
Counter-RAPTOR: Safeguarding Tor Against Active
Routing Attacks

Yixin Sun, Anne Edmundson, Nick Feamster, Mung Chiang, Prateek Mittal
Princeton University

{yixins, annee, feamster, chiangm, pmittal}@princeton.edu

Abstract—Tor is vulnerable to network-level adversaries who
can observe both ends of the communication to deanonymize
users. Recent work has shown that Tor is susceptible to the
previously unknown active BGP routing attacks, called RAPTOR
attacks, which expose Tor users to more network-level adver-
saries. In this paper, we aim to mitigate and detect such active
routing attacks against Tor. First, we present a new measurement
study on the resilience of the Tor network to active BGP prefix
attacks. We show that ASes with high Tor bandwidth can be less
resilient to attacks than other ASes. Second, we present a new
Tor guard relay selection algorithm that incorporates resilience
of relays into consideration to proactively mitigate such attacks.
We show that the algorithm successfully improves the security
for Tor clients by up to 36% on average (up to 166% for certain
clients). Finally, we build a live BGP monitoring system that
can detect routing anomalies on the Tor network in real time by
performing an AS origin check and novel detection analytics. Our
monitoring system successfully detects simulated attacks that are
modeled after multiple known attack types as well as a real-world
hijack attack (performed by us), while having low false positive
rates.

I. INTRODUCTION

The Tor network [1] has been the most widely used system

for anonymous communication that protects users’ identities

from untrusted parties who have access to user traffic. Tor

serves millions of users and carries terabytes of traffic every

day with its network of over 7,000 relays [2]. This makes Tor

a popular target for adversaries who wish to compromise the

anonymity of the users.

Tor is vulnerable to traffic correlation attacks. An adversary

who can observe the traffic at both ends of the communication

path (i.e., between the Tor client and the entry relay, and

between the exit relay and the destination server) can perform

traffic analysis on packet sizes and timings to deanonymize the

Tor users [3], [4]. Network-level adversaries, i.e., autonomous

systems (ASes), that lie on the path between a Tor client and

an entry relay, and between an exit relay and the destination

server can deanonymize Tor clients [5]–[7]. More recently, re-

searchers have further exploited the dynamics of BGP routing

to propose the new RAPTOR attacks [8], which exaggerate

this threat by enabling more network-level adversaries to be at

a compromising position, including active BGP prefix attacks

which were not previously studied on Tor.

Building countermeasures to defend Tor against such mali-

cious AS-level adversaries is an important challenge facing our

community. Past work has explored AS-aware relay selection

algorithms that minimize the chance of selecting Tor relays

with the same AS lying on both ends of the communication

paths [5], [9], [10]. However, these works focus on mitigating

passive attacks in which AS-level adversaries only passively

observe traffic instead of launching any active attacks. These

observations motivate our work on developing countermea-

sures against such active BGP attacks on Tor.

First, we quantify the vulnerability of the current Tor

network to active BGP prefix hijack and interception attacks.

Second, we develop a novel Tor guard relay selection al-

gorithm which incorporates AS resilience of Tor relays and

proactively protects Tor clients from being affected by such

attacks. Finally, we present a live BGP monitoring system on

the Tor network that can detect routing anomalies in real time.

To summarize, we make the following three contributions:

Measurement on the Tor network. In order to understand

the importance of the threat and inspire defenses against the

active routing attacks, we first measure the vulnerability of the

current Tor network. Based on the current Internet topology

[11] and Tor consensus data [12], we adapt an AS-resilience

metric [13] to measure resilience of the Tor network to BGP

hijack attacks. Next, we develop a novel extension of the

metric to analyze interception attack scenarios and measure

resilience to interception attacks launched by Tier 1 ASes.

Our key findings are:

• Some ASes that have high Tor bandwidth have low

resiliences to hijack attacks, e.g., AS 16276 (OVH),

which contains 339 Tor relays and only has a resilience

value of 0.408 on a scale of [0, 1], indicating that in a

hijack event, the probability of a Tor client (who uses

relays in this AS) being deceived is close to 60%. The

cause of this lies in the topological features of the ASes

in the AS hierarchy.

• ASes have higher resiliences to interception attacks.

However, some ASes (e.g., OVH) with high Tor relay

bandwidth still have relatively low resilience (e.g., OVH

has resilience 0.56 while the average is 0.8).

• AS resilience varies depending on client location, and

has high heterogeneity. For instance, OVH has resilience

>= 0.8 for 20% of the client ASes, while <= 0.3 for

another 20% of the client ASes.

Proactive approach against active BGP attacks. We propose

and implement a novel Tor guard relay selection algorithm,

which considers a resilience metric for ASes and protects the

connection between Tor clients and Tor guard relay. Our guard

2017 IEEE Symposium on Security and Privacy

© 2017, Yixin Sun. Under license to IEEE.

DOI 10.1109/SP.2017.34

977

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 05:41:50 UTC from IEEE Xplore. Restrictions apply.

relay selection algorithm is the first algorithm to incorporate
resilience to active BGP routing attacks on Tor [8] and the first
countermeasure to proactively protect Tor clients from being
affected by such attacks. The algorithm combines resilience

and bandwidth into relay selection to ensure security as well as

performance. Our evaluation shows that the algorithm achieves

up to 36% improvement on average (up to 166% for certain

clients) in probability of Tor clients being resilient to a prefix

hijack attack on guard relay and improves the anonymity

bounds (computed by MATor [14]) compared to the current

Tor relay selection algorithm. At the same time, it only suffers

minimal performance loss based on a large-scale evaluation on

the Shadow emulator.

Reactive approach against active BGP attacks. To com-

plement our proactive defense, we build and deploy a live

monitoring system that monitors routing activities for Tor

relays in real time. The monitoring system uses the real-

time BGP routing information in addition to novel analytics-

based hijack detection methods. The system collects live BGP

updates from BGP Stream [15], as well as the latest hourly Tor

consensus data, and detects suspicious prefix announcements

(affecting the Tor network) by performing AS origin check

and analytics in real time. Our evaluation shows that most

BGP updates that involve a Tor relay are only announced

by a single AS (across all updates). Our detection analytics

have a low false positives rate of 0.19% on average. We also

show that both the live AS origin check and the analytics

successfully detected simulated attacks that are modeled after

multiple known attack types as well as a real-world BGP

hijack attack (performed by us). The monitoring system will

help enhance the transparency of the Tor network with regards

to active BGP attacks.

The paper is organized as follows. Section 2 provides a

brief overview of background and related work on Tor. Section

3 describes the metrics used to measure the resilience of

Tor network to active BGP hijack/interception attacks and

presents the results. Section 4 presents our new Tor guard

relay selection algorithm and evaluation. Section 5 shows

our design for the live monitoring system and describes our

deployment experience. Section 6 provides discussions on the

current approaches and directions for future work. Finally, we

conclude in Section 7.

II. BACKGROUND AND RELATED WORK

Here we discuss network-level adversaries on the Tor net-

work and past work on defending against such network-level

adversaries.

A. Network Adversaries on Tor

Feamster and Dingledine [6] first investigated AS-level

adversaries in anonymity networks, and they showed that some

ASes could appear on nearly 30% of entry-exit pairs, although

the anonymity networks have grown significantly since then.

Murdoch and Zielinski [16] later demonstrated the threat posed

by network-level adversaries who can deanonymize users by

performing traffic analysis. Furthermore, Edman and Syverson

[5] demonstrated that even given the explosive growth of

Tor during the past years, still about 18% of Tor circuits

result in a single AS being able to observe both ends of the

communication path. In 2013, Johnson et al. [7] evaluated

the security of Tor users over a period of time, and the

results indicated that a network-level adversary with just low-

bandwidth cost/budget could deanonymize any user within

three months with over 50% probability and within six months

with over 80% probability.

While all prior research, to our knowledge, focuses on

passive adversaries, more recently, Sun et al. [8] proposed a

new suite of attacks, called RAPTOR attacks, that discovered

the threat posed by active AS-level adversaries who can

perform active BGP routing attacks to put themselves onto the

path between client-entry and/or exit-destination. The paper

also showed that these routing attacks have occurred on the

Tor network. Using past BGP data, they demonstrated that Tor

relays were affected in prefix hijack attacks. For example, in

the Indosat hijack in 2014 [17], among the victim prefixes

there were 44 Tor relays, and 33 of them were guard relays

which had direct connections with Tor clients.

B. Defenses against Network Adversaries

The existence of network-level adversaries motivates the

research on AS-awareness in path selection in Tor. In 2012,

Akhoondi et al. [9] proposed LASTor, a Tor client that takes

into account AS-level path and relay locations in selecting

a path; our work differs by considering relays’ resilience

to active attacks and relays’ capacity. Recently, Nithyanand

et al. [10] constructed a new Tor client, Astoria, which

adopted a new path selection algorithm that considered more

aspects; relay capacity, asymmetric routing, and colluding

ASes. However, Astoria only considers a passive AS-level

attacker and does not consider the case of active routing

attacks. Most recently, Tan et al. [18] proposed a data-

plane detection approach that periodically runs traceroute to

detect longest-prefix attacks and update Tor relay descriptors

upon anomaly detection, so that Tor users can pick guard

relays correspondingly. Unfortunately, this approach cannot

proactively protect Tor users who have already established

connections with Tor guard relays which are under attack, and

furthermore, the detection is not in real time - the periodic

nature of traceroutes and hourly update of Tor consensus will

both lead to delays in detection while the attacks may be short-

lived (Sun et al. [8] show that deanonymization accuracy can

reach 90% by performing a longest-prefix attack for less than

5 minutes). Thus, these observations motivate our work on

developing countermeasures that can proactively defend Tor

users against active routing attacks, as well as a live monitoring

system that can detect attacks on Tor in real time.

