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Abstract—We investigate security of key exchange protocols
supporting so-called zero round-trip time (0-RTT), enabling a
client to establish a fresh provisional key without interaction,
based only on cryptographic material obtained in previous
connections. This key can then be already used to protect
early application data, transmitted to the server before both
parties interact further to switch to fully secure keys. Two
recent prominent examples supporting such 0-RTT modes are
Google’s QUIC protocol and the latest drafts for the upcoming
TLS version 1.3.

We are especially interested in the question how replay
attacks, enabled through the lack of contribution from the
server, affect security in the 0-RTT case. Whereas the first
proposal of QUIC uses state on the server side to thwart such
attacks, the latest version of QUIC and TLS 1.3 rather accept
them as inevitable. We analyze what this means for the key
secrecy of both the preshared-key-based 0-RTT handshake in
draft-14 of TLS 1.3 as well as the Diffie–Hellman-based 0-
RTT handshake in TLS 1.3 draft-12. As part of this we extend
previous security models to capture such cases, also shedding
light on the limitations and options for 0-RTT security under
replay attacks.

1. Introduction

Key exchange protocols are among the most widely
used cryptographic protocols today, incorporated, e.g., in
the TLS, SSH, IPsec, and QUIC protocols. They serve the
purpose of establishing a (potentially authenticated) secret
key between two parties in a network. While efficiency has
always been a relevant aspect for such protocols, optimiza-
tion traditionally focused on the cryptographic operations,
which for a long time dominated the overall cost (in time)
for executions. With the technological progress in speed of
computation, but also advances and, equally important, the
deployment of elliptic-curve cryptography, researchers and
practitioners managed to reduce the cost of (even asym-
metric) cryptographic operations drastically over the last
decades. As a result, the communication complexity has
become a more and more dominant factor for the overall
efficiency of key exchange protocols.

1.1. Zero Round-Trip Time

While steadily increasing bandwidth on the Internet
renders the data complexity aspect of communication sub-
ordinate, speed of light prepares to set a definitive lower
bound for the time a message needs to be sent back and forth
between two parties (called round-trip time). Reducing the
round complexity has hence become a major design criteria
in the last years, with several low-latency designs for key
exchange proposed by researchers [29], [24], [16], [39] as
well as by practitioners. Prominent practical examples are
in particular Google’s QUIC protocol [30] incorporated into
the Chrome browser and the upcoming TLS version 1.3 [37],
the latter being based on the OPTLS key exchange protocol
by Krawczyk and Wee [24]. Those designs set out to estab-
lish an initial key in zero round-trip time (0-RTT) that allows
one party (usually the client) to send “early” data already
along with the first key exchange message to a (previously
visited) server.

Without the server being able to contribute, it is well
understood that such an approach cannot achieve equally
strong security guarantees for the initial key as classical key
exchange protocols are able to provide with a full round-trip
(and hence contributions from both parties). In particular,
the initial key cannot provide (forward) secrecy in a setting
where no state is shared between sessions and all but the
ephemeral keying material is compromised after the key
exchange run. The common strategy is, hence, that both
parties switch to a stronger key (e.g., achieving forward
secrecy) after the server contributed in a second step of the
key exchange and protect any further communication under
this key.

DIFFIE–HELLMAN-BASED 0-RTT. One main concept to
derive a 0-RTT key based on a Diffie–Hellman-style key
exchange and to later upgrade to a stronger, forward-secret
key, is shared by both recent prominent instances QUIC
and TLS 1.3 (up to draft-12 [34]).1 From a high-level
perspective (i.e., omitting necessary mechanisms to protect,
e.g., against replays or man-in-the-middle attacks which

1. We refer here to the (EC)DHE 0-RTT variant in TLS 1.3 draft
draft-ietf-tls-tls13-12 and the original QUIC proposal Rev
20130620, see also our comment in Section 1.3 about the status of these
documents.
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both protocols employ), this concept works as follows. Prior
to the actual key exchange, the client is assumed to have
talked to the server before and, in that communication,
obtained a so-called server configuration. Cryptographically
speaking, this configuration includes a semi-static Diffie–
Hellman share gs, for which the server stores the secret
exponent s for a certain time. In QUIC, authentication of
this server configuration is via an (offline) signed structure
announced by the server, in TLS 1.3 it is signed (online)
during a prior handshake.

Within its first message in subsequent executions, the
client then sends an ephemeral Diffie–Hellman share gx,
derives the 0-RTT key K1 as (a function of) (gs)x = gxs,
and is hence immediately able to, e.g., send encrypted data
under the key. The server then computes the same key as
(gx)s (enabling decryption of the 0-RTT data) and responds
with its own ephemeral share gy for the stronger shared key.
Both parties derive the full key K2 as (a function of) gxy ,
which can then enjoy forward secrecy in the sense that it
remains secure even if gs or the parties long-term secrets
are later compromised.

PRESHARED-KEY-BASED 0-RTT. Another concept for es-
tablishing a key in zero round-trip time is based on pre-
shared keys (PSKs) and, from draft-13 [35] on, forms
the basis of the only 0-RTT handshake mode specified for
TLS 1.3 (i.e., the option for Diffie–Hellman-based 0-RTT
was deferred in draft-13). Here, the 0-RTT key K1 is
derived from a previously established secret key (e.g., in
TLS 1.3 a key established for session resumption in a regular
handshake). The client can perform this computation without
interaction with the server and hence is able to immediately
send encrypted data under K1. Later, both parties update a
full key K2 derived from the pre-shared secret and further
exchanged material, e.g., fresh Diffie–Hellman shares to
ensure forward secrecy.

1.2. The Problem with Replays and How It Is (Not)
Solved in QUIC and TLS 1.3

The standard approach in key exchange protocols to pre-
vent a man-in-the-middle attacker from replaying messages
in order to make a party derive the same key twice is two
include a nonce in both the client’s and the server’s messages
and let the nonce contribute to the derived key. For a 0-RTT
key exchange, which is essentially a one-pass (i.e., one-
message) key exchange protocol [3], messages (and hence
keys) are—at first glance—inevitably replayable2.

The QUIC protocol side-stepped the replay problem
in its original cryptographic design [25] (called Rev
20130620 here) by demanding the server to store all
nonces seen in a so-called “strike register”—restricted in
size by a server-specific “orbit” prefix and current time
contained in the nonces—and rejecting any recurring nonce.
As security analyses confirmed [13], [27], this approach

2. We use the notion of replays interchangeably for both messages and
the keys computed based on those replayed messages.

indeed allows to establish a secure 0-RTT key which is
non-replayable in the sense that no adversary can make
a party derive the same key twice. However, while this
approach can succeed to prevent replays on the key-exchange
level (in terms of preventing double-derivation of keys), it
inevitably fails to prevent (logical) replays of the actual
data exchanged, in particular when it comes to real-world
settings where a server entity is implemented in a cluster
of, potentially distributed, servers, as we explain next. Let
us stress that this problem with replays is independent
of whether the 0-RTT key exchange is based on Diffie–
Hellman or on preshared keys.

As discovered by Daniel Kahn Gillmor in the discussion
around the upcoming TLS version 1.3 [31], any 0-RTT
anti-replay mechanism deployed at the key exchange level
becomes void when combined within an overall channel
protocol that aims to provide reliable delivery of data mes-
sages (like, e.g., QUIC or TLS). The reason is that such a
protocol will resend rejected 0-RTT data under the second
(final) key derived automatically in order to ensure delivery.
A generic attacker can hence, for any client sending 0-RTT
key-exchange messages together with some encrypted data,
make this data being delivered twice in the following attack,
also illustrated in Figure 1 (see [31] for a more detailed
description of the attack).

The attacker first conveys the client’s 0-RTT messages
and encrypted data to the server (which processes it), but
drops the server’s key exchange response. It then forces the
server to lose its state, e.g., through rebooting, and presents
the same messages again to the server. The server, with
knowledge about its reset, has to conservatively decline
the 0-RTT part of the key exchange for security reasons,
but will reply with its own key exchange contribution for
the final key which the attacker now simply relays to the
client. The client derives the final key and, to ensure reliable
delivery, sends the desired data again under this key, which
the server will hence decrypt and process a second time.
This constitutes a replay of the contained application data
and might, e.g., result in a web transaction being processed
twice.

Note that the contrived requirement that the attacker is
able to reboot the server (while the client keeps waiting for a
response) vanishes in a real-world scenario with distributed
server clusters, where the attacker instead simply forwards
the 0-RTT messages to two servers and drops the first
server’s response. The described attack hence in particular
affects the cryptographic design of QUIC, which (among
others) specifically targets settings with distributed clusters.
Holding up the originally envisioned 0-RTT full replay
protection being impossible, Langley and Chang write in
the specification of July 2015 [26] (Rev 20150720) that
this design is “destined to die” and will be replaced by (an
adapted version of) the TLS 1.3 handshake. We, however,
argue here that QUIC’s strategy in Rev 20130620 still
supports some kind of replay resistance, only at a different
level. TLS 1.3, in contrast, forgoes any protection mech-
anisms and instead accepts replays as inevitable (on the
channel level). Developers using TLS 1.3 are supposed to
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Client Attacker Server

0-RTT key-exchange messages

0-RTT data "request"

process "request"

accept 0-RTT

key-exchange response messages

enforce loss of state (e.g., reboot)

replay 0-RTT key-exchange messages

replay 0-RTT data "request"

reject after state loss
for security reasons

reject 0-RTT

key-exchange response messages

final key exchange messages

resend data "request" under final key

(to ensure reliable transmission) process "request"
(again)

Figure 1. Generic replay attack discovered by Daniel Kahn Gillmor in the IETF TLS working group discussion around TLS 1.3 [31]. The 0-RTT data
"request" could, e.g., be an HTTP request "POST /buy-something".

be provided with a different API call for sending 0-RTT
data [37, Appendix B.1], indicating its replayability, and
responsible for taking replays into account for such data.

