
Return as the session key the next receiving
message key.

In the Signal protocol, old but unused receiving
keys are stored at the peer for an implementation-
dependent length of time, trading off forward security
for transparent handling of outdated messages. This
of course weakens the forward secrecy of the keys,
though their other security properties remain the same.
We choose not to model this weakened forward secrecy
guarantee, passing only the latest chaining key from
stage to stage.

With these definitions, we can consider the advan-
tage of an adversary in a multi-stage key exchange
security game against our model of the Signal protocol:

Theorem 1. The Signal protocol is a secure multi-
stage key exchange protocol under the GDH assump-
tion and assuming all KDFs are random oracles. That
is, if no efficient adversary can break the assumptions
with non-negligible probability, then no efficient adver-
sary can win the multi-stage key indistinguishability
security experiment for Signal (and thereby distinguish
any fresh message encryption key from random) with
non-negligible probability.

The definitions of the security assumptions and
the proof appear in the full version [10].

6. Limitations

As a first analysis of a complex protocol, we have
chosen (some) simplicity over a full analysis of all of
Signal’s features. We hope that our presentation and
model can serve as a starting point for future analyses.

We discuss here some of the features included in
Signal which we have explicitly chosen not to model
and observe limitations of our results.

Protocol Components. Non-Signal library compo-
nents. The open-source libraries contain various sec-
tions of code which are not considered part of the
Signal protocol. For example, the “header encryption”
variant of the Double Ratchet is used by Pond and
included in the reference implementation, but not used
by Signal itself. Likewise, there is support for online
key exchanges instead of via the prekey server. As
these components are not intended to be part of the
Signal protocol, we do not analyse them.

Out-of-band key verification. To reduce the trust
requirements on the prekey server, Signal supports
a fingerprint mechanism for verifying public keys
through an out-of-band channel. We simply assume
that long-term and medium-term public key distribu-
tion is honest, and do not analyse the out-of-band
verification channel.

Same key for Ed25519 signing and Curve25519 DH.
Signal uses the same key ik for DH agreement and for
signing the medium-term prekeys6. [15, 41] prove
security of a similar scheme under the Gap-DH
assumption, effectively showing that the signatures
can be simulated using the hashing random oracle.
We conjecture a similar argument could apply here,
but do not prove it; instead, we omit the signatures
from consideration and enforce authentication of the
prekeys in the game. This enforced authentication
means we do not capture the class of attacks in which
the adversary corrupts an identity key and then inserts
a malicious signed pre-key.

Out-of-order decryption. To decrypt out-of-order mes-
sages, users must store message keys until the mes-
sages arrive, reducing their forward security. As dis-
cussed in Section 5 we do not consider this storage.

Simultaneous session initiation. Signal has a mech-
anism to deal silently with the case that Alice and
Bob simultaneously initiate a session with each other.
Roughly, when an agent detects that this has happened
they deterministically choose one party as the initiator
(e.g. by sorting identity public keys and choosing the
smaller), and then complete the session as if the other
party had not acted. This requires a certain amount of
trial and error: agents maintain multiple states for each
peer, and attempt decryption of incoming messages
in all of them. We do not consider this mechanism.

Other Security Goals and Threats. Our model
describes key indistinguishability of two-party multi-
stage key exchange protocols. There are other security

6. This is done in practise by reinterpreting the Curve25519 point
as an Ed25519 key, and computing an EdDSA signature.

464

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 00:43:53 UTC from IEEE Xplore. Restrictions apply.

and functionality goals which Signal may address but
which we do not study, including: group messaging
properties7, message sharing across multiple devices,
voice and video call security, protocol efficiency (e.g.
0-round-trip modes), privacy, and deniability.

Implementation-specific threats. We make various as-
sumptions on the components used by the protocol. In
particular, we do not consider specific implementations
of primitives (e.g. the particular choice of curve),
instead assuming standard security properties. We also
do not consider side-channel attacks.

Tightness of the security reduction. As pointed out
in [1], a limitation of conventional game hopping
proofs for AKE protocols is that they do not provide
tight reductions. The underlying reason is that the
reductions depend on guessing the specific party and
session under attack. In the case of a widely deployed
protocol with huge amounts of sessions, such as
Signal, this leads to an extremely non-tight reduction.
While [1] develops some new AKE protocols with
tight reductions, their protocols are non-standard in
their setup and assumptions. In particular, there is
currently no known technique for constructing a tight
reduction that is applicable to the Signal protocol.