C. Resilience to Active Routing Attacks

Lad et al. [13] investigated the relationship between Internet

topology and prefix hijacking, and provided a metric for

evaluating AS resilience to active prefix hijack attacks. While

the study provides a foundational starting point for our work,

978

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 05:41:50 UTC from IEEE Xplore. Restrictions apply.

it was conducted in 2007 when there were far fewer ASes

than today and it only simulated a partial attack scenario

of 1000 randomly selected ASes as attackers. Furthermore,

it is not specific to the Tor network. In comparison to this

work, we first adapt the metric to measure resilience of Tor to

active hijack attacks, considering all attack scenarios as well as

weighted attack scenarios based on top Tor client locations. We

then devise a novel extension to evaluate resilience to active

interception attacks. In Section IV, we incorporate the AS

resilience metric into the Tor guard relay selection algorithm.

III. MEASURING TOR’S CURRENT STATE OF RESILIENCE

TO BGP HIJACK AND INTERCEPTION ATTACKS

Network-level adversaries can launch BGP routing attacks

by announcing BGP prefixes that they do not own. Over

the past years, several well known attacks that affected large

portions of the Internet [17], [19]–[22] continuously show us

the high vulnerability of BGP. The Tor network is no exception

– more than 90% of BGP prefixes hosting Tor relays have

prefix length shorter than /24, making them vulnerable to

more-specific prefix attacks [8]. However, the prevalence of

equally-specific attacks and how these attacks affect Tor relays

have not been well studied. This type of hijack attack tends to

be more stealthy because unlike more-specific prefix attacks,

equally-specific attacks may not be seen by all vantage points.

Furthermore, interception attacks which are more relevant for

traffic analysis can only be equally-specific attacks, which

we will explain in Section III-C. First, we show in a case

study that the Tor network has been affected by equally-

specific attacks in past real-world hijacks. Second, we look

at how to evaluate the Tor network in terms of susceptibility

to equally-specific hijack and interception attacks. These steps

help quantify how vulnerable the Tor network is to real

world network-level adversaries and also provide insights for

developing countermeasures.

A. Motivation: Equally-Specific Prefix Attacks on Tor

Tor relays have already been affected in past known BGP

attacks [8]. As a motivating example, we consider the Indosat

2014 hijack [17], which affected the most number of Tor relays

among all the attacks. The 44 Tor relays that were hijacked

belonged to 23 prefixes. We found that all these 23 prefixes

were announced by the false origin, Indosat (ASN 4761), in

the same length as were announced by their true origin ASes.

Table I shows the prefix lengths of the 23 prefixes. We can

see that equally-specific attacks are a real threat. Note that

equally-specific attack is a shorter path attack, as the traffic

will go to the false origin AS only when its path is shorter

(or, more preferred) than the path to the true origin AS.

Prefix Length 13 14 16 18 19 20 21 23 24
of Prefixes 3 1 3 1 1 2 5 2 5

TABLE I: Prefix lengths of prefixes that cover Tor relays, and

were affected in Indosat 2014 hijack. All of these prefixes

were attacked by equally-specific prefix hijacks.

B. Resilience to prefix hijack attacks

When an adversary announces an equally-specific BGP

prefix to hijack the traffic, some ASes would be deceived by

the false announcement and thus send traffic to the false origin

AS (adversary) instead of the true origin AS. Previous work

has studied how many, and which, ASes are affected by prefix

hijack attacks using simulations of the entire Internet [13]. We

build off this work by adapting the AS resilience metric to the

Tor network, by considering all attack scenarios as well as

weighted attack scenarios based on top Tor client locations.

1) Definition of resilience: We first define the term re-
silience. A source AS v is resilient to a hijack attack launched

by a false origin AS a on a true origin AS t, if v is not deceived
by a and still sends its traffic to t.

• The origin-source-attacker resilience of a particular true

origin AS t with a given source AS v and attacking

AS a, is defined as the probability of v being resilient

and thus is always in the interval of [0, 1]. For instance,

an origin-source-attacker resilience value of 0.4 indicates

40% probability of v being resilient to the attack (or, 60%

probability of being deceived).

• The origin-source resilience of a particular true origin AS

t with a given source AS v is defined as the probability of

v being resilient if any other ASes launch a prefix attack

on t.
• The origin resilience of a particular true origin AS t,

with a given target set of source ASes (e.g., all existing

ASes or top ASes containing Tor clients), is defined as

the averaged probability of the source ASes in the target

set being resilient if any other ASes launch a prefix attack

on t.

In the following sub-sections, we show the detailed steps to

calculate such resilience values of the ASes in the Tor network.

2) AS path prediction: In order to compute the probability

of a source AS being resilient/deceived, we first need to predict

its AS-level paths to both the false origin AS and true origin

AS of destination. Gao et al. have shown that AS level paths

are determined mainly based on two preferences [23]: (1)

Local Preference: customer route is preferred over peer route,

which is preferred over provider route; (2) Shortest Path:

Among paths with the highest local preference, paths with

the shortest hops will be preferred.

Furthermore, the AS paths should also have the valley free
property [24]. Thus, we use breadth first search to traverse the

graph from a given source node based on this property and the

preferences. We first explore provider-customer paths, which

are the most preferred; next, we explore one peer-to-peer path

followed by a sequence of provider-customer paths, which are

the next preferred; finally, we explore customer-provider paths

followed by an optional peer-to-peer path and then followed by

a sequence of provider-customer paths. Nodes are explored in

the most preferred to least preferred order, and those which are

explored in the same step are equally preferred. This ordering

will help accelerate the resilience calculation.

979

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 05:41:50 UTC from IEEE Xplore. Restrictions apply.

3) Origin-source-attacker resilience for given (t, v, a):
Next, given the AS-level paths, we will then compute the

probability of a source AS v being resilient to the attack. If

the best path from the source AS v to the true origin t is

more preferred than the best path to the false origin a, then

the resilience would be 1; in the opposite case when it is

less preferred, the resilience would be 0. If they’re equally

preferred, the probability will be computed as follows:

β̄(t, v, a) =
p(v, t)

p(v, t) + p(v, a)
(1)

where p(v, a) is the number of equally preferred paths from

node v to false origin a and p(v, t) is the number of equally

preferred paths from node v to true origin t.
4) Origin resilience: With the origin-source-attacker re-

siliences of each (t, v, a) tuple, we can first compute the

origin-source resilience of an origin AS t for each source

AS v in the target set, by aggregating the origin-source-

attacker resiliences of all attacking ASes (representing all
attack scenarios which can be launched by any AS a). Then,

we can compute origin resilience of the origin AS t by further

aggregating the origin-source resiliences of the source ASes in

the target set. The following equation illustrates the resilience

computation when the target set of source ASes equals to the

set of all ASes.

R(t) =
∑

a∈N

∑

v∈N

β̄(t, v, a)

(N − 1)(N − 2)
(2)

where N is the set of all ASes and N is the total number

of ASes.

We adapt the above metric to Tor by measuring the origin

resilience of each AS that contains at least one Tor relay.

Algorithm 1 shows the detailed steps to calculate the origin-

source resilience for each Tor-related AS t from a given

source/client AS v. The origin resilience for each Tor-related

AS t can then be computed by aggregating over the target

set of source/client ASes. In Section III-D, we illustrate the

results when (1) the target set is the set of all ASes, and (2)

the target set is the set of top 95 Tor client ASes [7].

Algorithm 1 Origin-source resilience to hijacks for Tor-related

ASes from a source AS v.

function CALCHIJACKRESILIENCE(graph G, node v)
CALCPATHSFROMNODE(G, v)
R[t] = 0 ∀ Tor AS t
for each reachable node i from node v do

if node i contains Tor relays then
n← num. of nodes with less preferred paths than node

i
R[i] ← n +

∑
a∈A β̄(i, v, a) where A is the set of

nodes with equally-preferred paths as node i
end if

end for
N ← num. of nodes in G
return [R[i]/(N − 2) for each node i in R]

end function

C. Resilience to prefix interception attacks

Next, we derive a new extension of the metric to measure

the resilience of Tor-related ASes to prefix interception attacks.

Launching a prefix interception attack requires one further

step than prefix hijack attacks - the false origin AS needs to

forward the hijacked traffic back to the true origin AS. Note

that interception attacks can only happen with equally-specific

prefix attacks; otherwise, if it’s a more-specific prefix attack,

the whole internet would be affected and the false origin AS

would not be able to route the traffic back to the true origin.

Prior work [25], [26] has pointed out that to be able to do this,

the false origin AS needs to satisfy a safety condition: none of

the ASes along the existing route from false origin AS to true

origin AS should choose the invalid route advertised by the

false origin AS, and thus the false origin AS can still use its

existing route to forward the hijacked traffic back to the true

origin. Thus, when making the invalid route announcement,

there are two cases to consider: (1) if the false origin AS’s

existing route to the true origin AS is through a peer or

customer route, then it’s safe to make the false announcement

to all its neighbors without affecting its existing route to the

true origin; (2) if the false origin AS’s existing route to the

true origin AS is through a provider route, then it can only

make the false announcement to its peers and customers, but

not providers.