There is, then, a significant conceptual gap between
replays (of key-exchange messages and keys) on the key-
exchange level, and the replay of user data faced on the
level of the overall secure channel protocol in the 0-RTT
setting. While the former can effectively be prevented within
the key exchange protocol, this does not necessarily prevent
the latter which can be (and in practice is) induced by the
network stack of the channel actively and automatically re-
sending (presumably) rejected 0-RTT data under the main
key. The latter type of logical, network-stack replays is
hence fundamentally beyond of what key exchange proto-
cols can protect against.

1.3. Our Contribution

In this work, we reconsider the derivation of 0-RTT keys
in the domain of multi-stage key exchange protocols [13],
designed to capture protocols establishing sequences of keys
in an intertwined way within a single run. We particularly
focus on the security of 0-RTT keys and the question of
replays. Within this context, we analyze the preshared-
key-based (PSK-based) 0-RTT handshake mode of draft
draft-ietf-tls-tls13-14 (short: draft-14) for
the upcoming TLS version 1.3 as well as the recently
abandoned Diffie–Hellman-based (DH-based) 0-RTT hand-

shake mode in its last specified form in draft-ietf-
tls-tls13-12 (short: draft-12).3 While doing so,
we discuss the commonalities and differences between (the
original version of) QUIC and the two TLS 1.3 modes in this
respect. We stress that, while TLS 1.3 draft-14 already is
a relatively mature protocol specification, it remains a draft
and still contains un- or underspecified parts. Our inquiry of
the TLS 1.3 0-RTT handshakes hence should be conceived
as an early (affirmative) discussion of their cryptographic
strength, but cannot constitute a definitive analysis.

As mentioned, the Diffie–Hellman-based ((EC)DHE)
0-RTT handshake was removed from the TLS 1.3 draft spec-
ification in draft-13, leaving only a PSK-based 0-RTT
mode (with or without additional Diffie–Hellman exchange)
in the latest drafts. Still, the (EC)DHE 0-RTT variant is
much closer to the QUIC and OPTLS proposals, and it may
be used as a TLS extension [38], especially since it provides
some kind of forward secrecy [21]. We hence also provide
an analysis of the DH-based variant to enable a comparison
of the security guarantees provided, but focus on the PSK-
based 0-RTT handshake specified for draft draft-14.

In more detail, our contributions are fourfold.

COMPARISON OF QUIC AND TLS 1.3. We point out, in
passing and explicitly in Section 6, how the designs of
QUIC and TLS 1.3 differ in the way of handling 0-RTT,

3. Since our analysis, several follow-up draft versions of TLS 1.3 have
been published, maintaining the PSK-based 0-RTT handshake mode.
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replay attacks, and data, and how this affects the security.
This testifies that, although there may be an agreement on
the general goals which should be achieved with 0-RTT, the
technical details can vary significantly. One major difference
has already been discussed above, carving out that both
protocols treat replays differently. Another difference is that
QUIC basically restarts the key exchange for an invalid
(rejected) 0-RTT request, whereas TLS 1.3 instead only
skips over to the regular handshake part. Both protocols
also employ different approaches to derive the session keys:
While QUIC uses the early key for transmitting both key-
exchange messages and application data, TLS 1.3 uses a
more versatile approach to create early keys for designated
purposes and thus achieves stronger security guarantees and
better modularity.

MULTI-STAGE KEY EXCHANGE WITH REPLAYABLE 0-RTT
KEYS. As the original QUIC key exchange Rev
20130620 [25] ensures non-replayability (on the key-
exchange level), the analysis by Fischlin and Günther in
the multi-stage setting [13] did not consider replays. The
TLS 1.3 0-RTT handshake candidates (both draft-12
DH-based and draft-14 PSK-based), however, do not
aim at preventing replays even on the key-exchange level,
motivated by that any such measure would be defeated by
the active, logical replay of data ensuring reliable delivery,
as discussed above.

We hence extend (in Section 2) the previous multi-stage
key exchange models used to analyze QUIC [13] and the
full and preshared-key handshakes of TLS 1.3 [10], [12]
in several aspects. First of all, we introduce the distinction
between replayable and non-replayable stages (and, hence,
keys) which, in the case of TLS 1.3, allows us to capture that
the 0-RTT key exchange messages of a client session can
be replayed to multiple server sessions which will all derive
the same key. In order to capture the effects of exposures of
the semi-static keys used in a DH-based handshake to non-
interactively derive the 0-RTT keys, we allow them to be
compromised and define how this affects both 0-RTT keys
(which will be compromised) and non–0-RTT keys (which
are required to remain secure). We additionally distinguish
between keys used to protect application data only (called
external keys) and keys which are also used within the key
exchange, e.g., to encrypt key exchange messages (called
internal keys). Such distinction was previously only made
informally for the final key(s) derived [11], [12]. In the
TLS 1.3 0-RTT handshakes however, also intermediate keys
(namely, the 0-RTT early-data application key tkead) are
only used externally, a setting for which our notion provides
a cleaner separation.

SECURITY ANALYSIS OF THE TLS 1.3 DRAFT-14
PSK/PSK-(EC)DHE 0-RTT AND DRAFT-12 (EC)DHE
0-RTT HANDSHAKES. We then apply our model to ana-
lyze the PSK and PSK-(EC)DHE 0-RTT handshake modes
specified in TLS 1.3 draft-14 (in Section 4), which we
first describe in Section 3, as well as the (EC)DHE 0-RTT
handshake mode of draft-12 (in Section 5). The other
specified handshake modes of TLS 1.3, full (EC)DHE and

pre-shared key, have already been analyzed by Dowling et
al. [12] for the previous (relatively close) draft-10 [32].
Our analysis shows that all three 0-RTT handshakes are
secure (multi-stage) key exchange protocols, establishing
random-looking keys. In particular, the two 0-RTT keys
derived to protect the early handshake messages and ap-
plication data, tkehs resp. tkead, achieve the desired uni-
lateral resp. mutual authentication, and are—as expected—
replayable. Furthermore, we confirm that the second parts of
the handshakes (essentially a full (EC)DHE resp. a regular
PSK/PSK-(EC)DHE handshake), achieve security similar
to that attested by Dowling et al. [12] for draft-10.
Applying concepts established by Fischlin and Günther [13]
and Dowling et al. [10], we show that security holds for
the different authentication options of TLS 1.3 running in
parallel and that all keys derived are independent in the
sense of that leaking one of them does not affect any other
key.

Our security results hold under mostly standard crypto-
graphic assumptions like the unforgeability of the signature
resp. MAC scheme, collision resistance of the hash function,
and pseudorandomness properties of the key derivation func-
tion. The handshakes’ security further relies on the (plain)
pseudorandom-function oracle Diffie–Hellman (PRF-ODH)
assumption (introduced and used earlier for the analysis of
several Diffie–Hellman–based modes of TLS 1.2 [18], [22]).
Notably, for technical reasons that we detail in our proof, we
furthermore need to employ a slightly strengthened, double-
sided variant msPRF-ODH of the PRF-ODH assumption
for the analysis of the (EC)DHE 0-RTT handshake (in
draft-12).

COMPOSITION WITH EXTERNAL KEYS. The distinction be-
tween external(-only) and internal keys finally allows us to
establish slightly more general, cleaner composition results
(in Section 7). We recall that Fischlin and Günther [13] lifted
the Bellare–Rogaway compositional result by Brzuska et
al. [5] to the multi-stage setting (later extended by Dowling
et al. [10], [12]). On a high level, their result specifies
sufficient conditions for a multi-stage key exchange protocol
such that the protocol generically composes the established
session keys with any symmetric-key protocol. Our refined
model determines more clearly which derived session keys
can be possibly amenable to this generic composition result,
establishing the key being external as a necessary condition.
We also capture the influence of replays on generic compo-
sition, establishing non-replayability as a further condition.

1.4. Related Work

Our work builds upon and extends the multi-stage key
exchange models by Fischlin and Günther [13] (used to
analyze QUIC) and Dowling et al. [10], [11], [12] (used
to analyze the full (EC)DHE and preshared-key handshakes
of several prior TLS 1.3 drafts).

The practical requirement for reduced round-trip time,
nowadays exemplified in the recent designs of QUIC and
TLS 1.3, has already appeared in the works about MQV [3]
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as well as HMQV [19] and its one-pass version [17]. The
idea has later been discussed more formally under the no-
tion of non-interactive key exchange (NIKE) [8], [15]. The
difference to 0-RTT key exchange is that NIKEs describe
protocols which establish a single session key which is
not used within the key exchange. Of course, the key is
replayable in the above sense, and security requirements
usually disallow trivial attacks on such replayable keys.
Another difference to 0-RTT protocols is that for NIKEs
there is usually no notion of semi-static keys, i.e., since no
further interaction takes place the parties cannot authenticate
additional cryptographic keys with limited life span in the
subsequent steps.

Krawczyk and Wee [24], [23] recently introduced the
OPTLS protocol, which forms the clean and elegant cryp-
tographic core of the TLS 1.3 handshake modes, as well
as analyzed its security in the Canetti–Krawczyk model [6],
and also proposed its one-pass version [17] for the 0-RTT
key. Focusing on the security of the two keys derived in
OPTLS (corresponding to the early-data and application
traffic keys tkead and tkapp in the TLS 1.3 0-RTT hand-
shakes) separately, the coherence notion of key indepen-
dence is beyond the scope of their analysis (though men-
tioned informally), as is the compositional security of these
keys. While remarking that a PRF-ODH-like assumption
could potentially be used for the proof, Krawczyk and Wee
employ different assumptions for their analysis, namely the
Gap-DH assumption in the random oracle model. Further-
more, OPTLS does not include a PSK-based 0-RTT mode
and TLS 1.3 also extends the OPTLS protocol in order
to include client authentication, resumption, encryption of
handshake messages, and further exported keying material;
aspects that we take into account in our analysis of the
0-RTT handshake modes.