Application Variants. Popular applications using Sig-
nal tend to change important details as they implement
or integrate the protocol, and thus merit security
analyses in their own right. For example, WhatsApp
implements a re-transmission mechanism: if Bob
appears to change his identity key, clients will resend
messages encrypted under the new value. Hence, an
adversary with control over identity registration can
disconnect Bob and replace his key, and Alice will
re-send the message to the adversary.

7. Conclusions and Future Work

In this work we provided the first formal security
analysis of the cryptographic core of the Signal
protocol. While any first analysis for such a complex
object will be necessarily incomplete, our analysis
leads to several observations.

First, our analysis shows that the cryptographic
core of Signal provides useful security properties.
These properties, while complex, are encoded in our se-
curity model, and which we prove that Signal satisfies
under standard cryptographic assumptions. Practically
speaking, they imply secrecy and authentication of
the message keys which Signal derives, even under
a variety of adversarial compromise scenarios such
as forward security (and thus “future secrecy”). If
used correctly, Signal could achieve a form of post-
compromise security, which has substantial advantages
over forward secrecy as described in [11].

Our analysis has also revealed many subtleties of
Signal’s security properties. For example, we identified

7. The implementation of group messaging is not specified at
the protocol layer. If it is implemented using multiple pairwise
sessions, its security may follow in a relatively straightforward
fashion—however, there are many other possible security properties
which might be desired, such as transcript consistency.

six different security properties for message keys
(triple, triple+DHE, asym-ir, asym-ri, sym-ir
and sym-ri).

One can imagine strengthening the protocol further.
For example, if the random number generator becomes
fully predictable, it may be possible to compromise
communications with future peers. We have pointed
out to the developers that this can be solved at
negligible cost by using constructions in the spirit
of the NAXOS protocol [33] or including a static-
static DH shared secret in the key derivation.

We have described some of the limitations of our
approach in Section 6. Furthermore, the complexity
and tendency to add “extra features” makes it hard
to make statements about the protocol as it is used.
Examples include the ability to reset the state [11],
encrypt headers, or support out-of-order decryption.

As with many real-world security protocols, there
are no detailed security goals specified for the pro-
tocol, so it is ultimately impossible to say if Signal
achieves its goals. However, our analysis proves that
several standard security properties are satisfied by
the protocol, and we have found no major flaws in its
design, which is very encouraging.

Acknowledgements

The authors acknowledge helpful discussions with
Marc Fischlin and Felix Günther (TU Darmstadt) and
valuable comments from Chris Brzuska (TU Hamburg)
and Trevor Perrin (Open Whisper Systems).

References

[1] Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike Kiltz,
and Yong Li. “Tightly-Secure Authenticated Key Exchange”.
In: TCC 2015, Part I. Vol. 9014. LNCS. Springer, Heidelberg,
Mar. 2015, pp. 629–658.

[2] Chris Ballinger. ChatSecure. URL: https://chatsecure.org/
blog/chatsecure-v4-released/ (visited on 01/2017).

[3] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya
Nyayapati, and Igors Stepanovs. Ratcheted Encryption and
Key Exchange: The Security of Messaging. Cryptology ePrint
Archive, Report 2016/1028. http://eprint.iacr.org/2016/1028.
2016.

[4] Mihir Bellare and Bennet S. Yee. “Forward-Security in
Private-Key Cryptography”. In: CT-RSA 2003. Vol. 2612.
LNCS. Springer, Heidelberg, Apr. 2003, pp. 1–18.

[5] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe,
and Bo-Yin Yang. “High-Speed High-Security Signatures”.
In: CHES 2011. Vol. 6917. LNCS. Springer, Heidelberg,
Sept. 2011, pp. 124–142.

[6] Karthikeyan Bhargavan, Christina Brzuska, Cédric Fournet,
Matthew Green, Markulf Kohlweiss, and Santiago Zanella-
Béguelin. “Downgrade Resilience in Key-Exchange Proto-
cols”. In: 2016 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, May 2016.

[7] David Bogado and Danny O’Brien. Punished for a Paradox.
Mar. 2, 2016. URL: https://www.eff.org/deeplinks/2016/03/
punished-for-paradox-brazils-facebook (visited on 07/2016).

[8] Nikita Borisov, Ian Goldberg, and Eric Brewer. “Off-the-
record Communication, or, Why Not to Use PGP”. In: WPES.
Washington DC, USA: ACM, 2004, pp. 77–84.

[9] Ran Canetti, Shai Halevi, and Jonathan Katz. “A Forward-
Secure Public-Key Encryption Scheme”. In: EURO-
CRYPT 2003. Vol. 2656. LNCS. Springer, Heidelberg, May
2003, pp. 255–271.

465

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 00:43:53 UTC from IEEE Xplore. Restrictions apply.