Based on the above property, we modify Algorithm 1 to

the following Algorithm 2 to evaluate resilience to interception

attacks.

Algorithm 2 Origin-source resilience to interceptions for Tor-

related ASes from a source AS v.

function CALCINTERCEPTRESILIENCE(graph G, node v)
CALCPATHSFROMNODE(G, v)
R[t] = 0 ∀ Tor AS t
for each reachable node i from node v do

if node i contains Tor relays then
n← num. of less preferred nodes than node i
N ← set of more preferred nodes than node i
if existing route v to i is provider route then
N ← N ∩M where M contains all nodes m for

which v to m is provider route
end if
A ← set of equally preferred nodes as node i
if existing route v to i is provider route then
P ← A ∩M where M contains all nodes m for

which v to m is provider route
A ← A−P

end if
R[i]← n+ len(N) + len(P) +∑

a∈A β̄(i, v, a)
end if

end for
N ← num. of nodes in G
return [R[i]/(N − 2) for each node i in R]

end function

D. Hijack Resilience Results

We obtained the list of Tor relays from the Tor consensus

data on January 1, 2016 and retrieved their corresponding

980

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 05:41:50 UTC from IEEE Xplore. Restrictions apply.

ASes. Then, we downloaded the AS topology published by

CAIDA in January 2016. The AS topology contains 52,838

ASes, in which 1,185 ASes contain a total of 6,942 Tor

relays. We first considered all possible hijacking scenarios

(any AS can be a potential attacker and the Tor client can

be located in any AS) against each of the 1,185 Tor-related

ASes, totaling 52, 837× 1, 185 = 62, 611, 845 prefix hijacks.

We used the methods described in Section III-B to evaluate

the origin resilience of each Tor-related AS.
Since Tor clients are not evenly distributed across all ASes

on the Internet, so we also consider and evaluate the resilience

of only ASes that contain Tor guard relays from 95 top Tor

client ASes [7] as the target set of source ASes. Furthermore,

since Tor clients select relays in a bandwidth-weighted manner,

so we also evaluate resilience weighted by Tor bandwidth of

the ASes.
Figure 1 shows the CDFs of AS resilience distribution for:

(i) all Tor-related ASes with target set of source ASes being all

ASes; (ii) all Tor-related ASes weighted by the accumulative

Tor bandwidth of each AS, with target set being all ASes;

(iii) all Tor Guard ASes with target set being top 95 Tor client

ASes; (iv) all Tor Guard ASes weighted by bandwidth, with

target set being top 95 Tor client ASes.

Fig. 1: Hijack Resilience for Tor-related ASes.

Interpreting the hijack resilience. All the four curves

show high heterogeneity among AS resiliences. Let us first

consider the two unweighted curves for all Tor ASes and only

Guard ASes. They have almost identical distribution. Among

them, about 20% of the ASes have high resiliences > 0.61,

indicating that in a hijack event, the averaged probability of

a Tor client (who uses relays in the ASes) being deceived is

smaller than 39%. However, there are also 20% of the ASes

with low resiliences < 0.32. The two weighted curves show

some differences: they both have a steep jump at roughly 20%

point first, and then another jump at 30% and 40% points,

respectively. This is due to two high-bandwidth ASes: i)

AS12876 (ONLINE S.A.S), with resilience 0.4 from all source

ASes (corresponding to the 20% point in the all-ASes curve)

and resilience 0.39 from top Tor client ASes (corresponding

to the 20% point in the top-client curve); ii) AS16276 (OVH),

with resilience 0.41 from all source ASes (corresponding to

the 30% point in the all-ASes curve) and resilience 0.49 from

top Tor client ASes (corresponding to the 40% point in the

Fig. 2: Hijack Resilience and Corresponding Bandwidth per

AS. OVH and S.A.S are clear outliers.

top-client curve). Figure 2 plots resilience versus bandwidth

per Tor AS. We can see clearly the two outliers OVH and

ONLINE S.A.S. - high bandwidth, yet low resilience.

The results lead to two question we want to answer: (i) why

do some ASes (e.g., OVH) have relatively lower resiliences

than others?, and (ii) since the origin resilience for an AS

represents the averaged probability across its clients of being

resilient to hijacks, can some of its clients still have high

origin-source resiliences even though the origin resilience is

low?

Analyzing low resilience values of ASes. To answer the

first question, we choose AS16276 (OVH) as an example

and conduct a deeper analysis on it. OVH’s relatively lower

resilience is due to its topological features in the AS hierarchy,

shown in Figure 3. OVH has 4 provider ASes (which are all

tier-1 ASes), and it also has quite a number of peer ASes, while

only having one customer AS (which is a stub AS). Since OVH

only has one customer (AS 35540), so this lone customer AS

is the only AS that is guaranteed to remain unaffected in a

prefix hijack attack (while for other ASes, the impact depends

on their location). For instance, if the hijacking AS is the

customer of a peer AS of OVH, then all other customers of

the particular peer AS will be affected, and even customers of

other peer ASes may also stand a chance of being affected,

while the four Tier 1 ASes will stay unaffected. Thus, if a Tor

client is located in AS 35540 (OVH’s only customer), then

selecting a Tor guard relay in OVH will largely eliminate the

chance of being affected by attacks on OVH and result in

perfect resilience of value 1.

Heterogeneity in resilience across clients. To answer the

second question, we plot the CDF of origin-source resilience

distribution of each source/client AS for the top 2 ASes with

highest Tor bandwidth (AS16276 and AS12876), as shown in

Figure 4a. The weighted resilience curve represents the origin-

source resilience for each source AS averaged over all Tor

981

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 05:41:50 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Partial AS Graph containing OVH.

ASes (weighted by each AS’ Tor bandwidth). Both AS17276

and AS12876 exhibit significantly higher heterogeneity com-

pared to the weighted resilience. Thus, we can see that OVH

can be a very non-resilient AS for certain sources AS, while

being resilient for some others (e.g., OVH has origin-source

resiliences >= 0.8 for roughly 20% of the source ASes.)

Similarly, Figure 4b shows the results of top 95 Tor Client

ASes as source ASes, and the weighted curve only considers

Tor Guard ASes. Again, we see greater heterogeneity in

origin-source resiliences for both ASes than in the averaged

case. Interestingly, AS12876 (ONLINE S.A.S) have lower

resiliences than AS16276 (OVH) across all clients. This is

also consistent with the results in Figure 1, in which OVH

has resilience 0.49 compared to ONLINE S.A.S’s 0.39.

E. Interception Resilience Results

Using Tier-1 ASes as intercepting ASes. Tier-1 ASes play

an important role in Internet routing. They sit at the top level

of the Internet hierarchy and carry a large amount of network

traffic. Tier-1 ASes do not have any providers and are all

fully peered with each other. Recall from Section III-C that in

order to successfully intercept traffic of a true origin AS, the

false origin AS needs to satisfy a safety condition - it cannot

announce the invalid route to its providers when its existing

route to true origin AS is through a provider route. This

condition puts Tier-1 ASes at a powerful position - Tier-1 ASes

do not have any providers and thus can always announce the

invalid route to all its neighbors (peers/customers), who will

further propagate the announcement down to other ASes in the

Internet hierarchy. On the contrary, ASes that are towards the

bottom of the Internet hierarchy do not have much interception

power. They have limited number of peers/customers, and

most of their outgoing routes are through providers. Therefore,

due to the difference in interception power, we only focus

on measuring interception resilience to Tier-1 ASes as the

attacking AS here instead of all ASes as the attacking AS.

Interception resilience evaluation and results. We used

17 Tier-1 ASes in our evaluation. 1 Same as in the hijack

1AS174, AS209, AS286, AS701, AS1239, AS1299, AS2828, AS2914,
AS3257, AS3320, AS3356, AS5511, AS6453, AS6461, AS6762, AS7018,
AS12956

resilience evaluation, we used the Tor consensus data and

CAIDA AS topology data, both from January 2016. We first

evaluate interception resilience of all Tor-related ASes, as

shown in Figure 5. We can see that the Tor ASes have higher

resiliences to interception attacks than to hijack attacks, with

roughly 50% of the ASes having resilience higher than 0.8.

The intuition behind this is that, even though Tier-1 ASes are

at a position to intercept traffic, they also have longer paths

from ASes that are close to the bottom of the hierarchy, which

may prefer closer ASes with shorter paths instead of taking the

longer paths to reach the Tier-1 ASes. Note that the resilience

values are slightly lower for the Guard ASes (from top Client

ASes) than all Tor ASes (from all source ASes).

The weighted distributions, though, show obviously lower

resiliences, with the 50% point at resilience value 0.6. This is,

again, due to some high bandwidth Tor ASes which have low

resiliences, e.g., AS16276 (OVH) only has resilience of 0.56.

The analysis in Section III-D on OVH’s topological features

in the AS hierarchy can also be applied here to explain its low

resilience.

We also plot the origin-source resilience distributions of

each source/client AS for the Top 2 high bandwidth ASes

(AS16276 and AS12876), as shown in Figure 6. Consistent

with our observations above, the two high bandwidth ASes

have clearly lower origin-source resiliences across most of the

source ASes, which attribute to their low origin resiliences.

Although, as discussed in Section III-D, they may have low re-

siliences for certain source ASes while having high resiliences

for others, as reflected in the figure as well.