A recent work by Hale et al. [16] introduces a simpli-
fied security model for low-latency key exchange with two
session keys, one early key and one final key, as in case
of QUIC. For their security model they introduce a notion
called strong key independence which basically says that re-
vealing the early key does not violate secrecy of the final key
(or vice versa). This seems to be exactly in the same spirit
as the notion of key independence introduced earlier in [13]
and also used here. Furthermore, Hale et al. [16] point out
that QUIC does not provide strong key independence. This
has already been discussed in [13], inciting the authors in
[13] to also propose a slight modification of QUIC, called
QUICi, which achieves their notion of key independence
via modifying the key derivation steps only. Hale et al. [16]
then give a new generic construction secure in their model,
including strong key independence, based on non-interactive
key exchange. Finally, as discussed in [16], the back then
available draft-08 still had a not fully specified 0-RTT
mode, leaving the implications of the results to the current
draft of TLS 1.3 unclear. Remarkably, the model allows
for replay attacks on the 0-RTT keys, as a consequence
confining the admissible tests on keys, even though such
replay attacks are excluded in QUIC via strike registers.
Moreover, the latest drafts of TLS 1.3 generate more than

two session keys, as considered in the model of [16].
Also recently, Cremers et al. [9] presented a tool-

supported analysis of TLS 1.3 draft-10 including 0-RTT
mode, resumption, and delayed client authentication, discov-
ering an attack on the interaction between the preshared-
key handshake and the (expected) specification of client
authentication.

Finally, our work is part of a substantial effort of the
security research community in analyzing draft versions of
TLS 1.3 prior to its standardization. We refer to Paterson and
van der Merwe [28] for an overview over these analyses and
a discussion of TLS 1.3’s proactive standardization process.

2. Modeling Replayable 0-RTT in Multi-Stage
Key Exchange

In this section we recap the multi-stage key exchange
model introduced by Fischlin and Günther [13], and later
extended by Dowling et al. [10], [12], and augment it for
capturing replayable 0-RTT keys. To capture security of the
draft-12 (EC)DHE 0-RTT handshake (where authenti-
cation is provided through long-term signing keys) as well
as the draft-14 PSK-based 0-RTT handshakes, we treat
both the public-key (MSKE) and the preshared-secret (MS-
PSKE) variant of the model. For space reasons, we can
only outline the original multi-stage setting and focus on
the modifications we introduce; we refer to [13], [10], [12]
for the formal definition of the original multi-stage security
models.

2.1. Outline

The multi-stage key exchange model follows the game-
based paradigm of Bellare and Rogaway [2]. That is, the
adversary controls the network over which the parties com-
municate, giving the adversary the power to read and alter
protocol messages in transmission. For this the adversary
can call a NewSession oracle (starting a new session of a
specified honest party) and a Send oracle (which delivers
some message to a specified party). To argue about the
secrecy of keys the adversary may make (multiple) Test
queries for some stage of the protocol to either receive
the corresponding session key of that stage or to obtain an
independent random key instead. In the multi-stage setting
one must restrict the set of admissible Test queries to avoid
trivial attacks, e.g., if a tested session key is used in a later
stage of the execution.

To model leakage of long-term secrets and, through
this, forward secrecy of keys (i.e., security after long-term
secret compromise) we also grant the adversary access to a
Corrupt oracle which returns the corresponding secret key.
Moreover, we (independently) capture leakage of semi-static
keys (used in Diffie–Hellman-based 0-RTT key derivation
as, e.g., TLS 1.3 draft-12 (EC)DHE 0-RTT) through a
separate RevealSemiStaticKey oracle. In our model we do
not consider leakage of internal state of the parties (such as
randomness or master secrets) but note that one can in prin-
ciple enhance the model further to capture such attacks. Still,
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we allow for leakage of session keys, modeling insecure
usage of such keys in follow-up protocol steps (of the key
exchange protocol itself or in subsequent communication
protocols). As in the common Bellare–Rogaway model we
must prohibit compromise of secrets in sessions partnered
with tested sessions. Here, partners are identified via session
identifiers.

Session identifiers in the multi-stage setting are more
elaborate than in the single-stage Bellare–Rogaway case.
Depending on the protocol, revealing a session key via
a Reveal query may render the subsequent session key
insecure, e.g., if contributions to the session key of the
following stage are sent authenticated under the key of the
current stage (as in QUIC [26], [13]). A protocol which can
tolerate such leakage is called (session-)key independent,
else it is called key dependent.

For TLS 1.3, Dowling et al. [10] refined the original
model [13] (beyond introducing the preshared-secret variant)
further to cover the various authentication properties of the
different handshakes and also of the different stages. For this
they distinguish between unauthenticated, unilaterally au-
thenticated, and mutually authenticated stages, and treat se-
curity of multiple sessions running in parallel with different
authentication modes. They also implemented the common
TLS property of post-specified peers [7] via wildcards ‘∗’
for intended communication partners, which can be set once
throughout the protocol run, e.g., after the party has verified
the certificate of the partner.

Another change from [13] to [10] concerns the notion
of contributive identifiers for the case of sessions with
unauthenticated partners. Since the adversary can potentially
impersonate the unauthenticated partner, keys in such ses-
sions cannot be secure in general. Still, such keys should
be considered secure as long as the full contribution to the
key clearly stems from an honest party (even though this
honest party may never complete its execution to output a
session identifier). Contributive identifiers allow to specify
such partnered contributions.

Both works [13], [10] follow the approach of Brzuska et
al. [5] to split the security requirements into one for Match
security, capturing among others uniqueness of session iden-
tifiers, correspondence of session identifiers and keys, and
linking contributive identifiers to session identifiers, and into
the common requirement for key secrecy.

2.2. Adding 0-RTT to Multi-Stage Protocols

To capture 0-RTT in the multi-stage setting we augment
the model in [10], [12] by the following points:

1) We introduce the notion of replayable stages.
2) We allow exposure of the semi-static keys used for

establishing 0-RTT keys. Note that the exposure of
pre-shared keys (used for PSK-based 0-RTT) is already
captured through Corrupt queries.

3) We distinguish between external session keys (used for
protecting the application layer only) and internal ses-
sion keys (which can be used within the key exchange
protocol). Note that since, by default, session keys are

always output by key exchange protocols, internal keys
may thus also be used further in applications, of course.

As mentioned in the introduction, replayable stages in a
multi-stage key exchange protocol are basically those stages
in which an adversary can force more than two sessions to
share the same session identifiers and session keys by re-
playing previous interactions. Note that for 0-RTT, replaya-
bility is inevitable for stateless parties, whereas Google’s
QUIC protocol in version Rev 20130620 thwarts such
replay attacks via strike registers storing information about
previous connections.

In our model we assume that the protocol specifies stages
as replayable or non-replayable. The latter type of stage
leaves the original security properties untouched. The re-
playable kind of stage allows for multiple collisions among
session identifiers and keys, such that we need to relax the
notion ofMatch security for such stages. Key secrecy should
be not affected by replayability because the adversary may
be able to foist the same key on multiple sessions, but the
key itself should still look random.

The other modification refers to exposure of semi-static
keys. Recall that such keys are used in TLS 1.3 (up to
draft-12) to enable 0-RTT for the DH-based mode by
having the client mix a fresh ephemeral key to such a semi-
static key. The life span of such a semi-static key may range
over multiple sessions, and we therefore leave the choice of
which of these keys to use (and when to create it) to the
adversary. This is modeled by augmenting the NewSession
query by a field for specifying the semi-static key, and
by having a NewSemiStaticKey command to let a party
create a fresh semi-static key. Leakage of semi-static keys
is captured by adding a RevealSemiStaticKey query to the
model through which the adversary learns the corresponding
secret key. The previous works [13], [10] have not yet
supported such leakage, even though [13] already introduced
the equivalent idea of a temporary key for analyzing QUIC.

Note that we separate leakage of the semi-static key by
RevealSemiStaticKey queries from revealing the long-term
secret via Corrupt queries. This corresponds to the setting
where a semi-static key may actually no longer be used by
a server and its secret key been irrevocably erased. The ad-
versary can, of course, always mount RevealSemiStaticKey
commands before a Corrupt request, thus enhancing the ad-
versary’s capabilities and strengthening the security claims.

The explicit distinction between internal and external
session keys implements a cleaner way to deal with early
derived keys used exclusively in, e.g., the TLS record pro-
tocol. In contrast to QUIC, where only the final session key
is not used in the key exchange messages, the 0-RTT step
of TLS 1.3 allows both parties to immediately establish the
early handshake and early application-data traffic key tkehs
and tkead, with a clear separation of concerns. The former
early handshake key is used to protect the handshake mes-
sages (internally), and the early application-data key is only
used to protect external application data sent by the client
before finishing the full handshake.

In contrast to previous works formalizing multi-stage
key exchange [13], [10], [12], we explicitly separate some
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protocol-specific properties (as, e.g., various authentication
flavors) from session-specific properties (as, e.g., the state of
a running session). We represent protocol-specific properties
as a vector (M,AUTH,USE,REPLAY) that captures the
following:

• M ∈ N: the number of stages (i.e., the number of keys
derived)4

• AUTH ⊆ {unauth, unilateral,mutual}M: the set of
supported authentication properties (for each stage). As
in [10] we call stages and keys unauthenticated if they
provide no authentication for either communication
partner, unilaterally authenticated if they authenticate
only the responder (server) side, and mutually authenti-
cated if they authenticate both communication partners.