[10] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling,
Luke Garratt, and Douglas Stebila. A Formal Security
Analysis of the Signal Messaging Protocol. Cryptology ePrint
Archive, Report 2016/1013. http://eprint.iacr.org/2016/1013.
2016.

[11] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. On
Post-Compromise Security. (A shorter version of this paper
appears at CSF 2016). 2016. URL: http://eprint.iacr.org/
2016/221.

[12] Conversations. URL: https://conversations.im/ (visited on
07/2016).

[13] Cas Cremers and Michele Feltz. One-round Strongly Secure
Key Exchange with Perfect Forward Secrecy and Deniability.
Cryptology ePrint Archive, Report 2011/300. http://eprint.
iacr.org/2011/300. 2011.

[14] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der
Merwe. “Automated Analysis and Verification of TLS 1.3:
0-RTT, Resumption and Delayed Authentication”. In: 2016
IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2016.

[15] Jean Paul Degabriele, Anja Lehmann, Kenneth G. Paterson,
Nigel P. Smart, and Mario Strefler. “On the Joint Security
of Encryption and Signature in EMV”. In: CT-RSA 2012.
Vol. 7178. LNCS. Springer, Heidelberg, Feb. 2012, pp. 116–
135.

[16] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk.
“Deniable authentication and key exchange”. In: ACM CCS
06. ACM Press, Oct. 2006, pp. 400–409.

[17] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk.
“Secure Off-the-record Messaging”. In: WPES. Alexandria,
VA, USA: ACM, 2005, pp. 81–89.

[18] Benjamin Dowling, Marc Fischlin, Felix Günther, and
Douglas Stebila. “A Cryptographic Analysis of the TLS 1.3
Handshake Protocol Candidates”. In: ACM CCS 15. ACM
Press, Oct. 2015, pp. 1197–1210.

[19] Electronic Frontier Foundation. Secure Messaging Scorecard.
2016. URL: https://www.eff.org/node/82654.

[20] Facebook. Messenger Secret Conversations. Tech. rep. 2016.
URL: https://fbnewsroomus.files.wordpress.com/2016/07/
secret_conversations_whitepaper-1.pdf (visited on 07/2016).

[21] Tilman Frosch, Christian Mainka, Christoph Bader, Florian
Bergsma, Joerg Schwenk, and Thorsten Holz. How Secure
is TextSecure? Cryptology ePrint Archive, Report 2014/904.
http://eprint.iacr.org/2014/904 (Version from April 5, 2016).
2014.

[22] Tilman Frosch, Christian Mainka, Christoph Bader, Florian
Bergsma, Jörg Schwenk, and Thorsten Holz. “How Secure is
TextSecure?” In: 1st IEEE European Symposium on Security
and Privacy. IEEE Computer Society Press, Mar. 2016.

[23] Christina Garman, Matthew Green, Gabriel Kaptchuk, Ian
Miers, and Michael Rushanan. “Dancing on the Lip of the
Volcano: Chosen Ciphertext Attacks on Apple iMessage”.
In: Usenix Security 2016. 2016.

[24] Matthew D. Green and Ian Miers. “Forward Secure Asyn-
chronous Messaging from Puncturable Encryption”. In: 2015
IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2015, pp. 305–320.

[25] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk.
“On the Security of TLS-DHE in the Standard Model”. In:
CRYPTO 2012. Vol. 7417. LNCS. Springer, Heidelberg, Aug.
2012, pp. 273–293.

[26] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. “On
the Security of TLS 1.3 and QUIC Against Weaknesses in
PKCS#1 v1.5 Encryption”. In: ACM CCS 15. ACM Press,
Oct. 2015, pp. 1185–1196.

[27] Nadim Kobeissi. Cryptocat. URL: https://crypto.cat/security.
html (visited on 07/2016).

[28] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno
Blanchet. “Automated Verification for Secure Messaging
Protocols and their Implementations: A Symbolic and Com-
putational Approach”. In: 2nd IEEE European Symposium
on Security and Privacy. IEEE Computer Society Press, Apr.
2017.

[29] Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Björn
Tackmann, and Daniele Venturi. “(De-)Constructing TLS
1.3”. In: INDOCRYPT 2015. Vol. 9462. LNCS. Springer,
Heidelberg, Dec. 2015, pp. 85–102.

[30] Hugo Krawczyk. “Cryptographic Extraction and Key Deriva-
tion: The HKDF Scheme”. In: CRYPTO 2010. Vol. 6223.
LNCS. Springer, Heidelberg, Aug. 2010, pp. 631–648.