Consider resilience when choosing relay. Tor clients

choose relays based on relay bandwidth, and thus high-

bandwidth relays have high chances of being chosen by Tor

users. However, we have shown in this section that equally-

specific attacks are real threats which have already affected

the Tor network in the past, and the current bandwidth-based

relay selection may choose very low-resilience relays for the

clients. Therefore, guard relay selection that solely relies on

relay bandwidth can expose many Tor users to the high risk of

being compromised by active BGP attacks. This vulnerability

motivates our work on incorporating AS resilience into guard

relay selection, which we will delve into in Section IV.

IV. PROACTIVE DEFENSE:

TOR GUARD RELAY SELECTION

Guard relays are at an important position in the Tor circuit,

since they have direct connections with Tor clients. Strategic

adversaries can discover the users using specific guard relays

via BGP hijacks, and even perform traffic correlation analysis

to deanonymize users via BGP interceptions [8]. The attacks

can be either more-specific prefix attacks or equally-specific

prefix attacks. While more-specific prefix attacks affect the

whole internet and mitigating such attacks could require

cooperations from relay operators (e.g., moving relays into

/24 prefix length), equally-specific prefix attacks affect a

portion of internet, and Tor clients can possibly stay unaffected

during such attacks by choosing the guard relay wisely and

982

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 05:41:50 UTC from IEEE Xplore. Restrictions apply.

(a) Hijack Resilience from All Source ASes (b) Hijack Resilience from Top Client ASes

Fig. 4: Hijack Resiliences for Top-Bandwidth ASes across Different Clients.

Fig. 5: Interception Resilience for Tor-related ASes

proactively before any attack happens. In addition, as shown

in Section III-A, equally-specific prefix attacks are real threats

that have already affected Tor users in the past. To this end,

we propose a new Tor guard relay selection algorithm that

incorporates AS resilience to minimize the probability that Tor

clients would be affected when their guard relays are under

equally-specific prefix attacks.

The following are the design goals of our guard relay

selection algorithm.

1) Mitigate equally-specific prefix attacks on Tor. This is

the main goal of the selection algorithm. The algorithm

computes the AS resilience against prefix hijacks of all

Tor guard relays from the client source AS, and prefers

the ones that have higher resilience to minimize the

likelihood that the client would be affected by a prefix

hijack on its guard relay.

2) Protect the anonymity of Tor clients. In addition to

lowering the possibilities of being hijacked, the algorithm

should also protect the anonymity of Tor users by balanc-

ing preferences among relays and providing rigorously

assessed anonymity bounds.

3) Performance and load balancing. The algorithm should

incorporate relay bandwidth into the selection decision

and avoid causing excessive traffic congestion on low

bandwidth relays.

A. Guard Relay Selection Algorithm

We describe our Tor guard relay selection algorithm in detail

with regards to two aspects: 1) choosing resilience metric and

2) incorporating resilience into relay selection.

1) Choosing Resilience Metric: In general, ASes are more

resilient to interception attacks than to hijack attacks, as shown

in Section III. The interception resilience is a conservative

measure of the probability of intercepting packets without

additional set ups (e.g., VPN tunnels that send packets to

the origin, or tunneling to a colluding AS which can then

forward packets to the origin, etc.). However, there could be

many cases where the probability of intercepting is higher.

In other words, the interception resilience provides a upper
bound on resilience to packet interception. On the contrary,

the hijack resilience considers a basic property that any packet

interception needs to satisfy, and hence provides a lower bound
on resilience to packet interception. For this reason, we will

choose the hijack resilience to incorporate into the guard relay

selection.

2) Incorporating resilience: We defined the origin-source
resilience in Section III-B, which represents the probability of

a given source AS being resilient to attacks on a true origin

AS. Here, the source AS is the AS where Tor client is located,

and the true origin ASes are the ones which contain eligible

Tor guard relays. Algorithm 1 describes how to calculate the

origin-source resilience R(i) of each Tor-related AS i from

the client AS v.

Tor relay selection is bandwidth-aware and prefers high

bandwidth relays. The probability of each relay i being chosen

is based on its default bandwidth B(i). We offer a tunable

parameter α in the relay selection algorithm, combining hijack

resilience R(i) and the default bandwidth B(i). Each relay i
will be assigned a weight as following:

W (i) = α×R(i) + (1− α)× ¯B(i)

Note that, B(i) is normalized to ¯B(i), which is in [0, 1].
when α is set to 0, the relay selection becomes the same

as bandwidth-only selection; while when α is set to 1, the

selection becomes resilience-only selection.

983

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 05:41:50 UTC from IEEE Xplore. Restrictions apply.

(a) Interception Resilience from All Source ASes (b) Interception Resilience from Top Client ASes

Fig. 6: Interception Resilience for Top-Bandwidth ASes across Different Clients.

3) Randomization is needed: If we simply select the set

of guard relays based on the probability of W (i)/
∑

W (i),
an adversary can potentially run a relay that has an AS-level

path with high local preferences and/or short path length to

the Tor client, such that it has high resilience from the client

AS as the source. Via this attack, an adversary obtains a

high probability of being chosen. Furthermore, the Tor client

might also be susceptible to fingerprinting attacks due to the

differences in relay selection probabilities based on the AS-

location of the client. An adversary that can observe the client

for a long enough time may be able to infer the AS-location of

the client based on its observed relay selection choices. Thus,

we need to take into account these potential vulnerabilities

and protect the anonymity of clients. Recall that the weight

of a Tor relay depends on two components: (1) the resilience

of the AS in which the relay is located, and (2) the relay’s

bandwidth. The relay’s bandwidth is not specific to client

locations, and thus would not reveal any client identities; in

addition, due to resource constraints, it is not trivial to run a

relay with significantly higher bandwidth than all other relays

to obtain high probability of being chosen. On the other hand,

AS resilience of relays is client-specific, and requires much

less resource to run a malicious relay with high AS resilience.

Instead of using resilience R(i) for relay i directly in the

weight calculation, we first adjust it to R(i)′ by calculating

the estimated inclusion probability of the relay in a random

sampling of size (g · N) using the algorithm proposed by

Tille [27]. Here, N corresponds to the total number of Tor

guard relays, and g is a configurable parameter indicating

the percentage of random sampling we want to perform. The
intuition behind using Tille’s algorithm is that we want to first
pick (g · N) relays based on R(i), and then randomly pick
one among the selected relays. Tille’s algorithm provides an

estimation of the probability of a relay being chosen given its

R(i). The steps are as following:

1) For each relay i, R(i)′ = k·R(i)∑
j∈S R(j) in which k is initially

equal to the sample size (g·N) and set S initially includes

all available relays.

2) For each relay i, if R(i)′ > 1, R(i)′ = 1 and k = k − 1,

and exclude relay i from set S.

3) Repeat the above process until each R(i)′ is in [0, 1].

4) For each relay i, R(i)′ = R(i)′

g·N
Note that when g is set to 1

N , then no random sampling will

be performed, while if g is set to 1, then all relays will have

the same R(i)′ in their weights.

B. Implementation on Tor

Mapping the IP addresses of the Tor client and the Tor relays

to their respective AS is necessary before we can compute AS

resilience. In order to preserve the anonymity of the Tor client

and not reveal its location to outside servers or anyone who

can observe its communications, the client will perform the

IP to ASN mapping locally by utilizing the Maxmind ASN

database [28], which can be included in the Tor download

package. Note that the Maxmind GeoIP database for IP to

Country mapping is already included in the Tor package and

being used by the vanilla Tor client. In addition, the client will

use the AS topology database from CAIDA [29] (< 700KB

compressed) for AS-level path inference in the resilience

calculation. Here, we assume that Maxmind GeoIP database

and CAIDA AS topology database are both reliable sources.

Note that, CAIDA only updates the AS topology database

monthly, so the overhead incurred for downloading the most

recent file is low. The detailed steps are as following:

1) If the Maxmind ASN file and AS topology file have not

been downloaded, the Tor client will download the two

files from Maxmind and CAIDA, respectively, and save

them in the local data directory. Otherwise, the Tor client

will check if the local AS topology file is up to date

(updated monthly), and if not, then download the latest

version.

2) The Tor client will perform IP to ASN mapping, and

compute the AS resilience R(i) of all candidate guard

relays from the client AS as the source AS.

3) The Tor client will perform random sampling on all

candidate guard relays and adjust the resilience value to

R(i)′.
4) The Tor client will compute a weight for each candidate

relay using formula W (i) = α×R(i)′ +(1−α)× ¯B(i).

984

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 05:41:50 UTC from IEEE Xplore. Restrictions apply.

5) The Tor client will proceed with the path selection. The

remaining part of the circuit construction process stays

the same as it is in Tor.

C. Security and Anonymity Evaluation

We evaluate the security and anonymity of the Tor guard re-

lay selection algorithm from three perspectives: (1) increasing

the probability of a Tor client being resilient (unaffected) to a

hijack attack on the Tor guard relay, (2) vulnerability to client

fingerprinting attacks, and (3) rigorously assessing anonymity

bound for a given Tor client using MATor [14].

1) Probability of a Tor client being resilient to a hijack
attack on Tor guard relay: This is the main goal of the new

relay selection algorithm. Let Ppick(i) denote the probability

that a Tor client will choose relay i using our algorithm,

and Presilient(i) denote the probability that a Tor client will

stay unaffected if relay i is being hijacked. Presilient(i) is

essentially the same as the origin-source resilience described

in Section III-B. The aggregated probability of a Tor client

being resilient to a hijack attack on guard relay can then be

expressed as:
∑

i∈{all guard relays}
Ppick(i) ∗ Presilient(i)

We evaluate the probability for five values of α =
{0, 0.25, 0.5, 0.75, 1}, using 95 top Tor client ASes [7] as

the source ASes and Tor consensus data from January 2016.