• USE ∈ {internal, external}M: the usage indicator for
each stage, where USEi indicates the usage of the
stage-i key. Here, an internal key is used within the
key exchange protocol (but possibly also externally),
whereas an external key must not be used within the
protocol, making the latter potentially amenable to
generic composition (see Section 7).

• REPLAY ∈ {replayable, nonreplayable}M: the replaya-
bility indicator for each stage, where REPLAYi indi-
cates whether the i-th stage is replayable in the sense
that a party can easily force identical communication
and thus identical session identifiers and keys in this
stage (e.g., re-sending the same data in 0-RTT stages).
Note that the adversary, however, should still not able
to distinguish such a replayed key from a random one.
Note that, from a security viewpoint, the usage of
replayable stages should ideally be small, whereas such
stages usually come with an efficiency benefit.

2.3. Security of Multi-Stage Key Exchange

The security properties for multi-stage key exchange
protocols are almost identical with those given for the
TLS 1.3 full and resumption handshake analysis by Dowling
et al. [10]; split into two games following Fischlin and
Günther [13] and Brzuska et al. [5], [4]. On the one hand,
Match security ensures that the session identifiers sid ef-
fectively match the partnered sessions. On the other hand,
Multi-Stage security ensures Bellare–Rogaway-like key se-
crecy.

For the analysis of the TLS 1.3 0-RTT handshakes, most
changes in the model are already reflected in the specifica-
tion of the adversarial queries. Beyond introducing the new
protocol-specific properties and the RevealSemiStaticKey
query in the definition, we only extend the Match security
definition in order to allow for multiple sessions being
partnered in replayable stages. Due to space limitations, we
only describe briefly the adapted Match and Multi-Stage

4. We fix a maximum stage M only for ease of notation. Note that M
can be arbitrarily large in order to cover protocols where the number of
stages is not bounded a-priori. Also note that, for technical convenience,
stages and session keys may be “back to back,” without further protocol
interactions between parties.

security notions and refer to the full version of this work [14]
for the formal definitions.

2.3.1. Match Security. The notion of Match security—
which we adapt from [10], [12] to capture replayable
stages—ensures soundness of the session identifiers sid,
i.e., that they properly identify the partnered sessions in
the sense that they share the same session keys, authenti-
cation, and contributive identifier as well as agree on the
intended (authenticated) partner and pre-shared secret (if
used). Furthermore, session identifiers must not coincide
across different stages, and for non-replayable stages session
identifiers must not appear in more than two sessions. For
replayable stages the latter requirement is dropped.

2.3.2. Multi-Stage Security. The second notion,
Multi-Stage security, captures Bellare–Rogaway-like
key secrecy in the multi-stage setting. Our modification
in particular gives the adversary access to the
NewSemiStaticKey and RevealSemiStaticKey queries
and states security wrt. the introduced protocol-specific
properties (M,AUTH,USE,REPLAY).

3. The TLS 1.3 draft-14 PSK and PSK-
(EC)DHE 0-RTT Handshake Protocols

Starting from draft-13, TLS 1.3 only specifies PSK-
based 0-RTT handshake modes, abandoning the (EC)DHE-
based variant predominant in earlier drafts. We hence
first analyze the preshared-key–based variants, PSK(-only)
0-RTT and PSK-(EC)DHE 0-RTT, as specified in TLS 1.3
draft-14 [36]. In the PSK 0-RTT mode, keys are solely
derived from a beforehand established pre-shared key (usu-
ally the resumption master secret RMS derived in a full
TLS 1.3 handshake). In the PSK-(EC)DHE 0-RTT mode,
(elliptic curve) Diffie–Hellman shares additionally enter the
key derivation. Our analysis of the purely Diffie–Hellman-
based (EC)DHE 0-RTT mode (of draft-12) is stated later
in Section 5.

The TLS 1.3 0-RTT handshake protocols can be con-
ceptually subdivided into four phases:

Key exchange. In the key exchange phase, parties negotiate
the ciphersuites and key-exchange parameters to be
used and establish shared key material as well as traffic
keys to encrypt the remaining handshake.

0-RTT. In the 0-RTT (data) phase, which is interleaved with
the key exchange phase, the client can send application
data already in its first flight. For this purpose, traffic
keys for encrypting the early handshake and application
data are established.5

Server parameters. In the server parameters phase, further
handshake parameters (as, e.g., whether client authen-
tication is demanded) are fixed by the server.

Authentication. In the authentication phase, both the server
and client can (based on the aspired authentication)

5. For comparison, omitting the 0-RTT phase essentially yields the
TLS 1.3 full resp. PSK-based handshake.
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authenticate, verify that they share the same view of
the handshake, and derive (authenticated) application
traffic keys.

We illustrate the protocol flow (with the cryptographi-
cally relevant computations) and the key schedule for both
the PSK(-only) and PSK-(EC)DHE 0-RTT handshakes in
Figure 2. The handshake messages are the following:

• ClientHello (CH)/ServerHello (SH) contains ran-
dom nonces rc / rs of the respective parties, as well as
negotiation parameters (supported versions and cipher-
suites). Several extensions can be sent along with the
Hello messages; the PSK and PSK-(EC)DHE 0-RTT
handshakes require the following two resp. three ex-
tensions to be included.

• ClientEarlyData (CEAD)/ServerEarlyData (SEAD)
are extensions sent to announce a 0-RTT handshake.
The client includes the (masked) age ticket_age of
the (ticket issuing the) used resumption secret. The
server signals accepting the 0-RTT exchange with an
empty ServerEarlyData extension.
TLS 1.3 draft-14 [36, Section 4.2.6.2] recommends
that servers should use the ticket_age value to check
that client messages are not replayed. Depending on
how well clocks are synchronized, this can prevent
delayed replays, but not immediate replays. We do not
rely on this check in our analysis but conservatively
treat the 0-RTT key exchange messages as arbitrarily
replayable.

• ClientPreSharedKey (CPSK)/ServerPreSharedKey
(SPSK) are extensions in which the client announces
one (or multiple) pre-shared key identifier(s) (psk_id),
of which the server selects one to be used as the
pre-shared secret (pss) in the handshake. Focusing on
0-RTT handshakes only, we only consider the case
where client and server agree on the first announced
psk_id, the one used to derive 0-RTT keys.

• ClientKeyShare (CKS)/ServerKeyShare (SKS) are
extensions sent only for the PSK-(EC)DHE 0-RTT
handshake. They contain the ephemeral Diffie–Hellman
shares X = gx resp. Y = gy for several (in case of the
client) or one group (the server decided for).

Based on these messages both sides can already derive
the 0-RTT keys. First, from the shared pre-shared secret (the
resumption master secret established in a previous hand-
shake) pss = RMS a pre-shared key PSK and a resumption
context value rctxt are derived using the Expand component
of HKDF [20]. In the key derivation, PSK serves as the
starting secret while rctxt binds the derived keys to the
previous handshake that established RMS. Then, the early
secret ES is computed from PSK using HKDF.Extract.
Via an intermediate (expanded) early traffic secret ETS
both the 0-RTT handshake and application traffic keys tkehs
and tkead are finally expanded.

For the two HKDF functions we use the following
common notation: Function HKDF.Extract(XTS, SKM) ob-
tains as input a (not necessarily secret and potentially
fixed) extractor salt XTS and some source key mate-

rial SKM, and outputs a pseudorandom key PRK. Function
HKDF.Expand(PRK,CTXinfo) obtains as input a pseudo-
random key PRK (here: the output of the Extract step) and
some (potentially empty) context information CTXinfo, and
outputs some key material KM.6 Both functions are based
on HMAC [1].

The client then completes its first flight by sending a
0-RTT Finished message, sent encrypted under tkehs:

• ClientFinished0 (CF0) consists of an HMAC (mes-
sage authentication code) value which is computed us-
ing the 0-RTT finished secret FS0-RTT on the (hashed)
0-RTT messages and the resumption context rctxt.

Following ClientFinished0, the client can use tkead to
encrypt and send 0-RTT application data.7

After receiving the client’s first flight, the server sends its
ServerHello message along with the indicated extensions.
At this point (resp. after receiving ServerHello for the
client) both sides extract from ES the handshake secret HS
(incorporating the joint Diffie–Hellman share DHE = gxy

in the PSK-(EC)DHE 0-RTT handshake). Again via first
expanding an intermediate handshake traffic secret HTS, the
handshake traffic key tkhs is derived.

Server and client then complete the handshake by send-
ing the following messages encrypted under tkhs:

• EncryptedExtensions (EE), sent by the server, al-
lows to specify further extensions.

• ClientFinished (CF)/ServerFinished (SF) contain
an HMAC value over the handshake hash, keyed
with the client resp. server finished secret FSC/FSS
which are both expanded from the handshake traffic
secret HTS.

At the end of the handshake, the master secret MS is
extracted from HS and used to expand the application traffic
key tkapp (via an intermediate traffic secret TS), used to
protect the (non–0-RTT) application data sent, as well as
the exporter master secret EMS which can be used to derive
further key material outside of TLS.

ON CLIENT AUTHENTICATION, 0.5-RTT DATA, AND POST-
HANDSHAKE MESSAGES. When analyzing the (PSK-based)
0-RTT handshake candidates for TLS 1.3, we focus on
the main components of the handshake and hence do not
capture the following more advanced options specified in
draft-14.

First, the server can optionally ask the client to authen-
ticate (beyond the shared secret key) by sending a public-
key certificate and signing the transcript (i.e., by signature-
based authentication as employed in the (EC)DHE-based
handshakes of TLS 1.3).8 We omit this option in our analysis

6. We assume the third, output-length parameter L in the Expand
function to be fixed to L = λ for our security parameter λ and hence
always omit it.