[31] Hugo Krawczyk. “HMQV: A High-Performance Secure
Diffie-Hellman Protocol”. In: CRYPTO 2005. Vol. 3621.
LNCS. Springer, Heidelberg, Aug. 2005, pp. 546–566.

[32] Caroline Kudla and Kenneth G. Paterson. “Modular Security
Proofs for Key Agreement Protocols”. In: ASIACRYPT 2005.
Vol. 3788. LNCS. Springer, Heidelberg, Dec. 2005, pp. 549–
565.

[33] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin.
“Stronger Security of Authenticated Key Exchange”. In:
ProvSec 2007. Vol. 4784. LNCS. Springer, Heidelberg, Nov.
2007, pp. 1–16.

[34] Adam Langley. Pond. 2014. URL: https://pond.imperialviolet.
org/ (visited on 06/22/2015).

[35] Xinyu Li, Jing Xu, Zhenfeng Zhang, Dengguo Feng, and
Honggang Hu. “Multiple Handshakes Security of TLS 1.3
Candidates”. In: 2016 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, May 2016.

[36] libsignal-protocol-java.
GitHub repository, commit hash
4a7bc1667a68c1d8e6af0151be30b84b94fd1e38. 2016.
URL: github.com/WhisperSystems/libsignal-protocol- java
(visited on 07/2016).

[37] Moxie Marlinspike. Advanced cryptographic ratcheting.
Blog. 2013. URL: https://whispersystems.org/blog/advanced-
ratcheting/ (visited on 07/2016).

[38] Moxie Marlinspike. Open Whisper Systems partners with
Google on end-to-end encryption for Allo. Blog. 2016. URL:
https://whispersystems.org/blog/allo/ (visited on 07/2016).

[39] Alfred Menezes and Berkant Ustaoglu. “On Reusing
Ephemeral Keys in Diffie–Hellman Key Agreement Proto-
cols”. In: Int. J. Appl. Cryptol. 2.2 (Jan. 2010), pp. 154–158.

[40] Vinnie Moscaritolo, Gary Belvin, and Phil Zimmermann.
Silent Circle Instant Messaging Protocol Specification. Tech.
rep. Archived from the original. Dec. 5, 2012. URL: https:
//web.archive.org/web/20150402122917/https://silentcircle.
com/ sites / default / themes / silentcircle / assets / downloads /
SCIMP_paper.pdf (visited on 07/2016).

[41] Kenneth G. Paterson, Jacob C. N. Schuldt, Martijn Stam,
and Susan Thomson. “On the Joint Security of Encryption
and Signature, Revisited”. In: ASIACRYPT 2011. Vol. 7073.
LNCS. Springer, Heidelberg, Dec. 2011, pp. 161–178.

[42] Trevor Perrin. Double Ratchet Algorithm. GitHub wiki. 2016.
URL: https://github.com/trevp/double_ratchet/wiki (visited
on 07/22/2016).

[43] Trevor Perrin. The XEdDSA and VXEdDSA Signature
Schemes. Specification. Oct. 2016. URL: https : / /
whispersystems . org / docs / specifications / xeddsa/ (visited
on 07/2016).

[44] Trevor Perrin and Moxie Marlinspike. The Double Ratchet
Algorithm. Specification. Nov. 2016. URL: https : / /
whispersystems . org / docs / specifications / doubleratchet/
(visited on 01/2017).

[45] Trevor Perrin and Moxie Marlinspike. The X3DH Key
Agreement Protocol. Specification. Nov. 2016. URL: https:
//whispersystems.org/docs/specifications/x3dh/ (visited on
01/2017).

[46] J. Reardon, D. Basin, and S. Capkun. “SoK: Secure Data
Deletion”. In: Security and Privacy (SP), 2013 IEEE Sym-
posium on. May 2013, pp. 301–315.

[47] Andreas Straub. OMEMO Encryption. Oct. 25, 2015. URL:
https://conversations.im/xeps/multi- end.html (visited on
07/2016).

[48] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl,
Henning Perl, Ian Goldberg, and Matthew Smith. “SoK:
Secure Messaging”. In: 2015 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, May 2015,
pp. 232–249.

[49] Nik Unger and Ian Goldberg. “Deniable Key Exchanges
for Secure Messaging”. In: ACM CCS 15. ACM Press, Oct.
2015, pp. 1211–1223.

[50] WhatsApp. WhatsApp Encryption Overview. Tech. rep. 2016.
URL: https : / / www.whatsapp . com / security /WhatsApp -
Security-Whitepaper.pdf (visited on 07/2016).

466

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 18,2024 at 00:43:53 UTC from IEEE Xplore. Restrictions apply.