Figure 7 shows the result. Naturally, α = 1 has the highest

probability of being resilient by an attack, with an average of

36% increase. Note that, the algorithm benefits certain clients

more than the others. For instance, if a client already has high

probability of being resilient under the current relay selection

algorithm, then its space for improvement would be low, as

shown in Figure 7.

Fig. 7: Probability of being resilient to attacks with different

α values

We then evaluate it with random sampling of g = 10%. We

choose 10% as the random factor here based on empirical

evaluations of different g values, and we found that the

marginal benefit of a larger g value does not compensate the

loss in resilience to hijack attacks and performance.

Table II shows the average relative percentage of improve-

ment in the probability of being resilient to a hijack attack

compared to α = 0, for both with and without random

sampling. We can see that, even though the highest average is

36%, the maximum percentage can be up to 166% for certain

clients. Also, there is only a slight decrease in percentage

of improvement for higher α values with the 10% random

sampling.

α Average
(No
sampling)

Average
(10%
sampling)

Maximum
(No
sampling)

Maximum
(10%
sampling)

0.25 27% 22% 114% 93%
0.5 32% 30% 144% 131%
0.75 35% 34% 158% 153%
1 36% 36% 166% 166%

TABLE II: Percentage of improvement in resilience compared

to α = 0

2) Vulnerability to client fingerprinting attacks: There is a

potential security tradeoff in the relay selection algorithm be-

tween vulnerability to prefix hijack attacks and vulnerability to

fingerprinting attacks. We briefly discussed in Section IV-A3

about fingerprinting a client location based on its preferences

of relays in the long term. For instance, for a given relay, if

client a has 70% probability of choosing the relay while client

b only has 30% probability, then an adversary can observe the

client’s choice of relays over time to infer client information.

The resilience component of our relay selection algorithm

may be subject to such fingerprinting attacks, which we will

evaluate here.

We used an entropy-based anonymity metric, Shannon

Entropy [30], to evaluate the information leak. This metric

considers the distribution of potential Tor clients of the connec-

tion (as computed by the attacker) and computes its Shannon

entropy as:

HShannon(I) = −
∑

i

pilog2pi

where pi is the probability that for the given relay, client i
is the initiator of the connection. We consider the top 95 Tor

client ASes [7] as potential clients, and focus on guard relays.

Note that, the maximum entropy that can be achieved will be

log2 95 = 6.57.

Table III shows the result. Bandwidth-only selection in

Vanilla Tor (α = 0) has maximum entropy 6.57 for all relays,

since the probability of it being chosen is the same across

all clients, and thus does not leak any client information.

With resilience-based selection, the entropy becomes lower.

However, the loss in entropy is not significant - with 2.4% loss

when α = 0.25, and 4.1% loss when α = 1. With the 10%

random sampling, this loss is further reduced down to 1.7%
loss when α = 0.25, and 3.9% when α = 1. Furthermore,

since Tor clients only select guard relays at bootstrapping

time and would then use the same guard relays over several

months (or until the relays become unavailable), so precise

fingerprinting could not be done in a reasonably short time

(without launching massive DoS attacks which cause guard

985

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 05:41:50 UTC from IEEE Xplore. Restrictions apply.

relays to become unavailable). Especially given the very minor

loss in entropy as shown in Table III, the attacker will not be

able to efficiently locate client ASes. Additionally, there could

be hundreds of thousands or millions of clients in an AS, so

even knowing the client AS still does not imply precise client

information.

α Entropy (No
sampling)

Percentage
Reduction

Entropy
(10%
Sampling)

Percentage
Reduction

0 6.57 - - -
0.25 6.41 2.4% 6.46 1.7%
0.5 6.36 3.2% 6.39 2.7%
0.75 6.32 3.8% 6.35 3.3%
1 6.3 4.1% 6.31 3.9%

TABLE III: Average Shannon Entropy. Note that when α = 0,

entropy reaches maximum value of 6.57, indicating a com-

pletely uniform distribution.

Recommended setting of α value. We can see from Figure

7 that α = {0.75, 1} does not have a significant advantage in

increasing resilience over α = {0.5} in Section IV-C1. Thus,

we recommend using α = 0.5 as default, since it provides an

obviously greater increase in resilience to attacks than α =
0.25, while the marginal benefit decreases as α continues to

increase. α = 0.5 also offers a relatively higher entropy (and

thus lower vulnerability to fingerprinting attacks) compared to

bigger α values, as shown in Table III. However, if the Tor

client has some special configurations (e.g., clean up cached

circuits and connect to new guards frequently instead of using

the default guard relay configuration), then she should consider

using a lower α value. In Section IV-D, we will show that

α = 0.5 provides good performance as well.

3) Anonymity assessment: Finally, we evaluate the

anonymity of a given Tor client using MATor, a framework

for assessing the degree of anonymity in Tor with rigorously

proved anonymity bounds [14]. Note that the anonymity notion

in MATor is different from that in Section IV-C2: MATor

considers a given client and measures anonymity with different
relays that may be chosen by this given client, while the

latter considers a given relay and measures the entropy in the

probabilities of it being chosen by different clients.

We implemented and integrated our new guard relay selec-

tion algorithm into MATor, and evaluated it in comparison

with vanilla Tor. Note that we picked the top Tor client

location AS6128 [31] to evaluate here. We used MATor’s

default configuration of multiplicative factor ε = 1.3, ports

setting of HTTPS+IRC vs. HTTPS, and 0.5% of total nodes

as compromised nodes (considering a worst-case adversary

with a limit on the number of nodes it can compromise). We

evaluated using Tor consensus files from 2/1/2016 - 2/9/2016

and server descriptor from February 2016. Figure 8 shows

the result.

MATor evaluates three anonymity notions (sender, recipient,

and relationship anonymity). The full details of the anonymity

definitions are described in [14]. The result shows that our

Fig. 8: MATor Anonymity Bound 2/1/2016 - 2/9/2016

new guard relay selection algorithm has tighter anonymity
bounds on sender and relationship anonymities compared
to current Tor path selection, indicating better anonymity
guarantees. The recipient anonymity remains the same as

vanilla Tor, which is expected since we do not alter selection

algorithm for exit relays. The intuition behind the better

anonymity provided by our algorithm is that we redistribute the

preferences for guard relays by factoring in relay resiliences.

This avoids placing high trust in a small set of high-bandwidth

nodes, and thus results in better anonymity.

D. Performance Evaluation

We implemented our new Tor guard relay selection al-

gorithm by modifying Tor’s source code, and evaluate on

the Shadow emulator [32] for large scale and whole system

network performance. We configured the Tor network in our

simulation as in Table IV. Note that, this is the default

configuration that comes with the Shadow Tor plug-in, which

has been fine tuned by Shadow developers to model the Tor

network.

Type Number
Web Client 360
Bulk Client 40
Web Server 100
Guard Relay 14
Exit Relay 10
Guard/Exit Relay 5
Middle Relay 66

TABLE IV: Shadow Configuration

Since our relay selection is location-dependent, we need to

assign meaningful IP addresses to all the nodes. We used the

IP addresses in the default Shadow configuration file for the

relays, and we uniformly chose IP addresses from the 95 top

Tor client locations [7] to the 400 Tor clients in our simulation.

For simplicity, we only show the results for α = 0.5 here in

comparison to Vanilla Tor.

Figure 9 shows the network performance results from the

emulation. Figure 9a and Figure 9b shows the 60 second aver-

age receiver and sender throughput for all nodes, respectively.

986

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 05:41:50 UTC from IEEE Xplore. Restrictions apply.

0 500 1000 1500 2000 2500 3000 3500 4000

Tick (s)

0

10

20

30

40

50

60

70
T
h
ro
u
g
h
p
u
t
(M

iB
/s
)

60 second moving average throughput, recv, all nodes

vanilla

counter-raptor

(a) 60 second average receiving throughput for all nodes.

0 500 1000 1500 2000 2500 3000 3500 4000

Tick (s)

0

10

20

30

40

50

60

70

T
h
ro
u
g
h
p
u
t
(M

iB
/s
)

60 second moving average throughput, send, all nodes

vanilla

counter-raptor

(b) 60 second average sending throughput for all nodes.

0 5 10 15 20 25 30

Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
F
ra
c
ti
o
n

time to download 327680 bytes, all downloads

vanilla

counter-raptor

(c) Download time for 320KB data.

10 15 20 25 30 35 40 45 50 55

Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
F
ra
c
ti
o
n

time to download 5242880 bytes, all downloads

vanilla

counter-raptor

(d) Download time for 5MB data.

Fig. 9: Large-scale evaluation of Tor guard selection algorithm on Shadow simulator.

Counter-Raptor selection has almost the same throughput as

Vanilla Tor during the simulation, while having two oscilla-

tions in the middle. Figure 9c shows the download times of

320KB data. We can see that Counter-Raptor and Vanilla Tor

have identical performance. Figure 9d shows the download

times of 5MB data. For this much larger data size, there is a

minor increase in latency.

As briefly explained in this Section, we do not restrict relay

selection to a smaller set of relays and we give sufficient

weight to the bandwidth (α = 0.5 here), which explain

why our new guard selection algorithm only suffers minor

performance loss compared to Vanilla Tor.