7. The server may decide to not derive any 0-RTT keys (and not accept
any 0-RTT data). In that case it would, in our model, simply set the first
two session identifiers sid1, sid2 and keys K1, K2 to ⊥ and continue with
deriving the third key.

8. There is also discussion to further include signature-based server
authentication in the PSK-based 0-RTT handshakes [33].
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Client Server
PSK← HKDF.Expand(RMS, label1)
rctxt← HKDF.Expand(RMS, label2)

ClientHello: rc
$←− {0, 1}256

+ ClientEarlyData: ticket_age
+ ClientPreSharedKey: psk_id1, . . .

[+ ClientKeyShare: X ← gx]†

ES← HKDF.Extract(0,PSK)
H1 ← H(CH)||H(rctxt)

ETS← HKDF.Expand(ES, label3||H1)
tkehs ← HKDF.Expand(ETS, label4) stage 1

(ClientFinished0):
FS0-RTT ← HKDF.Expand(ETS, label5)

CF0 ← HMAC(FS0-RTT, H1)

check CF0 = HMAC(FS0-RTT, H1)
tkead ← HKDF.Expand(ETS, label6) stage 2

record layer (application data), using AEAD with key tkead

ServerHello: rs
$←− {0, 1}256

+ ServerEarlyData
+ ServerPreSharedKey: psk_id

[+ ServerKeyShare: Y ← gy]†

H2 ← H(CH||SH)||H(rctxt)
[DHE← Y x]† [DHE← Xy]†[DHE← 0]�

HS← HKDF.Extract(ES,DHE)
HTS← HKDF.Expand(HS, label7||H2)
tkhs ← HKDF.Expand(HTS, label8) stage 3

{EncryptedExtensions}
H3 ← H(CH||SH||EE)||H(rctxt)

FSS ← HKDF.Expand(HTS, label9)
{ServerFinished}:

SF← HMAC(FSS, H3)

check SF = HMAC(FSS, H3)
H4 ← H(CH||SH||EE||SF)||H(rctxt)
FSC ← HKDF.Expand(HTS, label5)

{ClientFinished}:
CF← HMAC(FSC, H4)

check CF = HMAC(FSC, H4)
H5 ← H(CH||SH||EE||SF||CF)||H(rctxt)

MS← HKDF.Extract(HS, 0)
TS← HKDF.Expand(MS, label10||H4)

tkapp ← HKDF.Expand(TS, label11) stage 4

EMS← HKDF.Expand(MS, label12||H5) stage 5

record layer (application data), using AEAD with key tkapp

RMS

(from previous handshake)

Exp

PSK

Ext

ES

0

ExpETS

H1

DHE

Ext

HSExpHTS

H2

Ext

MS

0

ExpTS

H4

Exp

FS0-RTT

Exp

FSS

Exp

FSC

Exptkehs

(stage 1)

Exptkead

(stage 2)

Exptkhs

(stage 3)

Exptkapp

(stage 4)

ExpEMS

(stage 5)

H5

Protocol flow legend
MSG: Y TLS 1.3 message MSG containing Y
(MSG) message MSG AEAD-encrypted with tkehs

{MSG} message MSG AEAD-encrypted with tkhs

+ MSG message sent as extension within previous message

[. . . ]† message/computation only in PSK-(EC)DHE 0-RTT
[. . . ]� message/computation only in PSK 0-RTT

Key schedule legend
Ext / Exp HKDF.Extract resp. HKDF.Expand function
X salt input X to Ext resp. context info input X to Exp

(label inputs to Exp are omitted)

Figure 2. The TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT handshake protocols (left) and key schedule (right).
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but note that our multi-stage key exchange model can in
principle be augmented to capture combined authentication
under multiple long-term secrets.

Second, instead of deriving the application traffic
key tkapp at the end of the handshake (as depicted in
Figure 2), the server might already do so after sending the
ServerFinished message in order to send so-called 0.5-
RTT data directly following his flight, i.e., without waiting
for the ClientFinished response. We omit analyzing this
variant of the handshake but expect that results for it with
potentially weaker authentication guarantees for tkapp can
be obtained in our model.

Third, TLS 1.3 introduces post-handshake messages that
can be sent (potentially long) after the initial handshake was
completed in order to update the used traffic key, authenti-
cate the client, or issue tickets for session resumption. Here,
we focus on the main handshake and do not consider post-
handshake messages.

4. Security of the TLS 1.3 draft-14 PSK and
PSK-(EC)DHE 0-RTT Handshakes

Our security analysis of the TLS 1.3 draft-14
PSK and PSK-(EC)DHE 0-RTT handshakes
(draft-14-PSK-0RTT resp. draft-14-PSK-DHE-0RTT)
is carried out in the preshared-secret variant (MS-PSKE) of
the multi-stage key exchange model. We begin with stating
the protocol-specific properties (M,AUTH,USE,REPLAY)
mostly shared by both handshakes:

• M = 5: the PSK-based 0-RTT handshakes have five
stages (deriving, in that order, keys tkehs, tkead, tkhs,
tkapp, and EMS).

• the authentication properties AUTH differ between the
PSK(-only) and the PSK-(EC)DHE 0-RTT handshakes:

– for PSK 0-RTT, AUTH =
{
(mutual,mutual,

mutual,mutual,mutual)
}
: all keys established are

mutually authenticated (wrt. the established pre-
shared secret).

– for PSK-(EC)DHE 0-RTT, AUTH =
{
(mutual,

mutual, unauth,mutual,mutual)
}
: the handshake

traffic key tkhs is unauthenticated, all other keys
are mutually authenticated (wrt. the established pre-
shared secret).9

• USE = (internal, external, internal, external, external):
the (0-RTT and main) handshake traffic keys tkehs
and tkhs are used to protect messages within the hand-
shake while the application traffic keys tkead and tkapp
as well as the exporter master secret EMS are only used
externally.

9. Although including the pre-shared secret in the derivation of tkhs, as
the involved Diffie–Hellman shares are only authenticated after its deriva-
tion, tkhs cannot enjoy both forward secrecy and mutual authentication.
We remark that alternatively to considering tkhs being unauthenticated but
forward-secret (a security property close to the notion of “weak (perfect)
forward secrecy” [19]), one might instead also consider tkhs to be non–
forward-secret but mutually authenticated.

• REPLAY = (replayable, replayable, nonreplayable,
nonreplayable, nonreplayable): the 0-RTT stages 1
and 2 are replayable, the other stages are not.

Both TLS 1.3 draft-14 PSK-based 0-RTT handshakes
enjoy key independence for all keys. Expectedly, the
PSK(-only) 0-RTT handshake provides no forward secrecy.
The PSK-(EC)DHE 0-RTT handshake instead ensures for-
ward secrecy for the non–0-RTT keys (i.e., from stage 3
on), but not for the 0-RTT keys.

Session matching is defined via the following ses-
sion identifiers, consisting of the unencrypted messages
exchanged up to each stage: sid1 = (CH), sid2 =
(sid1, “EAD”), sid3 = (CH, SH), sid4 = (CH, SH, EE,
SF), and sid5 = (CH, SH, EE, SF, CF). Here, Hello mes-
sages also comprise the sent EarlyData, KeyShare, and
PreSharedKey extensions. We remark that, as for the anal-
ysis of the TLS 1.3 full and resumption handshake [10],
we too define the session identifiers over the unencrypted
messages. This diverges from the common practice to set
the session identifier as the concatenation of the (here en-
crypted) protocol transmissions, but is necessary to achieve
key independence in the multi-stage security for such pro-
tocols.

For the contributive identifiers, we need to ensure that a
server session can in any case be tested when receiving an
honest client contribution (even if that client never receives
the ServerHello response), analogously to the full hand-
shake analysis in [10]. Hence, for stage 3, on sending resp.
receiving the ClientHello message, client resp. server
initially sets cid3 = (ClientHello) and subsequently, on
receiving (resp. sending) the ServerHello message, extend
it to cid3 = (ClientHello, ServerHello). All other con-
tributive identifiers are set to cidi = sidi when the respective
stage’s session identifier is set.

We are now ready to state our security results for
the PSK and PSK-DHE 0-RTT handshakes of TLS 1.3
draft-14. Naturally, the proof aspects concerning the
non–0-RTT parts of the handshakes are structurally close
to the proofs for the draft-10 PSK-based handshakes
by Dowling et al. [12], but need to take the modified key
schedule into account. Due to space limitations, we only
present abridged versions of our proofs here and refer to
the full version [14] for the complete proofs.

4.1. PSK(-only) 0-RTT Handshake

Theorem 4.1 (Match security of draft-14-PSK-0RTT). The
draft-14 PSK 0-RTT handshake is Match-secure: for any
efficient adversary A we have AdvMatch

draft-14-PSK-0RTT,A ≤ n2
s ·

2−|nonce|, where ns is the maximum number of sessions and
|nonce| = 256 is the bit-length of the nonces.

Proof (sketch). For space reasons, we omit the proof details
here and just note that the bound n2

s · 2−|nonce| capture the
probability of three honest sessions colliding on a session
identifier due to same nonces.

69

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 20,2024 at 04:46:53 UTC from IEEE Xplore.  Restrictions apply. 



Theorem 4.2 (Multi-Stage security of
draft-14-PSK-0RTT). The draft-14 PSK 0-RTT
handshake is Multi-Stage-secure in a key-independent and
non–forward-secret manner with properties (M,AUTH,
USE,REPLAY) given above. Formally, for any efficient
adversary A against the Multi-Stage security there exist
efficient algorithms B1, . . . , B9 such that

AdvMulti-Stage,D
draft-14-PSK-0RTT,A ≤ 5ns ·

(
AdvCOLL

H,B1

+ np ·
(
AdvPRF-secHKDF.Expand,B2

+ Adv
HMAC(0,$)-$
HMAC,B3

+ AdvPRF-secHMAC,B4

+ AdvPRF-secHKDF.Expand,B5
+ AdvPRF-secHMAC,B6

+ AdvPRF-secHKDF.Expand,B7

+ AdvPRF-secHKDF.Expand,B8
+ AdvPRF-secHKDF.Expand,B9

))
,

where ns is the maximum number of sessions and np is the
maximum number of pre-shared secrets.

Proof (abridged). We first restrict the adversary A to a sin-
gle Test query (known in advance), reducing its advantage
by a hybrid argument (cf. Dowling et al. [11, Appendix A])
by at most 1/5ns. Our proof then proceeds via the following
sequence of games.

Game 1. We first exclude hash collisions in the execution
of honest sessions. By having an algorithm B1 act as the
challenger in the original game and output, when they occur,
the two colliding inputs as a collision for H, we can bound
the probability of aborting by B1’s advantage in breaking
the collision resistance of H, denoted by AdvCOLL

H,B1
.

Game 2. Next, we guess the pre-shared secret pss = RMS
employed in the tested session, reducing the advantage of A
by a factor of at most the number of pre-shared secrets np.

We can now, one at a time, replace the outputs of
HKDF.Expand and HKDF.Extract evaluations using RMS
and derived keys by random values, leading to a sequence
of according advantage bounds for their PRF security or
randomness bounds of the underlying HMAC function.

Game 3. We begin by replacing any HKDF.Expand appli-
cation using pss = RMS by evaluations of a (lazy-sampled)
random function, which in particular leads to PSK and rctxt

being replaced by random values P̃SK, r̃ctxt $←− {0, 1}λ in
the tested (and any partnered) session.

The introduced difference in the advantage of A can
be bounded by an adversary B2 against the PRF secu-
rity of HKDF.Expand as follows. Algorithm B2 simulates
Game 2 faithfully, but uses its PRF oracle for evaluating
HKDF.Expand under RMS. Note that all keys derived in the
PSK 0-RTT handshake are non–forward-secret and hence
any (successful) adversary A cannot issue a Corrupt query
on pss = RMS used in the tested session. As B2 hence
(perfectly) simulates either Game 2 or Game 3, this step
can be bounded by B2’s advantage AdvPRF-secHKDF.Expand,B2

.

Game 4. Next, we replace values ES computed as

HKDF.Extract(0, P̃SK) by a random value ẼS $←− {0, 1}λ,
in particular in the tested session and partnered sessions.

Recall that HKDF.Extract(XTS, SKM) is defined as
HMAC(XTS, SKM) [20]. Assuming that for any polynomial-
time algorithm B3 it is computationally hard to distin-
guish HMAC(0, SKM) from X $←− {0, 1}λ for uniformly
random chosen values SKM ∈ {0, 1}λ, we can bound this by
the distinguishing advantage of B3 (acting as the challenger

for A), which we denote by Adv
HMAC(0,$)-$
HMAC,B3

.

Game 5. We next replace evaluations of HKDF.Expand
keyed with ẼS as well as HKDF.Extract using ẼS as salt by
random functions. This in particular replaces, in the tested
and partnered sessions, the early traffic and handshake secret

in these sessions by random values ẼTS, H̃S $←− {0, 1}λ.
Observe that in both replaced Extract and Expand evalu-

ations, ẼS is (by definition of HKDF) used to key the HMAC
function, applied to H1 (when expanding ETS) resp. to a
fixed value 0 (when extracting HS), i.e., distinct inputs. We
can hence bound this step by the PRF security of HMAC,
denoted by AdvPRF-secHMAC,B4

.

Game 6. As the next step, we replace HKDF.Expand
evaluations keyed with ẼTS (unique to the tested and stage-
1-partnered sessions, as derived (without hash collisions)
from H1) by a lazy-sample random function, resulting in

random values t̃kehs, t̃kead, ˜FS0-RTT
$←− {0, 1}λ. This step

can similarly to Game 3 be bounded by AdvPRF-secHKDF.Expand,B5
.

Game 7. We again in parallel replace both HKDF.Expand
and HKDF.Extract evaluations, this time keyed resp. salted

with H̃S by random function, leading to random val-

ues H̃TS, M̃S $←− {0, 1}λ. As for Game 5, this step is

bounded by AdvPRF-secHMAC,B6
.

Game 8. We now replace evaluations of HKDF.Expand

using H̃TS (again unique to the tested and stage-3-

partnered sessions) by a random function, rendering t̃khs,
F̃SS, F̃SC

$←− {0, 1}λ, bounded by AdvPRF-secHKDF.Expand,B7
.

Game 9. Next, we replace HKDF.Expand evaluations

keyed with M̃S by a random function, in particular lead-

ing to uniformly random values T̃S, ẼMS $←− {0, 1}λ
in the tested and partnered sessions, again bounded
by AdvPRF-secHKDF.Expand,B8

. These are moreover independent of
any other values computed in sessions not partnered in
stages 4 and 5, due to Game 1 and sid4 and sid5 fixing
the inputs to H4 and H5.

Game 10. Finally, we replace the HKDF.Expand evalua-

tions using T̃S (in the tested and partnered sessions) by a
random function, resulting in a random application traffic

key t̃kapp
$←− {0, 1}λ, again bounded by AdvPRF-secHKDF.Expand,B9

.

In Game 10, all keys derived in the tested session (t̃kehs,

t̃kead, t̃khs, t̃kapp, and ẼMS) are now chosen uniformly
at random, making the Test query independent of the test
bit btest. Furthermore, replaying a ClientHello to multiple
servers leads to all these sessions being partnered (and hence
prevents Reveal queries). In contrast, unpartnered sessions
(even if using pre-shared secret) use different handshake
hashes (due to Game 1) as inputs to HKDF.Expand in the
key derivation; resulting keys therefore are uncorrelated with
the tested session’s keys.
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4.2. PSK-(EC)DHE 0-RTT Handshake

Theorem 4.3 (Match security of draft-14-PSK-DHE-0RTT).
The draft-14 PSK-(EC)DHE 0-RTT handshake is
Match-secure: for any efficient adversary A we have
AdvMatch

draft-14-PSK-DHE-0RTT,A ≤ n2
s · 1/q · 2−|nonce|, where ns

is the maximum number of sessions, q is the group order,
and |nonce| = 256 is the bit-length of the nonces.

Proof (sketch). Beyond the proof of Theorem 4.1, the prob-
ability of two sessions picking the same Diffie–Hellman
share also enters the bound for session-identifier colli-
sions.

Theorem 4.4 (Multi-Stage security of
draft-14-PSK-DHE-0RTT). The draft-14 PSK-
(EC)DHE 0-RTT handshake is Multi-Stage-secure in
a key-independent and stage-3-forward-secret manner
with properties (M,AUTH,USE,REPLAY) given above.
Formally, for any efficient adversary A against the
Multi-Stage security there exist efficient algorithms B1, . . . ,
B16 such that

AdvMulti-Stage,D
draft-14-PSK-DHE-0RTT,A ≤ 5ns ·

(
AdvCOLL

H,B1

+ np ·
(
AdvPRF-secExpand,B2

+ Adv
HMAC(0,$)-$
HMAC,B3

+ AdvPRF-secHMAC,B4
+ AdvPRF-secExpand,B5

)
+ nsnp ·

(
AdvPRF-secExpand,B6

+ Adv
HMAC(0,$)-$
HMAC,B7

+ AdvPRF-secHMAC,B8

+ AdvPRF-secHMAC,B9
+ AdvPRF-secExpand,B10

+ AdvEUF-CMA
HMAC,B11

)
+ nsnp ·

(
AdvPRF-ODH

Extract,G,B12
+ AdvPRF-secHMAC,B13

+ AdvPRF-secExpand,B14

+ AdvPRF-secExpand,B15
+ AdvPRF-secExpand,B16

))
,

where ns is the maximum number of sessions and np is the
maximum number of pre-shared secrets.

Proof (abridged). Again we first restrict the adversary A to
a single Test query, inducing a security loss of at most 5ns.

Game 1. We next exclude hash collisions, bounded by the
advantage AdvCOLL

H,B1
of a collision reduction B1.

Case separation. Our proof then treats the following three
(disjoint) cases separately:

A. the adversary tests a stage-1 or stage-2 key,
B. the adversary tests a stage-i key for i ∈ {3, 4, 5} in a

session without honest contributive partner in stage 3,
C. the adversary tests a stage-i key for i ∈ {3, 4, 5} in a

session with honest contributive partner in stage 3.

CASE A. TEST IN STAGE 1–2. As both stages are non–
forward-secret, no Corrupt query can have been issued
for pss employed in the tested session. This allows the
same proof strategy as for Theorem 4.2. Via the very
same sequence of games G2–G6 we replace both 0-RTT
keys tkehs and tkead by independent random values (leav-
ing A no change to win). The introduced differences

in advantage of A are bound as for Theorem 4.2 by

np · (AdvPRF-secHKDF.Expand,B2
+ Adv

HMAC(0,$)-$
HMAC,B3

+ AdvPRF-secHMAC,B4
+

AdvPRF-secHKDF.Expand,B5
).

CASE B. TEST IN STAGE 3–5 WITHOUT CONTRIBUTIVE

STAGE-3 PARTNER. Since stage 3 is unauthenticated,
testing this stage actually leads to immediately losing the
Multi-Stage game, hence we can focus on stages 4 and 5.
As we will see, given the HMAC values in the exchanged
Finished messages are unforgeable, we can ultimately
exclude that such Test queries are issued via the following
sequence of games.