V. REACTIVE DEFENSE:

BGP MONITORING SYSTEM

The Tor guard relay selection algorithm in Section IV

proactively mitigates the affect of active BGP hijacks on the

Tor client. In this section, we present a live BGP monitoring

system that reactively detects suspicious routing attacks that

affect Tor relays. While there have been previously proposed

BGP monitoring systems to detect prefix hijack attacks [33]–

[38], our system is the first that has been tailored for the Tor

network. We introduce a novel analytics-based approach for

hijack detection, which is specifically designed and tuned for

Tor. Our live monitoring system increases routing transparency
in the Tor network. Attackers will have to perform attacks in

the public domain, as opposed to being stealthy.

Some relay operators have expressed interest in receiving

alerts from our system upon routing anomaly detection on their

relays. This would be beneficial to relay operators as it would

allow them to mitigate any attack much quicker than without

the use of our system. Therefore, fewer Tor users would be

affected by the hijack because the attack would last a shorter

amount of time. Additionally, Tor users and others can also

subscribe to our system to receive alerts. This could be helpful

987

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 05:41:50 UTC from IEEE Xplore. Restrictions apply.

to Tor users by not only increasing the transparency in the Tor

network, but also allowing them to select relays that are not

being hijacked (in the case that they do not follow the default

Tor settings, and select the relays they use). Our system will

be available to both relay operators and Tor users (or any

subscriber) when we make our system publicly available.

A. System Design

a) Collecting Monitoring Data: A BGP monitoring sys-

tem on Tor requires information about current Tor relays.

The Tor Project releases up-to-date information about current

running relays every hour. Our system automatically fetches

this consensus data2. We focus on Tor guard relays and exit

relays, which reside at the two ends of the communication

path and can easily be the target of an adversary. Furthermore,

since we focus on AS-level adversaries, it is unnecessary to

monitor each individual relay by its IP address. Instead, we

monitor the /24 prefixes which contain Tor guard and exit

relays. There is no need to monitor a more specific prefix

than /24, since generally /24 is the longest prefix accepted in

a BGP announcement.

We pull a live stream of BGP announcements and with-

drawals from BGPStream [15], an open source framework for

live BGP data. We filter the BGP data to focus on the prefixes

that contain a Tor guard or exit relay, as well as all the sub-

prefixes up to the length /24 in order to detect sub-prefix (a.k.a

more-specific prefix) hijack attacks.

We use IP to ASN mappings from Team Cymru [39]

to obtain AS ownerships of the prefixes that contain Tor

guard/exit relays. Some prefixes are owned by an organization

with multiple AS numbers, so we take this into consideration

and store all AS origins of these prefixes. One caveat of using

Team Cymru is the potential inaccuracy and incompleteness of

the data; the system could also be augmented to check multiple

registries and compare results.

b) Detecting Routing Anomalies: We develop a frame-

work for hijack detection, which utilizes two different types of

techniques to check if any BGP activity involving Tor relays

is anomalous, as following:

1) Origin AS check. We compare the origin AS in the live

BGP data against the owner AS in the Team Cymru

registry in real-time. If there is a mismatch, we flag the

BGP update and the prefix as suspicious.

2) Analytics-based detection. We use two novel detection

analytics based on the frequency and time features of

BGP updates; because there is a significantly smaller

number of updates that include a Tor relay in comparison

to all BGP updates, this analytics-based approach is

effective for Tor, and produces a more reasonable amount

of false positives (as discussed in further sections). If a

BGP update for a prefix falls under the tuned threshold

of either analytics, we flag the BGP update and prefix as

suspicious.

2https://collector.torproject.org/recent/relay-descriptors/consensuses/

a) Frequency Analytic. Routing attacks can be character-

ized by an AS announcing a path once (or extremely

rarely) to a prefix that it does not own. The frequency

analytic detects attacks that exhibit this behavior. It

measures the frequency of each AS that originates a

given prefix; if the frequency is below some threshold,

then it could be a potential hijack attack.

b) Time analytic. Many real-world attacks last a rela-

tively short amount of time in comparison to life span

of a prefix [17], [19], [20], [40]. The time analytic

measures the amount of time each path to a prefix is

announced for; if the amount of time is below some

threshold, then there is the possibility of it being a

routing attack.

We select the threshold values for the frequency and time

analytics, respectively, by evaluating the system detection

accuracy on historical BGP data with known attacks.

c) Mitigating Hijack Attacks: Once a suspicious update

is flagged by a combination of techniques in the framework,

the relay(s) that are contained in the flagged (potentially

hijacked) prefix are blacklisted. Relays that are blacklisted

should not be used as guards for a period of time. Our

system can detect when a route to the victim prefix has

returned to normal, and will remove the prefix from the

blacklist at that point. This provides some attack mitigation

by preventing use of the guard when it could potentially be

hijacked. Additionally, this design does not force relays to be

blacklisted forever, and relays can be used once deemed safe

again.

B. Deployment and Data Analysis

The BGP monitoring system has been running since Febru-

ary 1st, 2016. In this section, we analyze the data for the

whole month of February, and tune the threshold values for

the frequency and time analytics. The threshold is calculated

based on all BGP updates for the month of February that

include a prefix that contains at least one Tor relay. We tune

the threshold on an entire month worth of data because any

potential attack in the data is a source of pollution; an attack

is less likely to stand out as anomalous in a small amount of

data as compared to a larger amount of data, such as a months

worth of data. In Sections V-C and V-D we apply these tuned

threshold values to the months of March, April and May of

2016. Therefore, data collected in February serves as training

data, and data collected in March, April, and May serves as

test data.

During the month of February, we assume there were no

hijack attacks that affected the Tor network, and therefore

assume there are no attacks in our monitored data from the

month. Our detection analytics are run in real-time on an

hourly basis in addition to analyzing the results of the real-

time origin AS check for two purposes: 1) threshold tuning,

and 2) false positive analysis. We present the data analysis

results of each detection method according to the framework

described in Section V-A.

988

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 05:41:50 UTC from IEEE Xplore. Restrictions apply.

Origin AS Check. This checking is done in real time as

the live BGP stream comes into our system. We compare the

origin AS from the BGP announcement in the live data stream

with the owner AS of the prefix from Team Cymru registry.

If there is a mismatch, then we log the prefix and the origin

AS from the BGP announcement. Table V shows the result.

From Table V, we can see that the total number of BGP

updates with mismatching origin AS is large in comparison to

the number of unique prefixes in these mismatching cases,

with an even smaller number of unique ASes involved in

these prefixes. There are many duplicate BGP updates over

time, which will all cause an alert in the system; future work

includes implementing a known “benign” set of (prefix, origin

AS) pairs, such that duplicates do not trigger an additional

alert. Additionally, if we know that a “mismatch” AS origin

is indeed authorized to make the announcement for the prefix

(e.g., we may get this information from relay operators), then

we can add this exception to our “benign” list so that it would

not trigger an alert again when it sees the same announcement.

Furthermore, we may be more interested to know how many

new mismatches occur (rather than the frequently recurring

ones), which may not be anomalous since routing attacks

usually last for a short time and do not exhibit a repeated

pattern over a long period of time. For example, there were

164 unique mismatching prefixes in March and 79 unique

ASes involved with the prefixes, but many of these mismatches

also appeared in February. If we calculate the number of

new mismatching prefixes that appeared in March (but not in

February), the number goes down to 55 unique prefixes and 25

unique ASes. Additionally, while more than a hundred prefixes

may appear to be a large number of alerts, it is important to

remember that it is the total number of alerts for an entire

month, which averages to just a few alerts per day. To further

reduce the number of false positives, the origin AS check can

be combined with the new analytics.

Frequency Analytic. The frequency analytic is calculated

in real-time, automatically once per hour; this time increment

can be reduced from hourly to a per-minute basis. For our

data analysis, and to tune the threshold value, we applied

this analytic to the data from the month of February, with

varying threshold values. The threshold value corresponds to

the ratio of (total number of times a given prefix is announced

by a given AS)/(total number of times a given prefix is

announced by all ASes). As we expected, the number of false

positives is directly related to the threshold value that is set

for the analytic; the higher the threshold value, the more false

positives are reported. On the other hand, setting the threshold

value too low can cause false negatives (actual attacks that are

not detected).

We varied the threshold value from 0.000 to 0.004. The

false positive rate remained at 0% until the threshold value was

raised to 0.003, at which point it became 0.05%. Therefore, we

select a threshold value of 0.0025 for the frequency analytic

when we apply the analytic to future (test) data.

Time Analytic. Similar to tuning the threshold value of the

frequency analytic, we tuned the threshold of time analytic

using the data collected throughout February. We applied

the time analytic while varying threshold values in order to

determine the optimal threshold.

We varied the threshold from 0.00 to 0.08. The false positive

rate remains at 0% until the threshold value is raised to 0.07,

at which point it became 0.05%. Therefore, the threshold value

for the time analytic is 0.065, which will be used in our

evaluation on data from March, April, and May.

C. Evaluation: Simulated Attacks

After tuning threshold values for our detection analytics, we

evaluate our monitoring system by testing these values on data

collected by the system during the months of March, April, and

May. Our evaluation should measure: 1) how accurately the

detection mechanisms can detect attacks, and 2) how usable is

the system (in terms of false positive rate), given that it alerts

a subscriber when attacks are detected. To measure this, we

analyzed past real-world hijack attacks, and modeled simulated

attacks after them. These simulated attacks were injected in

the off-line data that our monitoring system recorded. When

deciding which prefix to hijack, we randomly selected a prefix

already contained in the monitoring data, and we used the false

origin associated with the real-world hijack. All attacks are

equally-specific hijack attacks, as more-specific prefix hijack

attack detection has previously been studied [25], [33], [35],

[38]. The following are brief descriptions of the real-world

attacks after which the simulations are modeled.

1) Syrian Telecommunications Establishment (STE) hijack

in 2014 [20]. We injected 3 BGP updates into our

data to make it appear that an attack occurred for four

minutes on March 23, 2016. The hijacked prefix was

185.15.244.0/22, and it was an equal-length prefix hijack

attack.

2) Korean Weather Service hijacked US Climatic Center

(climate.gov) in 2014 [21]. We injected 10 BGP updates

into the March 30th-31st data for hijack that lasted 25

hours. The hijacked prefix was 103.56.207.0/24.

3) Windstream hijacked a SaudiNet prefix in 2014 [21]. We

injected 2 updates in the March 31st data to represent a

1 hour hijack of prefix 104.37.192.0/24.

4) Windstream hijacked a Hadara Gaza prefix in 2014 [21].

To model this attack, we hijacked prefix 195.254.135.0/24

on April 30th for 8 hours. We injected an update once

per hour for a total of 8 updates.

5) Windstream hijacked of Advania Iceland prefix in

2014 [21]. We injected 9 updates over the course of 9

hours on April 30th to hijack prefix 89.187.128.0/19. The

malicious BGP announcements had a shorter path than

the true announcements.

6) Windstream hijacked two China Telecom prefixes in

2014 [21]. We modeled these two attacks separately on

April 30th by injecting 9 updates over 9 hours for prefixes

77.245.144.0/20 and 151.100.0.0/16.

7) INEA S.A. hijacked a US Department of Defense prefix

in 2014 [21]. This attack was simulated by injecting 2

989

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 05:41:50 UTC from IEEE Xplore. Restrictions apply.

Month Total # of Tor
Updates

Total # of Ori-
gin AS Conflict
Updates

of Unique
Prefixes in
Conflicts

of Unique
ASes in
Conflicts

of Total
Unique
Prefixes

of Total
Unique Origin
ASes

February 1401633 84148 139 71 2195 837
March 1077098 49025 164 79 2357 858
April 1691325 326586 369 88 2453 859
May 2403680 22267 79 52 1954 783

TABLE V: Summary statistics for conflicting origin AS updates.

updates on April 30th for prefix 107.181.174.0/24 for a

total time of 17 minutes.

8) A2B Internet hijacked a network associated with Bitcoin

in 2015 [22]. We injected 4 updates on May 14th an-

nouncing prefix 193.200.241.0/24 for an attack that lasted

11 hours.

Table VI shows the summary statistics and characteristics

for the attacks that were injected into the March, April, and

May data.

After simulating the real-world attacks, we apply our detec-

tion mechanisms hourly and evaluate them for false positives

and false negatives. We discuss the accuracy and coverage of

each defense mechanism individually.

Origin AS Check. The origin AS check successfully detects

all of the injected attacks, since they all triggered the mis-

matching AS origin. Similar to the results presented in Section

V-B, this check produces a large number of false positives,

but the false positive rate can be reduced by analyzing unique

origin ASes or unique prefixes being announced. The system

can retain a list of known, non-malicious (prefix, origin AS)

pairs, such that duplicates do not trigger an alert. Additionally,

this check can be combined with the frequency and time

analytics for a more precise set of alerts. If either the frequency

or time analytic also flag the (prefix, origin AS) pair, then the

user is alerted to the potentially malicious update.

Frequency analytic. We applied the frequency analytic in

real-time to each hour in March, April, and May, with a

threshold value of .0025 (as determined in Section V-B). The

frequency of AS A announcing prefix P was calculated based

on the previous month of data for the hour being analyzed.

For example, the first hour of April was analyzed with respect

to the frequencies in the month of March.

This analytic was able to detect all attacks described in

Table VI, and therefore produced 0 false negatives. Each attack

was detected within the first hour of the first announcement;

for attacks that lasted longer than a single hour, the attacks

were still flagged in subsequent hours.

A common issue with monitoring and detection systems is

the amount of false positives produced. If the false positive

rate is too high, then the system is unusable. The frequency

analytic produced very few false positives; on average, over

the 2,616 hours monitored, the false positive rate was .38%.

We saw that 99.9% of the hours monitored produced 0 false

positives.

The results for the frequency analytic highlight an impor-

tant characteristic about the Tor network: most prefixes are

announced by a single AS in all updates, causing the frequency

of the (prefix, origin AS) pair to most commonly be 1.0. This

suggests that this analytic is suitable for use in monitoring

BGP activities on Tor.

Time Analytic. We applied the time analytic with the

threshold value of .065 (determined in Section V-B) to every

hour of data in March, April, and May. As with the frequency

analytic, the timing information of announcements in the

current were analyzed with respect to the previous month’s

timing information.

In terms of false negatives, the time analytic detected all

of the simulated attacks. Similar to the frequency analytic,

the false negative rate was 0. This analytic exhibited a low

percentage of false positives at .19% on average across all

hours monitored. As with the frequency analytic, 99.9% of

the hours in the dataset had 0 false positives.

Again, similar to the frequency analytic, the time analytic

results in very low false positives, indicating that it is also well-

suited for monitoring the Tor network. Both of these analytics

help reduce the false positives produced by the AS check,

while still flagging the true positives.

D. Evaluation: Real-World Attack

In addition to the simulated attacks, we also performed a

real-world BGP hijack attack on prefixes that we owned for

the duration of our experiment. Note that the IP range and AS

number we used to perform hijack attacks were temporarily

subleased to us for our experiment. This was a separate

experimental setup from the simulated attacks presented in

the previous section.

We announced the prefix 184.164.226.0/23, which we tem-

porarily owned, using the PEERING testbed. [41]. It allows us

to establish BGP connectivity with other ASes by proxying our

announcement via dozens of deployed sites in the world. In or-

der to perform the hijack attacks, we used two PEERING sites:

AS2637 (GATECH) and AS226 (ISI). We first announced

the prefix using AS2637, and also added the prefix to the

hourly list of prefixes that contain Tor relays, which is used to

filter out BGP updates that contain Tor relays (as described in

Section V-A). On May 16th, 2016, we performed an equally-

specific prefix hijack for about 5 minutes by announcing the

prefix using AS226, which is modeled after a real-world hijack

attack [17], [19], [20], [40]. During the hijack, the origin for

the prefix in some of the BGP announcements became AS226.

All three detection mechanisms – origin AS check, fre-

quency analytic, time analytic – flag this as an attack during

our real-time monitoring and the hourly analytics. While our

990

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 05:41:50 UTC from IEEE Xplore. Restrictions apply.

Attack Month Prefix Hijacking ASN True Origin ASN # of Updates Injected Length of Time of Hijack

1) March 185.15.244.0/22 29256 24961 3 4 minutes
2) March 103.56.207.0/24 10063 58477 10 25 hours
3) March 104.37.192.0/24 7029 36077 2 1 hour
4) April 195.254.135.0/24 7029 38935 8 8 hours
5) April 89.187.128.0/19 7029 35592 9 9 hours
6) April 77.245.144.0/20 7029 42868 9 9 hours
7) April 151.100.0.0/16 7029 137 9 9 hours
8) April 107.181.174.0/24 13110 46562 2 17 minutes
9) May 193.200.241.0/24 51088 51167 4 11 hours

TABLE VI: Summary statistics for the simulated attacks modeled after real-world attacks.

attack can detect all the simulated attacks, this shows that it

can also detect real-world attacks.

E. Adversarial Knowledge of Detection Techniques
In order to bypass our analytics detection, the adversary

needs to make the false announcements both i) more frequent

so it will be higher than the frequency analytic threshold,

and ii) for longer time so it will be higher than the time

analytic threshold. These two would be intrinsically hard to

achieve at the same time - routing attacks are usually short,

since the longer/more frequent the attack is, the much less

stealthier it becomes. Especially given that we use the previous

month’s data as the threshold basis, it would be very hard to

overcome. Furthermore, the system will flag the suspicious

announcement the first time it appears, so if more such

suspicious announcements arrive, they would not be used for

the analytics to avoid polluting the data. By actively omitting

subsequent (redundant) attack data, this system can defend

against such strategic poisoning attacks.

VI. DISCUSSION

Accuracy of AS path inference. Part of our AS resilience

calculation involves AS-level path inference from the network

topology. Recent work has shown that path inferences using

local preference and shortest path may not be completely

accurate [42], and thus path selection algorithms [10] that

rely on the accuracy of AS path inferences could be affected.

However, we only use path inference as an indicator of

network connectivity to calculate origin resilience instead

of predicting and replying on any precise routes. Thus, our

resilience calculation is robust to a certain degree of AS path

inference inaccuracy and/or AS path churn.
Reliability of BGPStream. BGPStream aggregates all of

the BGP prefix updates seen by RouteViews and RIPE collec-

tors. If some set of the collectors are manipulated or corrupted,

the other collectors can still be used and the monitoring

system will still be effective. If the aggregator (BGPStream)

is manipulated or corrupted, data can still be verified against

the collectors through RouteViews or RIPE, and the original

data can be restored and analyzed using the analytics in our

system.
Comparing and Combining the Detection Techniques.