Game B.1. We first introduce an abortion of the game as
soon as a session accepts in stage 4 without honest contribu-
tive partner in stage 3. Denoting this event as abortGB.1,A

acc

we can bound the induced advantage difference for A by
Pr[abortGB.1,A

acc ]. Observe that, as Game B.1 aborts before A
has the chance to issue a Test query, we can immediately
bound its advantage by 0 in this game and focus on bounding
Pr[abortGB.1,A

acc ] in the remaining game sequence.

Game B.2. Next, we guess the first session that accepts
in stage 4 without honest contributive stage-3 partner (i.e.,
the session causing abortGB.1,A

acc ), inducing a factor of ns.
Moreover, no Corrupt query can have been issued to the

guessed session (or any other session using the same pre-
shared secret pss), as sessions stop execution on corruption
of their pre-shared secret and the game aborts when the
guessed session accepts in stage 4.

Game B.3. We can now first guess the pre-shared se-
cret pss = RMS employed in the guessed session, introduc-
ing a factor of at most the number of pre-shared secrets np.

Game B.4. Applying to the guessed session the steps
introduced in the Games 3, 4, 5, 7, and 8 from the proof of
Theorem 4.2, we (in particular) replace the values PSK, ES,
HS, HTS, and finally FSS and FSC by uniformly random
values sampled from {0, 1}λ. The introduced advantage dif-

ference is bounded by AdvPRF-secHKDF.Expand,B6
+Adv

HMAC(0,$)-$
HMAC,B7

+

AdvPRF-secHMAC,B8
+AdvPRF-secHMAC,B9

+AdvPRF-secHKDF.Expand,B10
, where B6,

. . . , B10 are the algorithms B2, B3, B4, B6, and B7 given
for Games 3, 4, 5, 7, and 8 in the proof of Theorem 4.2.

As the final step, A triggering abortGB.4,A
acc can be turned

into an (EUF-CMA) MAC forger B11 for HMAC. Here, B11
acts as the challenger but computes HMAC values under F̃SS
or F̃SC through MAC oracles of two EUF-CMA security
instances for HMAC. A session accepting in stage 4 (causing
abortGB.4,A

acc ) will receive a MAC (without hash collision by
Game 1) which no honest session output, hence a forgery
for B11 inducing the final bound AdvEUF-CMA

HMAC,B11
.

CASE C. TEST IN STAGE 3–5 WITH CONTRIBUTIVE

STAGE-3 PARTNER. In this proof case, we leverage the
honest Diffie–Hellman shares gx and gy (through cid3-
partnering) as source of randomness (unknown to A) which
ensures (forward) secrecy of the keys derived in stages 3–5,
even if the involved pre-shared secret is corrupted.

Game C.1. We first guess the session contributively part-
nered with the test session, inducing a factor of ns.
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Game C.2. We guess pss = RMS, yielding a factor np.

Game C.3. We can now encode a Diffie–Hellman chal-
lenge in gx and gy at the tested session. If a server is
tested, the (contributive) partner session might receive a
modified gy

′
for which we need to be able to derive gxy

′

(without knowing x or y′). To this extent, we model the
security of HKDF.Extract deriving HS using ES as salt
and DHE = gxy as source key material using the PRF-ODH
assumption [18] (in its single-query variant).

In this game, we replace HS by a uniformly random

value H̃S $←− {0, 1}λ. In the reduction B12, we employ the
challenge Diffie–Hellman values as gx and gy in the tested
and contributive-partner session, and the PRF challenge
as HS. Note that we do not rely on (the secrecy of) ES,
which in particular allows pss to be corrupted (later) in the
tested session, ensuring forward secrecy (from stage 3 on).

We complete this proof case by applying to the tested
session (and its potential partner) the steps described for
the Games 7, 8, 9, and 10 from the proof of Theorem 4.2,
in particular replacing tkhs, tkapp, and EMS by random
values, leaving A no chance to win. This final bound is
AdvPRF-secHMAC,B13

+ AdvPRF-secHKDF.Expand,B14
+ AdvPRF-secHKDF.Expand,B15

+

AdvPRF-secHKDF.Expand,B16
where B13, . . . , B16 are the algo-

rithms B6, B7, B8, and B9 given for Theorem 4.2.

5. The TLS 1.3 draft-12 (EC)DHE 0-RTT
Handshake Protocol and its Security

The latest TLS 1.3 drafts do not specify a Diffie–
Hellman-based ((EC)DHE) 0-RTT handshake anymore; the
last draft doing so is draft-12 [34]. We nevertheless
provide a security analysis of this 0-RTT mode (as specified
in draft-12) for two reasons: For one, it is much closer
to the QUIC and OPTLS protocols and our analysis hence
enables a comparison with those designs. For another, it
provides slightly stronger forward secrecy properties [21] as
reflected in our analysis and may (for that or other reasons)
be re-established as a TLS 1.3 extension [38]. Due to space
limitations, we only provide a summary of our results on
the draft-12 (EC)DHE 0-RTT handshake here and refer
to the full version [14] for the formal definitions.

5.1. Protocol Overview

On a high level, the (EC)DHE 0-RTT handshake goes
through the same four phases as the PSK-based 0-RTT
modes: key exchange, 0-RTT, server parameters, and au-
thentication (cf. Section 4). A notable difference though
is that the client may perform signature-based authentica-
tion in the 0-RTT step by sending a certificate and signa-
ture on the transcript (in messages ClientCertificate0
resp. ClientCertificateVerify0). Furthermore, authen-
tication is (as in the full (EC)DHE handshake [10], [12])
based on signatures instead of the Finished MACs. To en-
able 0-RTT, servers send a signed ServerConfiguration
message (in the authentication phase) containing an

identifier config_id and a semi-static Diffie–Hellman
share gs which the client can use (and indicate in
ClientEarlyData) for a 0-RTT handshake.

The key schedule of the draft-12 (EC)DHE 0-RTT
handshake is significantly different from that in draft-14
and works as follows. After sending its ClientHello and
extensions, the client can already derive one of the two
main secret inputs for key derivation, the static secret SS,
as the Diffie–Hellman shared value gxs. The initial 0-RTT
keys tkehs and tkead are then expanded from an intermediate
value xSS extracted from SS using HKDF [20] (cf. Section 3
for the HKDF notation). As in draft-14, tkehs is used
to encrypt the 0-RTT handshake messages while 0-RTT
application data is encrypted with tkead.

Receiving ClientHello, the server derives the 0-RTT
keys using its stored configuration for the semi-static key gs

and sends its ServerHello message. Both parties then
compute the second secret input, the ephemeral secret ES,
as the shared Diffie–Hellman value gxy , and an extracted
value xES from which the (unauthenticated) handshake
traffic key tkhs is expanded. After sending resp. receiving
ServerCertificateVerify (the server’s signature on the
transcript), the master secret MS is derived, extracted from
intermediate expanded versions mES and mSS of xES
and xSS. Both the client and server finished secret FSC/FSS
are derived from MS. Finally, the three final keys are derived
from the master secret through HKDF expansion steps:
the application traffic key tkapp, the resumption master
secret RMS (for later preshared-key–based session resump-
tion), and the exporter master secret EMS.

5.2. Security Summary

In a nutshell, the 6-stage draft-12 (EC)DHE 0-
RTT handshake (draft-12-(EC)DHE-0RTT) provides unilat-
eral authentication for stage 1 (deriving tkehs), unilateral or
mutual authentication for stage 2 (tkead), no authentication
for stage 3 (tkhs), and one of no, unilateral, or mutual
authentication for stages 4–6 (tkapp, RMS, EMS). The
(0-RTT and regular) handshake keys tkehs and tkhs are
the only ones used internally, and (expectedly) the 0-RTT
stages 1–2 are replayable. All keys enjoy key independence
and forward secrecy (wrt. compromise of long-term (sign-
ing) secrets). Recall that our model treats compromises of
long-term and semi-static secrets independently through the
Corrupt resp. RevealSemiStaticKey query. While the 0-RTT
keys tkehs and tkead remain (forward) secret after a long-
term key compromise, they are replayable and hence become
insecure when the involved semi-static key is revealed. We
capture session and contributive identifiers in the same spirit
as for the PSK-based modes (cf. Section 4) and model
exposure of the semi-static keys gs and s through the
RevealSemiStaticKey query.

In the public-key (MSKE) model we then establish
Match security (with a bound of n2

s · 1/q · 2−|nonce|) and
the following Multi-Stage security result for the draft-12
(EC)DHE 0-RTT handshake.
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Theorem 5.1 (Multi-Stage security of
draft-12-(EC)DHE-0RTT). The draft-12 (EC)DHE
0-RTT handshake is Multi-Stage-secure in a key-
independent and stage-1-forward-secret manner with
the protocol-specific properties described above. Formally,
for any efficient adversary A against the Multi-Stage
security there exist efficient algorithms B1, . . . , B14 such
that

AdvMulti-Stage,D
draft-12-(EC)DHE-0RTT,A≤6ns ·

(
AdvCOLL

H,B1
+nu·AdvEUF-CMA

Sig,B2

+ AdvCOLL
H,B3

+ ns · nss ·
(
AdvmsPRF-ODH

Extract,G,B4
+ AdvPRF-secExpand,B5

)
+ AdvCOLL

H,B6
+nu·AdvEUF-CMA

Sig,B7
+ AdvCOLL

H,B8
+nu·AdvEUF-CMA

Sig,B9

+ AdvCOLL
H,B10

+ ns ·
(
AdvPRF-ODH

Extract,G,B11
+ AdvPRF-secExpand,B12

+ Advst-ExtractExtract,B13
+ AdvPRF-secExpand,B14

))
,

where nu is the maximum number of users, ns is the maxi-
mum number of sessions, and nss is the maximum number
of semi-static keys.

Proof (sketch). After focusing on a single Test query, our
proof separates tests of 0-RTT keys (stage 1–2) and regular
keys (stage 3–6). The analysis of the latter case follows
closely the one for the draft-10 full (EC)DHE hand-
shake [12], confirming similar security guarantees hold for
the regular keys when adding 0-RTT. As the only change
in the advantage bounds, we model the Extract step de-
riving MS as a strong extractor (instead of a secure PRF)
with mES as entropy source and mSS as (public) seed.

The former case can be further split into the tested ses-
sion not having resp. having a stage-1 contributive partner.
For the first sub-case, the tested (necessarily server) session
must receive a forged 0-RTT client signature, which can be
bounded by the hash function’s collision resistance and the
signature scheme’s unforgeability. In the second sub-case, a
Diffie–Hellman challenge can be encoded in gx and gs and
the derived SS; from the latter (now random) value both 0-
RTT keys are expanded randomly (given HKDF.Expand is
PRF-secure).

Notably, when encoding the Diffie–Hellman challenge,
the reduction must be able to further compute both DH
values gx

′s (for multiple, unknown x′) as gs can be used
in multiple server sessions, as well as gxy

′
(for one, un-

known y′) in case the server’s ephemeral DH share is mod-
ified by the adversary in transport. To this extent, we need to
employ (on HKDF.Extract) a specific, double-sided variant
of the PRF-ODH assumption [18], denoted msPRF-ODH
and formally defined in Appendix A, which besides allowing
multiple queries on one DH share (as in [22]) additionally
allows a single query on the other share.

6. Comparing the QUIC and TLS 1.3 0-RTT
Handshakes

We emphasize two aspects here in which the TLS 1.3
design is superior to QUIC and strengthens the achievable

(multi-stage) security both in terms of key independence and
compositionality: For one thing, it derives separate keys for
the different purposes (in particular, tkehs and tkead as well
as tkhs and tkapp for the encryption of (0-RTT resp. regular)
handshake messages and data), enabling a cleaner key sep-
aration. For another thing, it establishes authenticity of the
server’s Diffie–Hellman share gy through an explicit MAC
(PSK-(EC)DHE 0-RTT) resp. signature ((EC)DHE 0-RTT)
instead of through an authenticated encryption (under the
0-RTT key) in the data channel, rendering the security of
one session key not relying on the secrecy of another.

Conversely, QUIC in its original version Rev
20130620 achieves replay protection for the derived
0-RTT key on the key exchange level whereas TLS 1.3
does not (and hence, technically, TLS 1.3 satisfies only a
weaker notion of security in that respect). As discussed in
the beginning, this protection however may become void in
the overall setting of secure channels when clients actively
replay rejected 0-RTT data over the main channel.

Finally, the (abandoned) Diffie–Hellman-based and the
(remaining) PSK-based 0-RTT handshakes in TLS 1.3 (as
specified for draft-12 resp. draft-14) differ in the
forward-secrecy guarantees they provide for 0-RTT keys,
as already pointed out by Krawczyk on the TLS mailing
list [21]. While in draft-12 (EC)DHE 0-RTT those keys
are forward secret (wrt. long-term (signing) key compro-
mise) and succumb only to exposures of the semi-static key
involved, no forward secrecy is provided in the PSK and
PSK-(EC)DHE 0-RTT mode of draft-14. It is important
to note, though, that preshared resumption secrets used in
the PSK-based 0-RTT modes (treated as long-term secrets
in our model) are usually much shorter-lived than public-
key long-term signing keys, mitigating the effects of a
compromise. Still, preshared keys have to be stored safely by
both the server and the client—a challenging task in practice,
especially on the client’s side. Diffie–Hellman-based 0-RTT
hence poses weaker requirements in that respect as the client
here only has to store the public part of a semi-static key.

7. Composition

Key exchange protocols would be of limited use if
applied in isolation; in general the derived keys are meant
to be deployed in a follow-up (or overall) protocol. The
most common application is of course the encryption (and
authentication) of data sent between the two involved par-
ties within a (cryptographic) channel protocol, with the
TLS record protocol being a prime example. The TLS 1.3
handshakes (with or without 0-RTT) additionally derive
further keys for different purposes, namely the resumption
master secret RMS (in non-PSK modes) enabling follow-
up abbreviated (preshared-key) handshakes and the exporter
master secret EMS which can be used to derive additional
key material. For both, the key usage in the cryptographic
channel as well as the usage for other purposes, it is de-
sirable to modularize the analysis, treating key exchange
and the composed protocol(s) independently and devising
automatically the security of the combined execution.
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The approach inspires studying the generic composi-
tional guarantees the TLS 1.3 handshake or, in general,
a (multi-stage) key exchange protocol can provide. For
classical (non–multi-stage) key exchange protocols in the
Bellare–Rogaway model [2] this has been argued formally
by Brzuska et al. [5], and lifted to the multi-stage setting
by Fischlin and Günther [13]. Intuitively, their composition
theorem attests that keys derived in a secure (multi-stage)
key exchange protocol KE (satisfying certain additional
conditions) can be securely used within any symmetric-key
protocol Π. This result in particular subsumes usage in an
arbitrary channel protocol. But, in case of TLS 1.3, it can
also be used to argue security of using the resumption master
secret established in a full handshake as pre-shared key for a
later abbreviated handshake, as done by Dowling et al. [10],
[12]. Here, security of the composed protocol KEi; Π is
intuitively defined as the symmetric-key protocol Π being
secure when using the stage-i keys established in the key
exchange protocol KE (see [13], [10], [12] for a formal
definition).

We augment the multi-stage composition result by Fis-
chlin and Günther [13] and extended to—in particular—the
preshared-secret setting and multiple concurrent authentica-
tion modes by Dowling et al. [10], [12], in order to also
capture replayability of keys—which are not generically
composable—based on our extended multi-stage key ex-
change model. The distinction between internal and external
(usage of) keys furthermore is eminently useful for defin-
ing composition, since it elegantly replaces the necessary
informal restriction to final keys in prior theorems.

As its original proof [13], [10] applies with marginal
changes, we only state the composition theoremhere and
and refer to the full version [14] for a brief discussion of
the necessary modifications to the proof.

Theorem 7.1 (Multi-stage composition). Let KE be a
Multi-Stage-secure key exchange protocol (in the public-key
or preshared-secret setting) providing key independence and
stage-j forward secrecy with properties (M,AUTH,USE,
REPLAY) and key distribution D, and that allows for effi-
cient multi-stage session matching10. Let Π be a symmetric-
key protocol that is secure w.r.t. some game GΠ and has
a key generation algorithm that outputs keys with distribu-
tion D. Then the composition KEi; Π for any external and
non-replayable stage i ≥ j (i.e., REPLAYi = nonreplayable
and USEi = external) is secure w.r.t. the composed secu-
rity game GKEi;Π. Formally, for any efficient adversary A
against GKEi;Π there exist efficient algorithms B1,B2,B3
such that Adv

GKEi;Π

KEi;Π,A ≤ AdvMatch
KE,B1

+ ns · AdvMulti-Stage,D
KE,B2

+

AdvGΠ

Π,B3
, where ns is the maximum number of sessions in

the key exchange game.

10. Multi-stage session matching is a technical notion which essentially
requires that it is publicly decidable from the transcript whether two
sessions are partnered or not when given all keys derived so far (see [11]
for a formal definition).
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Appendix A.
The msPRF-ODH Assumption

Definition A.1 (msPRF-ODH assumption). Let G = 〈g〉
be a cyclic group of prime order q with generator g,
PRF : G × {0, 1}∗ → {0, 1}λ be a pseudorandom function
with keys in G, input strings from {0, 1}∗, and output strings
of length λ, let b ∈ {0, 1} be a bit, and A be a PPT
algorithm.

We define the following msPRF-ODH security
game GmsPRF-ODH,b

PRF,G,A :
Setup. The challenger chooses v $←− Zq at random and

gives gv to A.
Query 1. In the next phase A can ask queries of the form

(gu, x) ∈ (G, {0, 1}∗) which the challenger answers
with the value y ← PRF((gu)v, x).11

Challenge. At some point A asks a challenge query x̂ ∈
{0, 1}∗ on which the challenger chooses û $←− Zq at
random, sets ŷ0 ← PRF(gûv, x̂) and ŷ1

$←− {0, 1}λ,
and answers with (gû, ŷb).

Query 2. Again, A can ask queries of the form (gu, x) ∈
(G, {0, 1}∗) which the challenger answers with the
value y ← PRF((gu)v, x), except that A is not allowed
to query the pair (gû, x̂).
Additionally, and this is where our version differs
from the previous PRF-ODH assumption, adversary
A can ask one distinct query of the form (gv̂, x) ∈
(G, {0, 1}∗) for gv̂ �= gv which the challenger answers
with the value y ← PRF((gv̂)û, x).

Guess. Eventually, A stops and outputs a bit b′ which is
also the game output, denoted by GmsPRF-ODH,b

PRF,G,A .

We define the advantage function AdvmsPRF-ODH
PRF,G,A :=∣∣∣Pr [GmsPRF-ODH,0

PRF,G,A = 1
]
− Pr

[
GmsPRF-ODH,1

PRF,G,A = 1
] ∣∣∣ and,

assuming a sequence of groups in dependency of the security
parameter, we say that the msPRF-ODH assumption holds
for PRF with keys from (Gλ)λ if for any A the advantage
function is negligible (as a function in λ).

11. We require that the first element is in G and hence write it as gu,
although A does not necessarily know u.
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