As we can see from Section V, the origin AS check is success-

ful at catching the hijack attacks (true positives), while result-

ing in a significant number of false positives. We discussed two

potential ways of eliminating false positives in Section V-B,

which include getting input from relay operators and marking

certain prefix announcements as ”benign”, as well as focusing

on new mismatching cases rather than recurring ones. We can

combine the origin AS check with our frequency and time

analytics to achieve even higher accuracy. In contrast to the

origin AS check, the analytics-based detection methods result

in low false positive rates, which are used as an additional filter

on the alerts triggered by the origin AS check to eliminate false

positives.

VII. CONCLUSION

In this work, we have presented proactive and reactive

countermeasures to safeguard Tor against active BGP routing

attacks. First, we evaluated the Tor network for its current state

of resilience to hijack and interception attacks. We observed

that some ASes with high Tor bandwidth have relatively

low resilience. Next, we presented a new Tor guard relay

selection algorithm that proactively mitigates routing attacks.

The algorithm successfully increases the probability of a Tor

client being resilient to prefix hijack attacks. Finally, we

presented a live monitoring system that uses multiple new

detection mechanisms to alert subscribers to potential hijack

attacks happening in real-time. We evaluated the monitoring

system, and found that it was able to detect simulated attacks

modeled after real-world attacks, as well as a real hijack

attack (performed by us), with a negligible false positive rate.

Overall, our work is the first work on proactively mitigating

active routing attacks on Tor, and the first on presenting a

real-time monitoring system tailored for Tor.

ACKNOWLEDGMENT

The authors would like to thank Ethan Katz-Bassett, Bran-

don Schlinker and Italo Cunha for support on the PEERING

testbed. Thanks to Philipp Winter, Roger Dingledine, Matthew

Wright, Moritz Bartl and Ryan Wails for helpful discussions.

Special thanks to Aaron Johnson for providing invaluable

feedback. This work was supported by the National Science

Foundation under grants CNS-1423139, the Open Technology

Fund through the Information Controls Fellowship, and the

Department of Defense (DoD) through the National Defense

Science & Engineering Graduate Fellowship (NDSEG) Pro-

gram.

991

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 05:41:50 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: the second-
generation onion router,” in Proceedings of the 13th conference on
USENIX Security Symposium-Volume 13. USENIX Association, 2004,
pp. 21–21.

[2] “Tor metrics,” https://metrics.torproject.org/.
[3] V. Shmatikov and M.-H. Wang, “Timing analysis in low-latency mix

networks: Attacks and defenses,” in Computer Security–ESORICS 2006.
Springer, 2006, pp. 18–33.

[4] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr, “Towards an
analysis of onion routing security,” in Designing Privacy Enhancing
Technologies. Springer, 2001, pp. 96–114.

[5] M. Edman and P. Syverson, “AS-awareness in Tor path selection,” in
Proceedings of the 16th ACM conference on Computer and communi-
cations security. ACM, 2009, pp. 380–389.

[6] N. Feamster and R. Dingledine, “Location diversity in anonymity
networks,” in Proceedings of the 2004 ACM workshop on Privacy in
the electronic society. ACM, 2004, pp. 66–76.

[7] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson, “Users
get routed: Traffic correlation on Tor by realistic adversaries,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 337–348.

[8] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang, and
P. Mittal, “Raptor: routing attacks on privacy in Tor,” in 24th USENIX
Security Symposium (USENIX Security 15), 2015, pp. 271–286.

[9] M. Akhoondi, C. Yu, and H. V. Madhyastha, “LasTor: A low-latency AS-
aware Tor client,” in Security and Privacy (SP), 2012 IEEE Symposium
on. IEEE, 2012, pp. 476–490.

[10] R. Nithyanand, O. Starov, A. Zair, P. Gill, and M. Schapira, “Measuring
and mitigating AS-level adversaries against Tor,” in NDSS, 2016.

[11] “CAIDA Internet topology map,” https://www.caida.org/research/
topology/.

[12] “Tor consensus,” https://collector.torproject.org/recent/relay-descriptors/
consensuses/.

[13] M. Lad, R. Oliveira, B. Zhang, and L. Zhang, “Understanding resiliency
of Internet topology against prefix hijack attacks,” in Dependable Sys-
tems and Networks, 2007. DSN’07. 37th Annual IEEE/IFIP International
Conference on. IEEE, 2007, pp. 368–377.

[14] M. Backes, A. Kate, S. Meiser, and E. Mohammadi, “(nothing else)
MATor(s): Monitoring the anonymity of Tor’s path selection,” in Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2014, pp. 513–524.

[15] “BGP stream.” http://bgpstream.caida.org/.
[16] S. J. Murdoch and P. Zieliński, “Sampled traffic analysis by

Internet-exchange-level adversaries,” in Privacy Enhancing Technolo-
gies. Springer, 2007, pp. 167–183.

[17] “Hijack event today by Indosat,” http://www.bgpmon.net/
hijack-event-today-by-indosat/.

[18] H. Tan, M. Sherr, and W. Zhou, “Data-plane defenses against routing
attacks on Tor,” Proceedings on Privacy Enhancing Technologies, vol. 4,
pp. 276–293, 2016.

[19] “Large scale BGP hijack out of India.” http://www.bgpmon.net/
large-scale-bgp-hijack-out-of-india/.

[20] “BGP hijack incident by Syrian telecommu-
nications establishment,” http://www.bgpmon.net/
bgp-hijack-incident-by-syrian-telecommunications-establishment/.

[21] “Sprint, Windstream: Latest ISPs to hijack foreign networks,” http://
research.dyn.com/2014/09/latest-isps-to-hijack/.

[22] “On-going BGP hijack targets Palestinian ISP,” http://research.dyn.com/
2015/01/going-bgp-attack-targets-palestinian-isp/.

[23] L. Gao and J. Rexford, “Stable Internet routing without global coordi-
nation,” IEEE/ACM Transactions on Networking (TON), vol. 9, no. 6,
pp. 681–692, 2001.

[24] L. Gao, “On inferring autonomous system relationships in the internet,”
IEEE/ACM Transactions on Networking (ToN), vol. 9, no. 6, pp. 733–
745, 2001.

[25] H. Ballani, P. Francis, and X. Zhang, “A study of prefix hijacking and
interception in the Internet,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 37, no. 4. ACM, 2007, pp. 265–276.

[26] A. Pilosov and T. Kapela, “Stealing the internet: An internet-scale man
in the middle attack,” NANOG-44, Los Angeles, October, pp. 12–15,
2008.

[27] Y. Tillé, “An elimination procedure for unequal probability sampling
without replacement,” Biometrika, vol. 83, no. 1, pp. 238–241, 1996.

[28] “Maxmind GeoLite ASN database,” http://dev.maxmind.com/geoip/
legacy/geolite/.

[29] “The IPv4 routed /24 topology dataset,” http://www.caida.org/data/
active/ipv4 routed 24 topology dataset.xml.

[30] R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms for
best basis selection,” IEEE Transactions on information theory, vol. 38,
no. 2, pp. 713–718, 1992.

[31] J. Juen, “Protecting anonymity in the presence of autonomous system
and Internet exchange level adversaries,” 2012.

[32] R. Jansen and N. Hopper, “Shadow: Running Tor in a box for accurate
and efficient experimentation,” in NDSS, 2011.

[33] M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and L. Zhang, “PHAS:
A prefix hijack alert system.” in Usenix Security, 2006.

[34] Z. Zhang, Y. Zhang, Y. C. Hu, Z. M. Mao, and R. Bush, “iSpy:
detecting IP prefix hijacking on my own,” in ACM SIGCOMM Computer
Communication Review, vol. 38, no. 4. ACM, 2008, pp. 327–338.

[35] C. Zheng, L. Ji, D. Pei, J. Wang, and P. Francis, “A light-weight
distributed scheme for detecting IP prefix hijacks in real-time,” in ACM
SIGCOMM Computer Communication Review, vol. 37, no. 4. ACM,
2007, pp. 277–288.

[36] J. Qiu, L. Gao, S. Ranjan, and A. Nucci, “Detecting bogus BGP route
information: Going beyond prefix hijacking,” in Security and Privacy
in Communications Networks and the Workshops, 2007. SecureComm
2007. Third International Conference on. IEEE, 2007, pp. 381–390.

[37] X. Hu and Z. M. Mao, “Accurate real-time identification of IP prefix
hijacking,” in Security and Privacy, 2007. SP’07. IEEE Symposium on.
IEEE, 2007, pp. 3–17.

[38] X. Shi, Y. Xiang, Z. Wang, X. Yin, and J. Wu, “Detecting prefix
hijackings in the Internet with argus,” in Proceedings of the 2012 ACM
conference on Internet measurement conference. ACM, 2012, pp. 15–
28.

[39] “Team-Cymru,” http://www.team-cymru.org/.
[40] “Massive route leak causes Internet slowdown.” http://www.bgpmon.net/

massive-route-leak-cause-internet-slowdown/.
[41] B. Schlinker, K. Zarifis, I. Cunha, N. Feamster, and E. Katz-Bassett,

“PEERING: An AS for us,” in Proceedings of the 13th ACM Workshop
on Hot Topics in Networks. ACM, 2014, p. 18.

[42] J. Juen, A. Johnson, A. Das, N. Borisov, and M. Caesar, “Defending
Tor from network adversaries: A case study of network path prediction,”
Proceedings on Privacy Enhancing Technologies, vol. 2015, no. 2, pp.
171–187, 2015.

992

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 06,2024 at 05:41:50 UTC from IEEE Xplore. Restrictions apply.

